首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Ordinary and carbonaceous chondrites of the lowest petrologic types were surveyed by X‐ray mapping techniques. A variety of metamorphic effects were noted and subjected to detailed analysis using electron microprobe, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and cathodoluminescence (CL) methods. The distribution of Cr in FeO‐rich olivine systematically changes as metamorphism increases between type 3.0 and type 3.2. Igneous zoning patterns are replaced by complex ones and Cr‐rich coatings develop on all grains. Cr distributions in olivine are controlled by the exsolution of a Cr‐rich phase, probably chromite. Cr in olivine may have been partly present as tetrahedrally coordinated Cr3+. Separation of chromite is nearly complete by petrologic type 3.2. The abundance of chondrules showing an inhomogeneous distribution of alkalis in mesostasis also increases with petrologic type. TEM shows this to be the result of crystallization of albite. Residual glass compositions systematically change during metamorphism, becoming increasingly rich in K. Glass in type I chondrules also gains alkalis during metamorphism. Both types of chondrules were open to an exchange of alkalis with opaque matrix and other chondrules. The matrix in the least metamorphosed chondrites is rich in S and Na. The S is lost from the matrix at the earliest stages of metamorphism due to coalescence of minute grains. Progressive heating also results in the loss of sulfides from chondrule rims and increases sulfide abundances in coarse matrix assemblages as well as inside chondrules. Alkalis initially leave the matrix and enter chondrules during early metamorphism. Feldspar subsequently nucleates in the matrix and Na re‐enters from chondrules. These metamorphic trends can be used to refine classification schemes for chondrites. Cr distributions in olivine are a highly effective tool for assigning petrologic types to the most primitive meteorites and can be used to subdivide types 3.0 and 3.1 into types 3.00 through 3.15. On this basis, the most primitive ordinary chondrite known is Semarkona, although even this meteorite has experienced a small amount of metamorphism. Allan Hills (ALH) A77307 is the least metamorphosed CO chondrite and shares many properties with the ungrouped carbonaceous chondrite Acfer 094. Analytical problems are significant for glasses in type II chondrules, as Na is easily lost during microprobe analysis. As a result, existing schemes for chondrule classification that are based on the alkali content of glasses need to be revised.  相似文献   

2.
Abstract— We report the results of our petrological and mineralogical study of Fe‐Ni metal in type 3 ordinary and CO chondrites, and the ungrouped carbonaceous chondrite Acfer 094. Fe‐Ni metal in ordinary and CO chondrites occurs in chondrule interiors, on chondrule surfaces, and as isolated grains in the matrix. Isolated Ni‐rich metal in chondrites of petrologic type lower than type 3.10 is enriched in Co relative to the kamacite in chondrules. However, Ni‐rich metal in type 3.15–3.9 chondrites always contains less Co than does kamacite. Fe‐Ni metal grains in chondrules in Semarkona typically show plessitic intergrowths consisting of submicrometer kamacite and Ni‐rich regions. Metal in other type 3 chondrites is composed of fine‐ to coarse‐grained aggregates of kamacite and Ni‐rich metal, resulting from metamorphism in the parent body. We found that the number density of Ni‐rich grains in metal (number of Ni‐rich grains per unit area of metal) in chondrules systematically decreases with increasing petrologic type. Thus, Fe‐Ni metal is a highly sensitive recorder of metamorphism in ordinary and carbonaceous chondrites, and can be used to distinguish petrologic type and identify the least thermally metamorphosed chondrites. Among the known ordinary and CO chondrites, Semarkona is the most primitive. The range of metamorphic temperatures were similar for type 3 ordinary and CO chondrites, despite them having different parent bodies. Most Fe‐Ni metal in Acfer 094 is martensite, and it preserves primary features. The degree of metamorphism is lower in Acfer 094, a true type 3.00 chondrite, than in Semarkona, which should be reclassified as type 3.01.  相似文献   

