首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We evaluate the relationship between the intensity of remanent magnetization and fO2 in natural and synthetic Mars meteorites. The olivine‐phyric shergottite meteorite Yamato 980459 (Y‐980459) and a sulfur‐free synthetic analog (Y‐98*) of identical major element composition were analyzed to explore the rock magnetic and remanence properties of a basalt crystallized from a primitive melt, and to explore the role of magmatic and alteration environment fO2 on Mars crustal anomalies. The reducing conditions under which Y‐980459 is estimated to have formed (QFM‐2.5; Shearer et al. 2006) were replicated during the synthesis of Y‐98*. Y‐980459 contains pyrrhotite and chromite. Chromite is the only magnetic phase in Y‐98*. The remanence‐carrying capacity of Y‐980459 is comparable to other shergottites that formed in the fO2 range of QFM‐3 to QFM‐1. The remanence‐carrying capacity of these low fO2 basalts is 1–2 orders of magnitude too weak to account for the intense crustal anomalies observed in Mars's southern cratered highlands. Moderately oxidizing conditions of >QFM‐1, which are more commonly observed in nakhlites and Noachian breccias, are key to generating either a primary igneous assemblage or secondary alteration assemblage capable of acquiring an intense remanent magnetization, regardless of the basalt character or thermal history. This suggests that if igneous rocks are responsible for the intensely magnetized crust, these oxidizing conditions must have existed in the magmatic plumbing systems of early Mars or must have existed in the crust during secondary processes that led to acquisition of a chemical remanent magnetization.  相似文献   

2.
We conducted a paleomagnetic study of the matrix of Allende CV3 chondritic meteorite, isolating the matrix's primary remanent magnetization, measuring its magnetic fabric and estimating the ancient magnetic field intensity. A strong planar magnetic fabric was identified; the remanent magnetization of the matrix was aligned within this plane, suggesting a mechanism relating the magnetic fabric and remanence. The intensity of the matrix's remanent magnetization was found to be consistent and low (~6 μT). The primary magnetic mineral was found to be pyrrhotite. Given the thermal history of Allende, we conclude that the remanent magnetization was formed during or after an impact event. Recent mesoscale impact modeling, where chondrules and matrix are resolved, has shown that low‐velocity collisions can generate significant matrix temperatures, as pore‐space compaction attenuates shock energy and dramatically increases the amount of heating. Nonporous chondrules are unaffected, and act as heat‐sinks, so matrix temperature excursions are brief. We extend this work to model Allende, and show that a 1 km/s planar impact generates bulk porosity, matrix porosity, and fabric in our target that match the observed values. Bimodal mixtures of a highly porous matrix and nominally zero‐porosity chondrules make chondrites uniquely capable of recording transient or unstable fields. Targets that have uniform porosity, e.g., terrestrial impact craters, will not record transient or unstable fields. Rather than a core dynamo, it is therefore possible that the origin of the magnetic field in Allende was the impact itself, or a nebula field recorded during transient impact heating.  相似文献   

3.
Abstract— Recent discovery of intense magnetic anomalies on Mars, which are due to remanent magnetization, requires some explanation for the possible minerals responsible for the anomalous signature. Thermoremanent magnetization (TRM) in single domain (SD) and multidomain (MD) sized magnetite, hematite, and pyrrhotite, all potential minerals, are considered. The intensity of TRM (in 0.05 mT) is in descending order: SD‐sized magnetite, SD‐sized pyrrhotite, MD‐sized hematite, MD‐sized pyrrhotite, MD‐sized magnetite, SD‐sized hematite. The TRM intensity is <4% of the saturation isothermal remanence (SIRM) for all but the MD hematite, which may have >50% of the SIRM. Each of these minerals and estimated concentrations of magnetic remanence carriers (assumed to be titanomagnetite) in the Shergotty‐Nakhla‐Chassigny martian meteorites are used in a thin sheet approximation model to reveal the concentration of each mineral required for the generation of an observed magnetic anomaly (1500 nT at 100 km altitude) assuming TRM acquisition in a 0.05 mT magnetic field.  相似文献   