3.
Abstract– We evaluate the chemical and physical conditions of metamorphism in ordinary chondrite parent bodies using X‐ray diffraction (XRD)‐measured modal mineral abundances and geochemical analyses of 48 type 4–6 ordinary chondrites. Several observations indicate that oxidation may have occurred during progressive metamorphism of equilibrated chondrites, including systematic changes with petrologic type in XRD‐derived olivine and low‐Ca pyroxene abundances, increasing ratios of MgO/(MgO+FeO) in olivine and pyroxene, mean Ni/Fe and Co/Fe ratios in bulk metal with increasing metamorphic grade, and linear Fe addition trends in molar Fe/Mn and Fe/Mg plots. An aqueous fluid, likely incorporated as hydrous silicates and distributed homogeneously throughout the parent body, was responsible for oxidation. Based on mass balance calculations, a minimum of 0.3–0.4 wt% H2O reacted with metal to produce oxidized Fe. Prior to oxidation the parent body underwent a period of reduction, as evidenced by the unequilibrated chondrites. Unlike olivine and pyroxene, average plagioclase abundances do not show any systematic changes with increasing petrologic type. Based on this observation and a comparison of modal and normative plagioclase abundances, we suggest that plagioclase completely crystallized from glass by type 4 temperature conditions in the H and L chondrites and by type 5 in the LL chondrites. Because the validity of using the plagioclase thermometer to determine peak temperatures rests on the assumption that plagioclase continued to crystallize through type 6 conditions, we suggest that temperatures calculated using pyroxene goethermometry provide more accurate estimates of the peak temperatures reached in ordinary chondrite parent bodies.  相似文献   

4.
Abstract— –The CH/CB‐like chondrite Isheyevo consists of metal‐rich (70–90 vol% Fe,Ni‐metal) and metal‐poor (7–20 vol% Fe,Ni‐metal) lithologies which differ in size and relative abundance of Fe,Ni‐metal and chondrules, as well as proportions of porphyritic versus non‐porphyritic chondrules. Here, we describe the mineralogy and petrography of Ca,Al‐rich inclusions (CAIs) and amoeboid olivine aggregates (AOAs) in these lithologies. Based on mineralogy, refractory inclusions can be divided into hibonite‐rich (39%), grossite‐rich (16%), melilite‐rich (19%), spinel‐rich (14%), pyroxene‐anorthite‐rich (8%), fine‐grained spinel‐rich CAIs (1%), and AOAs (4%). There are no systematic differences in the inclusion types or their relative abundances between the lithologies. About 55% of the Isheyevo CAIs are very refractory (hibonite‐rich and grossite‐rich) objects, 20–240 μm in size, which appear to have crystallized from rapidly cooling melts. These inclusions are texturally and mineralogically similar to the majority of CAIs in CH and CB chondrites. They are distinctly different from CAIs in other carbonaceous chondrite groups dominated by the spinel‐pyroxene ± melilite CAIs and AOAs. The remaining 45% of inclusions are less refractory objects (melilite‐, spinel‐ and pyroxene‐rich CAIs and AOAs), 40–300 μm in size, which are texturally and mineralogically similar to those in other chondrite groups. Both types of CAIs are found as relict objects inside porphyritic chondrules indicating recycling during chondrule formation. We infer that there are at least two populations of CAIs in Isheyevo which appear to have experienced different thermal histories. All of the Isheyevo CAIs apparently formed at an early stage, prior to chondrule formation and prior to a hypothesized planetary impact that produced magnesian cryptocrystalline and skeletal chondrules and metal grains in CB, and possibly CH chondrites. However, some of the CAIs appear to have undergone melting during chondrule formation and possibly during a major impact event. We suggest that Isheyevo, as well as CH and CB chondrites, consist of variable proportions of materials produced by different processes in different settings: 1) by evaporation, condensation, and melting of dust in the protoplanetary disk (porphyritic chondrules and refractory inclusions), 2) by melting, evaporation and condensation in an impact generated plume (magnesian cryptocrystalline and skeletal chondrules and metal grains; some igneous CAIs could have been melted during this event), and 3) by aqueous alteration of pre‐existing planetesimals (heavily hydrated lithic clasts). The Isheyevo lithologies formed by size sorting of similar components during accretion in the Isheyevo parent body; they do not represent fragments of CH and CB chondrites.  相似文献   