4.
Abstract— Demagnetized samples of cobalt precipitates in a copper matrix were shocked to 5, 10, and 20 GPa in a weak magnetic field of 7.7 μT to elucidate the origins of the natural remanent magnetization of meteorites and the magnetic anomalies of impact craters on the moon and Mars. The samples placed in the target acquired shock remanent magnetization (SRM) whose intensity increased up to 21.3 times compared with the demagnetized state, but SRM intensity and shock intensity were not correlated. The SRM direction was in most cases approximately perpendicular to the shock direction. The samples placed 4.8 mm from the impacted surface did not acquire significant magnetization, suggesting no plasma‐induced remanent magnetization (PIRM) up to 20 GPa. When the samples were divided into 8 sub‐samples, the SRM intensities of sub‐samples increased up to 40 times compared with bulk ones and their directions were scattered. Higher coercive force grains were magnetized perpendicular to the shock direction for shocks of 5 and 10 GPa, but at 20 GPa the directions were less systematically oriented. These results suggest that the proposed plasma‐induced magnetization of impactites should be reconsidered.  相似文献   

5.
The nature of the ancient magnetic field of the Moon, in which lunar rocks acquired their remanent magnetism, has emerged as an important potential source of evidence, if somewhat controversial, for a lunar core which at a period in the Moon's history was the source of the magnetic field. Many of the lunar rocks possess a stable, primary remanence (NRM) with characteristics consistent with and indicative of thermo-remanent magnetization, acquired when the rocks cooled in an ambient magnetic field. Also present are secondary components of magnetization, one type of which appears to have been acquired between collection on the Moon and reception in the laboratory and others which were apparently acquired on the Moon.An important question to be answered is whether meteorite impacts play any part in lunar magnetism, either in modifying pre-existing magnetizations or by imparting a shock remanent magnetism (SRM) in a transient magnetic field associated with the impact. With current knowledge, SRM, in either a global lunar magnetic field of a transient field, and TRM cannot be distinguished, and in the paper the secondary magnetization characteristic of lunar rocks are examined to investigate whether their nature favours the presence of a permanent lunar magnetic field or whether they are consistent with an origin as a transient field-generated SRM.Besides terrestrial processes of secondary magnetization, such as viscous, chemical and partial thermoremanent magnetization, possible processes peculiar to the Moon are discussed and their likely importance assessed in relation to lunar sample history. The nature of the secondary magnetizations appear to be best explained on the assumption that they are due to one or more of the processes that require an ambient lunar field, namely viscous, partial thermoremanent and shock magnetization. When associated with other types of evidence obtained from lunar magnetism studies, investigations of lunar sample remanent magnetism now favours the existence of an ancient lunar magnetic field.  相似文献   

6.
Abstract— A database of magnetic susceptibility measurements of stony achondrites (acapulcoite‐lodranite clan, winonaites, ureilites, angrites, aubrites, brachinites, howardite‐eucrite‐diogenite (HED) clan, and Martian meteorites, except lunar meteorites) is presented and compared to our previous work on chondrites. This database provides an exhaustive study of the amount of iron‐nickel magnetic phases (essentially metal and more rarely pyrrhotite and titanomagnetite) in these meteorites. Except for ureilites, achondrites appear much more heterogeneous than chondrites in metal content, both at the meteorite scale and at the parent body scale. We propose a model to explain the lack of or inefficient metal segregation in a low gravity context. The relationship between grain density and magnetic susceptibility is discussed. Saturation remanence appears quite weak in most metal‐bearing achondrites (HED and aubrites) compared to Martian meteorites. Ureilites are a notable exception and can carry a strong remanence, similar to most chondrites.  相似文献   

7.
Mechanisms responsible for remanent magnetization in lunar samples are different from mechanisms for terrestrial samples simply because lunar samples contain iron and iron alloys, while terrestrial samples contain oxides as major remanence carriers. Nine new remanence mechanisms for iron and iron-nickel alloys are proposed in this paper, and their characteristics are summarized. The remanence mechanisms are MTRM (Martensitic), DARM (Duplex Anneal), RCRM (Recrystallization), SRRM (Shock Transition), TPRM (Transition Point), TMRM (Transformation), RMRM (Reverse Transformation), TSRM (Shock Twinning), DCRM (Precipitation). Specific metallographic criteria for recognition of phase structures associated with the mechanisms are briefly described, and micrographs of some of the phase designations are presented. Magnetic remanence properties for iron-nickel alloys are dependent on the amount of nickel and on the thermal history of the alloy. Specific phase structures associated with some transformations impart high magnetic stability even in large grains of metal and alloys ( 1 mm). The proposed mechanisms may apply to the complete size range of metal in the lunar samples (0.002m to 1000m). It is likely that magnetic remanence properties in lunar samples will have to be reinterpreted in terms of the proposed mechanisms.  相似文献   