5.
Abstract– Nineteen nonporphyritic pyroxene and pyroxene/olivine chondrules, chondrule fragments, and irregular objects were studied from two equilibrated chondrites, the ordinary (L/LL5) Knyahinya chondrite and the Rumuruti type (R4) Ouzina chondrite. Major element contents for almost all objects in the chondrites are disturbed from their chondritic ratios, most probably during metamorphic re‐equilibration. However, the volatile elements (Na2O + K2O) in Ouzina scatter around the CI line, probably the result of being generated and/or processed in different environments as compared with those for Knyahinya. All studied objects from Knyahinya and Ouzina possess systematically fractionated trace element abundances. Depletion of LREE with respect to HREE and ultra‐refractory HFSE documents variable degrees of LREE transport into an external mineral sink and restricted mobility of most of the HREE and HFSE. Moderately volatile elements preserve volatility‐controlled abundances. Strongly fractionated Rb/Cs ratios (up to 10× CI) in all studied objects suggest restricted mobility of the large Cs ion. All studied objects sampled and preserved Y and Ho in solar proportions, a feature that they share with the nonporphyritic chondrules of unequilibrated ordinary chondrites.  相似文献   

6.
A petrographc study of 9 thin sections of Inman (L3) and 18 thin sections of ALHA77011 (L3) served to determine the size-distributions of different chondrule textural types. Inman chondrules are significantly larger than those in ALHA77011, but in each chondrite, there is no statistically significant difference between the size-distributions of barred olivine and radial pyroxene plus cryptocrystalline chondrules. In ALHA77011, barred olivine chondrules outnumber radial pyroxene plus cryptocrystalline chondrules, whereas in Inman, the reverse is true. Because compound and cratered chondrules were formed by the collision of similarly-sized objects, the dustball precursors of chondrules must have been size-sorted prior to chondrule formation. The region of dustball size-sorting in the solar nebula must have been very large, similarly affecting the physically-separated precursors of different chondrule types. Size-sorting was probably accomplished by aerodynamic particle-gas interactions. Zones of dustball melting (i.e., chondrule formation) were relatively small, generally affecting only dustballs of one compositional type and relatively uniform size. Different chondrule types were then mixed together in somewhat variable ratios. Within the region where chondrites of a particular compositional group agglomerated, there were sub-reservoirs that contained (roughly) uniformly large or uniformly small chondrules with different mixtures of textural types.  相似文献   

7.
The size-frequency-distributions of different chondrule types in the Qingzhen, Kota-Kota and Allan Hills A77156 EH3 chondrites were determined by petrographic analysis of thin sections and, in the case of Qingzhen, by examination of large separated chondrules. EH chondrules are considerably smaller than L and LL chondrules and are probably slightly smaller than H, CM and CO chondrules. In the EH3 chondrites, radial pyroxene (RP) chondrules are somewhat (85% confidence level) larger than cryptocrystalline (C) chondrules, nonporphyritic chondrules have a broader size-frequency-distribution than porphyritic chondrules, and porphyritic olivine-pyroxene (POP) chondrules are considerably (98% confidence level) larger than porphyritic pyroxene (PP) chondrules. The larger size of RP chondrules relative to C chondrules in EH3 chondrites may be due to a tendency of the chondrule-forming mechanism not to have heated large precursor aggregates above the liquidus. Consequent retention of numerous relict grains would have caused these objects to develop RP rather than C textures upon cooling. The large proportion (≥50%) of nonporphyritic EH3 chondrules among the smaller chondrule size-fractions may have been caused by preferential disruption of large nonporphyritic chondrule droplets. The large proportion (≥50%) of nonporphyritic EH3 chondrules among the larger chondrule size-fractions is problematic. The larger size of POP relative to PP chondrules is due to reaction of fine-grained olivine with free silica to form pyroxene during mild thermal metamorphism of the whole-rocks.  相似文献   

8.
Abstract— The size-frequency distributions of chondrules in 11 CO3 chondrites were determined by petrographic analysis of thin sections. CO chondrites have the smallest chondrules of any major chondrite group. In order of decreasing chondrule size, chondrite groups can be arranged as CV ≥ LL > L > H ≥ CM ≥ EH > CO. Chondrule size varies significantly among different CO chondrites; there is a tendency for chondrules to increase in average size with increasing metamorphic grade of the whole-rock. Different chondrule types in CO chondrites have distinct size-frequency distributions: in order of decreasing chondrule size, BO > PO > PP > POP > RP = C. The large size of BO chondrules is problematic; however, PO chondrules are among the largest because ~20% of them contain very coarse relict olivine grains that constitute 40–90 vol.% of the individual chondrules. PP chondrules may be larger than POP chondrules because some of them contain coarse relict pyroxene grains; a compound object consisting of a POP chondrule attached to a large relict pyroxene grain occurs in Lancé. The mean proportions of chondrule types in CO chondrites are estimated to be 69% POP, 18% PP, 8% PO, 2% BO, 2% RP, 1% C and <0.1% GOP. CO chondrites thus contain a smaller proportion of nonporphyritic chondrules than ordinary or EH chondrites, but a larger proportion than CV chondrites. Relative proportions of chondrule types vary with size interval: PO chondrules decrease fairly regularly in abundance with decreasing chondrule size, and RP chondrules appear to be most abundant in the smallest size intervals.  相似文献   

9.
Dhofar 1671 is a relatively new meteorite that previous studies suggest belongs to the Rumuruti chondrite class. Major and REE compositions are generally in agreement with average values of the R chondrites (RCs). Moderately volatile elements such as Se and Zn abundances are lower than the R chondrite values that are similar to those in ordinary chondrites (OCs). Porphyritic olivine pyroxene (POP), radial pyroxene (RP), and barred olivine (BO) chondrules are embedded in a proportionately equal volume of matrix, one of the characteristic features of RCs. Microprobe analyses demonstrate compositional zoning in chondrule and matrix olivines showing Fa‐poor interior and Fa‐rich outer zones. Precise oxygen isotope data for chondrules and matrix obtained by laser‐assisted fluorination show a genetic isotopic relationship between OCs and RCs. On the basis of our data, we propose a strong affinity between these groups and suggest that OC chondrule precursors could have interacted with a 17O‐rich matrix to form RC chondrules (i.e., ?17O shifts from ~1‰ to ~3‰). These interactions could have occurred at the same time as “exotic” clasts in brecciated samples formed such as NWA 10214 (LL3–6), Parnallee (LL3), PCA91241 (R3.8–6), and Dhofar 1671 (R3.6). We also infer that the source of the oxidation and 17O enrichment is the matrix, which may have been enriched in 17O‐rich water. The abundance of matrix in RCs relative to OCs, ensured that these rocks would be apparently more oxidized and appreciably 17O‐enriched. In situ analysis of Dhofar 1671 is recommended to further strengthen the link between OCs and RCs.  相似文献   

10.
Abstract— We measured the sizes and textural types of 719 intact chondrules and 1322 chondrule fragments in thin sections of Semarkona (LL3.0), Bishunpur (LL3.1), Krymka (LL3.1), Piancaldoli (LL3.4) and Lewis Cliff 88175 (LL3.8). The mean apparent diameter of chondrules in these LL3 chondrites is 0.80 φ units or 570 μm, much smaller than the previous rough estimate of ~900 μm. Chondrule fragments in the five LL3 chondrites have a mean apparent cross‐section of 1.60 φ units or 330 μm. The smallest fragments are isolated olivine and pyroxene grains; these are probably phenocrysts liberated from disrupted porphyritic chondrules. All five LL3 chondrites have fragment/ chondrule number ratios exceeding unity, suggesting that substantial numbers of the chondrules in these rocks were shattered. Most fragmentation probably occurred on the parent asteroid. Porphyritic chondrules (porphyritic olivine + porphyritic pyroxene + porphyritic olivine‐pyroxene) are more readily broken than droplet chondrules (barred olivine + radial pyroxene + cryptocrystalline). The porphyritic fragment/chondrule number ratio (2.0) appreciably exceeds that of droplet‐textured objects (0.9). Intact droplet chondrules have a larger mean size than intact porphyritic chondrules, implying that large porphyritic chondrules are fragmented preferentially. This is consistent with the relatively low percentage of porphyritic chondrules within the set of the largest chondrules (57%) compared to that within the set of the smallest chondrules (81%). Differences in mean size among chondrule textural types may be due mainly to parent‐body chondrule‐fragmentation events and not to chondrule‐formation processes in the solar nebula.  相似文献   