8.
We present here a summary review of the work of Russian scientists, primarily Gus'kova and Pochtarev, on the magnetism of meteorites. They have measured the initial natural remanent magnetization and the magnetic susceptibility in more than 900 meteorite samples from collections throughout the Soviet Union. More sophisticated studies, involving both thermal and alternating field demagnetization experiments, were also conducted on a few samples. Meteorites almost invariably retain evidence of ancient magnetic fields in their pre-terrestrial history  相似文献   

9.
Abstract— Meteorite magnetic records constitute physical evidence of processes acting during early solar system evolution. Consequently, the validation of these records is important in meteorite research. The first step in the validation process should be the REM value. The REM value is the ratio of natural remanence (NRM) to saturation remanent magnetization imparted by a 1 T magnetic field (SIRM). The REM values range over 3 to 4 orders of magnitude for stony meteorites and for chondrules from Allende (C3V‐S1), Bjurböle (L4‐S1), and Chainpur (LL3‐S1) meteorites. The REM values computed from published NRM and SIRM data identify many orders of magnitude range in the REM values including REM values >100 × 10?3. These data suggest a dependence for the NRM intensity on the curatorial location from which the sample was obtained. Any earth rock acquiring thermoremanent magnetization (TRM) in the geomagnetic field has a restricted range in REM mostly between 5 and 50 × 10?3, the exception being the mineral hematite in the multidomain size range. The only terrestrial samples with REM much greater than 100 × 10?3 are those struck by lightning. The REM value provides a physical basis for recognition between valid records and those that “might be contaminated.” The isothermal remanence acquisition (RA) curve is presented as a contamination curve that allows an indication of the level of magnetic field contamination required to give the computed “REM” (RM/SIRM) value. In the case of the Bjurböle and Chainpur chondrules, with REM values >100 × 10?3, the RA curve indicates that unrealistically large contamination magnetic fields would be required to give REM values greater than 100 × 10?3. This would suggest contamination other than by a hand magnet that is normally available to an experimenter. This would require an explanation that would involve large magnetic fields during chondrule formation, or some extraordinary remanence acquisition mechanism that remains to be described. Magnetic contamination experiments, using ~80 and ~40 mT magnets, demonstrate that the “REM” values and extent of modification of the magnetic vector record are mineralogy dependent, and this is mostly related to the amount and characteristics of the mineral tetrataenite. The complexity of the meteorite records suggest validation of the record as a first step. The REM value is the first physical statement that can be made in this validation.  相似文献   

10.
Lunar samples are magnetic primarily due to the body centered cubic (BBC) iron and ironnickel alloys they contain. Presented for the first time are results which demonstrate that the magnitude of the martensitic thermal remanence (MTRM) induced on quenching iron-nickel alloy in the geomagnetic field depends on the nickel content of the alloy. High magnetic stability is due to the increasing dislocation density and increasingly complex microstructures associated with increasing nickel content in the alloys. The results agree with the mechanical and structural properties of the alloys. The characteristic quench martensite microstructure observed on metallographic examination provides a recognition criterion for the MTRM mechanism. These results are important for lunar and meteoritic research intending to ascertain the paleofield responsible for the observed remanent magnetization.  相似文献   

11.
We have examined the magnetic characteristics of representative ureilites, with a view to identify the magnetic effects of shock and to isolate a primary component of the natural remanent magnetization (NRM). As a group, the ureilites show remarkably uniform patterns of magnetic behavior, attesting to a common genesis and history. However, a clearly observed gradation in magnetic properties of the ureilites studied with shock level, parallels their classification based on petrologic and chemical fractionation shock-related trends.The ureilite meteorites possess a strong and directionally stable NRM. Laboratory thermal modelling of this presumably primordial NRM preserved in Goalpara and Kenna produced reliable paleointensity estimates of order 1 Oe, thus providing evidence for strong early, nebular magnetic fields. This paleofield strength is compatible with values obtained previously from carbonaceous chondrites and supports isotopic evidence for a contemporary origin of these two groups of meteorites in the same nebular region. The mechanism for recording nebular fields, manifestly different in carbonaceous chondrite vs. ureilite meteorites, is thus relatively unimportant: violent collisional shock in ureilites seems to have only partially altered an original magnetization, by preferential removal of its least stable portion.  相似文献   