11.
Abstract— We have studied the mineralogy and petrology of mesostases of 783 type I chondrules in seven CO3 chondrites that range in petrologic subtype from 3.0 to 3.7. Chondrule mesostases in the CO chondrite of subtype 3.0 consist mainly of primary glass and plagioclase, while chondrule mesostases in the CO chondrites of higher subtypes (3.2–3.7) contain various amounts of nepheline in addition to glass and plagioclase. Nepheline has replaced glass and plagioclase, forming finegrained aggregates and thin parallel lamellar intergrowths with plagioclase. The nephelinization has proceeded preferentially from the outer margins of chondrules toward the inside. Although the degree of nephelinization differs widely among chondrules in each of the metamorphosed chondrites, our modal analyses and bulk chemical analyses of individual mesostases indicate that the amounts of nepheline in chondrules systematically increase with the increasing petrologic subtype of the host chondrites. Nepheline also has a tendency to increase in grain size with increasing petrologic subtype. We conclude that nepheline in chondrules in the CO3 chondrites has formed largely as a result of effects related to heating on the meteorite parent body. We suggest that nepheline initially formed as hydrous nepheline under the presence of aqueous fluids and subsequently was dehydrated after exhaustion of aqueous fluids. The degree of hydrothermal activity must have increased with increasing degree of heating, and thus, chondrules in more thermally metamorphosed chondrites produced larger amounts of nepheline. The results imply that CO3 chondrites have gone through low‐grade aqueous alteration and subsequent dehydration at the early stage of heating on the meteorite parent body.  相似文献   

12.
Abstract— Two groups of chondrules in the Murchison CM chondrite, which have previously been identified on the basis of FeO in the chondrule grains, are readily identified from cathodoluminescence (CL) and belong to those of the ordinary chondrite group A and B chondrules of Sears et al. (1992a). All chondrules are surrounded by fine-grained rims containing forsterite with bright red CL, but on group A chondrules an outer thin rim grades into a much thicker rim, with a lower density of forsterite grains, which in turn grades into the central chondrule. Group B chondrules have only the thin outer rim with a high density of small forsterite grains. This is the first time an unequivocal correlation has been observed between chondrule rim thickness and the composition of the object on which the rim is located. We suggest that while all objects in the meteorite (group B chondrules, refractory inclusions, mineral and chondrule fragments, clasts) acquired a very thin rim during processing in a wet regolith, the thick rims on group A chondrules were formed by aqueous alteration of precursor metal- and sulfide-rich rims which are a characteristic of group A chondrules in ordinary chondrites.  相似文献   

13.
Abstract— The Galkiv chondrite is a single 5 kg stone that fell in the Chernigov region of Ukraine on 1995 January 12. The composition of olivines in the meteorite indicate that Galkiv belongs to the H group of ordinary chondrites. Although the heterogeneity of olivine corresponds to a petrologic type 5 and the heterogeneity of low-Ca pyroxene suggests the chondrite is type 3, clearly defined chondrule boundaries, the presence of clinopyroxene, cryptocrystalline glass and rare grains of feldspatic plagioclase, structural evidences of shock metamorphism and very low level of terrestrial weathering allow us to classify the meteorite as an H4 chondrite of shock stage S3 and weathering grade WO.  相似文献   

14.
Abstract– The ion microprobe is the only technique capable of determining high‐precision stable isotope ratios in individual tiny extraterrestrial particles (≤100 μm in diameter), but these small samples present special analytical challenges. We produced a new sample holder disk with multiple holes (three holes and seven holes), in which epoxy disks containing a single unknown sample and a standard grain are cast and polished. Performance tests for oxygen two‐isotope analyses using San Carlos olivine standard grains show that the new multiple‐hole disks allow accurate analysis of tiny particles if the particles are located within the 500 μm and 1 mm radius of the center of holes for seven‐hole and three‐hole disks, respectively. Using the new seven‐hole disk, oxygen three‐isotope ratios of eight magnesian cryptocrystalline chondrules (approximately 100 μm in diameter) from the Sayh al Uhaymir (SaU) 290 CH chondrite were analyzed by ion microprobe at the University of Wisconsin. Five out of eight chondrules have nearly identical oxygen isotope ratios (Δ17O = ?2.2 ± 0.6‰; 2SD), which is consistent with those of magnesian cryptocrystalline chondrules in CH/CB and CB chondrites, suggesting a genetic relationship, i.e., formation by a common (possibly impact) heating event. The other three chondrules have distinct oxygen isotope ratios (Δ17O values from ?6.4‰ to +2.2‰). Given that similar variation in Δ17O values was observed in type I porphyritic chondrules in a CH/CB chondrite, the three chondrules may have formed in the solar nebula, similar to the type I porphyritic chondrules.  相似文献   

15.
Abstract— Correlated in situ analyses of the oxygen and magnesium isotopic compositions of aluminum‐rich chondrules from unequilibrated enstatite chondrites were obtained using an ion microprobe. Among eleven aluminum‐rich chondrules and two plagioclase fragments measured for 26Al‐26Mg systematics, only one aluminum‐rich chondrule contains excess 26Mg from the in situ decay of 26Al; the inferred initial ratio (26Al/27Al)o = (6.8 ± 2.4) × 10?6 is consistent with ratios observed in chondrules from carbonaceous chondrites and unequilibrated ordinary chondrites. The oxygen isotopic compositions of five aluminum‐rich chondrules and one plagioclase fragment define a line of slope ?0.6 ± 0.1 on a three‐oxygen‐isotope diagram, overlapping the field defined by ferromagnesian chondrules in enstatite chondrites but extending to more 16O‐rich compositions with a range in δ18O of about ?12‰. Based on their oxygen isotopic compositions, aluminum‐rich chondrules in unequilibrated enstatite chondrites are probably genetically related to ferromagnesian chondrules and are not simple mixtures of materials from ferromagnesian chondrules and calcium‐aluminum‐rich inclusions (CAIs). Relative to their counterparts from unequilibrated ordinary chondrites, aluminum‐rich chondrules from unequilibrated enstatite chondrites show a narrower oxygen isotopic range and much less resolvable excess 26Mg from the in situ decay of 26Al, probably resulting from higher degrees of equilibration and isotopic exchange during post‐crystallization metamorphism. However, the presence of 26Al‐bearing chondrules within the primitive ordinary, carbonaceous, and now enstatite chondrites suggests that 26Al was at least approximately homogeneously distributed across the chondrite‐forming region.  相似文献   

16.
In ordinary chondrites (OCs), phosphates and feldspar are secondary minerals known to be the products of parent‐body metamorphism. Both minerals provide evidence that metasomatic fluids played a role during metamorphism. We studied the petrology and chemistry of phosphates and feldspar in petrologic type 4–6 L chondrites, to examine the role of metasomatic fluids, and to compare metamorphic conditions across all three OC groups. Apatite in L chondrites is Cl‐rich, similar to H chondrites, whereas apatite in LL chondrites has lower Cl/F ratios. Merrillite has similar compositions among the three chondrite groups. Feldspar in L chondrites shows a similar equilibration trend to LL chondrites, from a wide range of plagioclase compositions in petrologic type 4 to a homogeneous albitic composition in type 6. This contrasts with H chondrites which have homogeneous albitic plagioclase in petrologic types 4–6. Alkali‐ and halogen‐rich and likely hydrous metasomatic fluids acted during prograde metamorphism on OC parent bodies, resulting in albitization reactions and development of phosphate minerals. Fluid compositions transitioned to a more anhydrous, Cl‐rich composition after the asteroid began to cool. Differences in secondary minerals between H and L, LL chondrites can be explained by differences in fluid abundance, duration, or timing of fluid release. Phosphate minerals in the regolith breccia, Kendleton, show lithology‐dependent apatite compositions. Bulk Cl/F ratios for OCs inferred from apatite compositions are higher than measured bulk chondrite values, suggesting that bulk F abundances are overestimated and that bulk Cl/F ratios in OCs are similar to CI.  相似文献   