12.
Abstract— The magnetometer experiment (MAG) onboard the Near‐Earth Asteroid Rendezvous (NEAR)‐Shoemaker spacecraft detected no global scale magnetization and established a maximum magnetization of 2.1 times 10?6 Am2 kg?1 for asteroid 433 Eros. This is in sharp contrast with the estimated magnetization of other S‐class asteroids (Gaspra, ?2.4 times 10?2 Am2 kg?1; Braille, ?2.8 times 10?2 Am2 kg?1) and is below published values for all types of ordinary chondrites. This includes the L/LL types considered to most closely match 433 Eros based on preliminary interpretations of NEAR remote geochemical experiments. The ordinary chondrite meteorite magnetization intensity data was reviewed in order to assess the reasonableness of an asteroid‐meteorite match based on magnetic property measurements. Natural remanent magnetization (NRM) intensities for the ordinary chondrite meteorites show at least a 2 order of magnitude range within each of the H, L, and LL groups, all well above the 2.1 times 10?6 Am2 kg?1 level for 433 Eros. The REM values (ratio of the NRM to the SIRM (saturation remanent magnetization)) range over 3 orders of magnitude for all chondrite groups indicating no clear relationship between NRM and the amount of magnetic material. Levels of magnetic noise in chondrite meteorites can be as much as 70% or more of the NRM. Consequently, published values of the NRM should be considered suspect unless careful evaluation of the noise sources is done. NASA Goddard SFC studies of per unit mass intensities in large (>10 000 g) and small (down to <1 g) samples from the same meteorite demonstrate magnetic intensity decreases as size increases. This would appear to be explained by demagnetization due to magnetic vector randomness at unknown scale sizes in the larger samples. This would then argue for some level of demagnetization of large objects such as an asteroid. The possibility that 433 Eros is an LL chondrite cannot be discounted.  相似文献   

13.
Abstract— A magnetic model is proposed for the Bosumtwi meteorite impact structure in Ghana, Africa. This relatively young (~1.07 Ma) structure with a diameter of ~10.5 km is exposed within early Proterozoic Birimian—Tarkwaian rocks. The central part of the structure is buried under postimpact lake sediments, and because of lack of drill cores, geophysics is the only way to reveal its internal structure. To study the structure below and beyond the lake, a high‐resolution, low altitude (~70 m) airborne geophysical survey across the structure was conducted, which included measurements of the total magnetic field, electromagnetic data, and gamma radiation. The magnetic data show a circumferential magnetic halo outside the lakeshore, ~12 km in diameter. The central‐north part of the lake reveals a central negative magnetic anomaly with smaller positive side‐anomalies north and south of it, which is typical for magnetized bodies at shallow latitudes. A few weaker negative magnetic anomalies exist in the eastern and western part of the lake. Together with the northern one, they seem to encircle a central uplift. Our model shows that the magnetic anomaly of the structure is presumably produced by one or several relatively strongly remanently magnetized impact‐melt rock or melt‐rich suevite bodies. Petrophysical measurements show a clear difference between the physical properties of preimpact target rocks and impactites. Suevites have a higher magnetization and have low densities and high porosities compared to the target rocks. In suevites, the remanent magnetization dominates over induced magnetization (Koenigsberger ratio > 3). Preliminary palaeomagnetic results reveal that the normally magnetized remanence component in suevites was acquired during the Jaramillo normal polarity epoch. This interpretation is consistent with the modelling results that also require a normal polarity magnetization for the magnetic body beneath the lake. The reverse polarity remanence component, superimposed on the normal component, is probably acquired during subsequent reverse polarity events.  相似文献   