17.
NWA 10214 is an LL3‐6 breccia containing ~8 vol% clasts including LL5, LL6, and shocked‐darkened LL fragments as well as matrix‐rich Clast 6 (a new kind of chondrite). This clast is a dark‐colored, subrounded, 6.1 × 7.0 mm inclusion, consisting of 60 vol% fine‐grained matrix, 32 vol% coarse silicate grains, and 8 vol% coarse opaque grains. The large chondrules and chondrule fragments are mainly Type IB; one small chondrule is Type IIA. Also present are one 450 × 600 μm spinel‐pyroxene‐olivine CAI and one 85 × 110 μm AOI. Clast 6 possesses a unique set of properties. (1) It resembles carbonaceous chondrites in having relatively abundant matrix, CAIs, and AOIs; the clast's matrix composition is close to that in CV3 Vigarano. (2) It resembles type‐3 OC in its olivine and low‐Ca pyroxene compositional distributions, and in the Fe/Mn ratio of ferroan olivine grains. Its mean chondrule size is within 1σ of that of H chondrites. The O‐isotopic compositions of the chondrules are in the ordinary‐ and R‐chondrite ranges. (3) It resembles type‐3 enstatite chondrites in the minor element concentrations in low‐Ca pyroxene grains and in having a high low‐Ca pyroxene/olivine ratio in chondrules. Clast 6 is a new variety of type‐3 OC, somewhat more reduced than H chondrites or chondritic clasts in the Netschaevo IIE iron; the clast formed in a nebular region where aerodynamic radial drift processes deposited a high abundance of matrix material and CAIs. A chunk of this chondrite was ejected from its parent asteroid and later impacted the LL body at low relative velocity.  相似文献   

18.
We report on a suite of microchondrules from three unequilibrated ordinary chondrites (UOCs). Microchondrules, a subset of chondrules that are ubiquitous components of UOCs, commonly occur in fine‐grained chondrule rims, although may also occur within matrix. Microchondrules have a variety of textures: cryptocrystalline, microporphyritic, radial, glassy. In some cases, their textures, and in many cases, their compositions, are similar to their larger host chondrules. Bulk compositions for both chondrule populations frequently overlap. The primary material that composes many of the microchondrules has compositions that are pyroxene‐normative and is similar to low‐Ca‐pyroxene phenocrysts from host chondrules; primary material rarely resembles olivine or plagioclase. Some microchondrules are composed of FeO‐rich material that has compositions similar to the bulk submicron fine‐grained rim material. These microchondrules, however, are not a common compositional type and probably represent secondary FeO‐enrichment. Microchondrules may also be porous, suggestive of degasing to form vesicles. Our work shows that the occurrence of microchondrules in chondrule rims is an important constraint that needs to be considered when evaluating chondrule‐forming mechanisms. We propose that microchondrules represent melted portions of the chondrule surfaces and/or the melt products of coagulated dust in the immediate vicinity of the larger chondrules. We suggest that, through recycling events, the outer surfaces of chondrules were heated enough to allow microchondrules to bud off as protuberances and become entrained in the surrounding dusty environment as chondrules were accreting fine‐grained rims. Microchondrules are thus byproducts of cyclic processing of chondrules in localized environments. Their occurrence in fine‐grained rims represents a snapshot of the chondrule‐forming environment. We evaluate mechanisms for microchondrule formation and hypothesize a potential link between the emergence of type II chondrules in the early solar system and the microchondrule‐bearing fine‐grained rims surrounding type I chondrules.  相似文献   

19.
20.
Abstract— In order to explore the origin of chondrules and the chondrites, the O isotopic compositions of nine olivine grains in seven chondrules from the primitive Semarkona LL3.0 chondrite have been determined by ion microprobe. The data plot in the same general region of the three-isotope plot as whole-chondrule samples from ordinary chondrites previously measured by other techniques. There are no significant differences between the O isotopic properties of olivine in the various chondrule groups in the present study, but there is a slight indication that the data plot at the 16O-rich end of the ordinary chondrite field. This might suggest that the mesostasis contains isotopically heavy O. The olivines in the present study have O isotopic compositions unlike the 16O-rich olivine grains from the Julesburg ordinary chondrite. Even though olivines in group A chondrules have several properties in common with them, the 16O-rich Julesburg olivines previously reported are not simply olivines from group A chondrules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号