14.
Abstract— As of July 2001, 1238 Libyan meteorites have been reported. Most were found in two areas called Dar al Gani and Hamadah al Hamra. Dar al Gani is located on a plateau of marine carbonate rocks with marly components. Eight‐hundred and sixty‐nine meteorites between 6 g and 95 kg totalling 687 kg have been found here but the calculated mean recovery density is comparatively low with one meteorite on 6.5 km2. Dar al Gani is a perfect site for the recognition and preservation of meteorites. The existence of meteorites is the result of a combination of specific geological and geomorphological conditions: there is a bright‐colored, old limestone plateau (<2 Ma), under arid weather conditions over long periods of time, with rapid elimination of surface water if present and low erosion rates. The preservation of meteorites is guaranteed through the absence of quartz sand on the plateau, strongly reducing wind erosion and a basic environment emerging from the carbonate ground retards rusting of metallic meteorite components. A supposed soil cover during pluvial times has probably protected older meteorites and led to a concentration of meteorites of different periods. An evaluation of Dar al Gani meteorites suggests the existence of at least 26 strewnfields and 26 meteorite pairs reducing the number of falls to, at most, 534. Shock and weathering grades as a tool for the recognition of pairings turned out to be problematic, as several strewnfields showed paired meteorites which had been classified to different shock and weathering grades.  相似文献   

15.
Abstract— Plessite is a mixture of body‐centered cubic (bcc) kamacite (α), face‐centered cubic (fcc) taenite (γ), and/or ordered FeNi‐tetrataenite (γ“) phases and is observed in the metal of iron, stony‐iron, and chondritic meteorites. The formation of plessite was studied by measuring the orientation of the bcc and fcc phases over large regions of plessite using electron backscatter diffraction (EBSD) analysis in five ataxites, the Carlton IAB‐IIICD iron, and zoneless plessite metal in the Kernouve H6 chondrite. The EBSD results show that there are a number of different orientations of the bcc kamacite phase in the plessite microstructure. These orientations reflect the reaction path γ (fcc)→α2 (bcc) in which the α2 phase forms during cooling below the martensite start temperature, Ms, on the close‐packed planes of the parent fcc phase according to one or more of the established orientation relationships (Kurdjumov‐Sachs, Nishiyama‐Wasserman, and Greninger‐Troiano) for the fcc to bcc transformation. The EBSD results also show that the orientation of the taenite and/or tetrataenite regions at the interfaces of prior α2 (martensite) laths, is the same as that of the single crystal parent taenite γ phase of the meteorite. Therefore, the parent taenite γ was retained at the interfaces of martensite laths during cooling after the formation of martensite. The formation of plessite is described by the reaction γ→α2 + γ→α + γ. This reaction is inconsistent with the decomposition of martensite laths to form γ phase as described by the reaction γ→α2→α + γ, which is the classical mechanism proposed by previous investigators. The varying orientations of the fine exsolved taenite and/or tetrataenite within decomposed martensite laths, however, are a response to the decomposition of α2 (martensite) laths at low temperature and are formed by the reaction α2→α + γ.  相似文献   

16.
Preliminary shock experiments at approximately 50 and 250 kb have been carried out with lunar soil and with a dispersion of iron in quartz. The lunar soils acquire remanent magnetization in the Earth's field of order of magnitude 10?3 G cm3 g?1. The remanence exhibited considerable stability against AF demagnetization. Remanence appears to be acquired both during the passage of the shock wave through the material and during post shock cool-down. The higher shock range gave rise to an increase in magnetic viscosity and in the saturation magnetization of the soil, which is most readily explained as due to the generation of fine grained iron.  相似文献   

17.
Abstract— The magnetic properties of samples of seven Martian meteorites (EET 79001, Zagami, Nakhla, Lafayette, Governador Valadares, Chassigny and ALH 84001) have been investigated. All possess a weak, very stable primary natural remanent magnetization (NRM), and some have less stable secondary components. In some cases, the latter are associated with magnetic contamination of the samples, imparted since their recovery, and with viscous magnetization, acquired during exposure of the meteorites to the geomagnetic field since they fell. The magnetic properties are carried by a small content (<1%) of titanomagnetite and, in ALH 84001, possibly by magnetite as well. The most likely source of the primary NRM is a thermoremanent magnetization acquired when the meteorite material last cooled from a high temperature in the presence of a magnetic field. Current evidence is that this was 1.3 Ga ago for the nakhlites and Chassigny and 180 Ma for shergottites: the time of the last relevant cooling of ALH 84001 is not presently known. Preliminary estimates of the strength of the magnetizing field are in the range 0.5–5 üT, which is at least an order of magnitude greater than the present field. It is tentatively concluded that the magnetic field was generated by a dynamo process in a Martian core with appropriate structure and properties.  相似文献   

18.
NWA 2737, a Martian meteorite from the Chassignite subclass, contains minute amounts (0.010 ± 0.005 vol%) of metal‐saturated Fe‐Ni sulfides. These latter bear evidence of the strong shock effects documented by abundant Fe nanoparticles and planar defects in Northwest Africa (NWA) 2737 olivine. A Ni‐poor troilite (Fe/S = 1.0 ± 0.01), sometimes Cr‐bearing (up to 1 wt%), coexists with micrometer‐sized taenite/tetrataenite‐type native Ni‐Fe alloys (Ni/Fe = 1) and Fe‐Os‐Ir‐(Ru) alloys a few hundreds of nanometers across. The troilite has exsolved flame‐like pentlandite (Fe/Fe + Ni = 0.5–0.6). Chalcopyrite is almost lacking, and no pyrite has been found. As a hot desert find, NWA 2737 shows astonishingly fresh sulfides. The composition of troilite coexisting with Ni‐Fe alloys is completely at odds with Chassigny and Nahkla sulfides (pyrite + metal‐deficient monoclinic‐type pyrrhotite). It indicates strongly reducing crystallization conditions (close to IW), several log units below the fO2 conditions inferred from chromites compositions and accepted for Chassignites (FMQ‐1 log unit). It is proposed that reduction in sulfides into base and precious metal alloys is operated via sulfur degassing, which is supported by the highly resorbed and denticulated shape of sulfide blebs and their spongy textures. Shock‐related S degassing may be responsible for considerable damages in magmatic sulfide structures and sulfide assemblages, with concomitant loss of magnetic properties as documented in some other Martian meteorites.  相似文献   

19.
Shock remagnetization is a significant mode of alteration of the intensity and direction of magnetization in planetary crustal rocks subjected to the dynamic and thermochemical effects associated with meteorite impact. Shock remagnetization will take place almost instantaneously during and following the transient shock episode, and over longer times depending on residual temperature effects associated with shock heating and the production of impact melt. Remagnetization will follow certain demagnetization effects. The following transitions and residual effects will result in remagnetization of planetary crustal material:
  1. First order reversible crystallographic transitions in bodycentered cubic iron-nickel alloys.
  2. Second order Curie temperature transitions in face-centered cubic iron-nickel alloys.
  3. Shock induced uniaxial anisotropy due to magnetoelasstic coupling of magnetic vectors to the shock wave.
  4. Shock melting of iron containing silicates.
  5. Subsolidus reduction and FeO decomposition.
  6. Partial ther moremanence due to post-shock temperature.
  7. Total thermoremanence due to post-shock temperature.
  8. Production of a superparamagnetic distribution of iron which is sensitive to surface temperature fluctuation.
  9. Thermal effects in metal and alloy phases.
Lunar breccia and soil samples are generally more reduced than crystalline rocks and some of th's reduction is subsolidus probably associated with the transient thermal effects due to meteorite impact in teh porous reglith.  相似文献   

20.
Shock‐induced features are abundantly observed in meteorites. Especially, shock veins, including high‐pressure minerals, characterize many kinds of heavily shocked meteorite. On the other hand, no high‐pressure phases have been yet reported from enstatite chondrites. We studied a heavily shocked EH3 chondrite, Asuka 10164, containing a vein, which comprises fragments of fine‐grained silicate and opaque minerals, and chondrules. In this vein, we found a silica polymorph, coesite. This is the first discovery of a high‐pressure phase in enstatite chondrites. Other high‐pressure polymorphs were not observed in the vein. The assemblages and chemical compositions of minerals, and the occurrence of coesite indicate that the vein was subjected to the high‐pressure and temperature condition at about 3–10 GPa and 1000 °C. The host also experienced heating for a short time under lower temperature conditions, from ~700 to ~1000 °C, based on the opaque minerals typical of EH chondrites and textural features. Although the pressure condition of the vein in this chondrite is much lower than those in the other meteorites, our results suggest that all major meteorite groups contain high‐pressure polymorphs. Heavy shock events commonly took place in the solar system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号