首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Maximum earthquake size varies considerably amongst the subduction zones. This has been interpreted as a variation in the seismic coupling, which is presumably related to the mechanical conditions of the fault zone. The rupture process of a great earthquake indicates the distribution of strong (asperities) and weak regions of the fault. The rupture process of three great earthquakes (1963 Kurile Islands, MW = 8.5; 1965 Rat Islands, MW = 8.7; 1964 Alaska, MW = 9.2) are studied by using WWSSN stations in the core shadow zone. Diffraction around the core attenuates the P-wave amplitudes such that on-scale long-period P-waves are recorded. There are striking differences between the seismograms of the great earthquakes; the Alaskan earthquake has the largest amplitude and a very long-period nature, while the Kurile Islands earthquake appears to be a sequence of magnitude 7.5 events.The source time functions are deconvolved from the observed records. The Kurile Islands rupture process is characterized by the breaking of asperities with a length scale of 40–60 km, and for the Alaskan earthquake the dominant length scale in the epicentral region is 140–200 km. The variation of length scale and MW suggests that larger asperities cause larger earthquakes. The source time function of the 1979 Colombia earthquake (MW = 8.3) is also deconvolved. This earthquake is characterized by a single asperity of length scale 100–120 km, which is consistent with the above pattern, as the Colombia subduction zone was previously ruptured by a great (MW = 8.8) earthquake in 1906.The main result is that maximum earthquake size is related to the asperity distribution on the fault. The subduction zones with the largest earthquakes have very large asperities (e.g. the Alaskan earthquake), while the zones with the smaller great earthquakes (e.g. Kurile Islands) have smaller scattered asperities.  相似文献   

2.
The 1963 great Kurile earthquake was an underthrust earthquake occurred in the Kurile?CKamchatka subduction zone. The slip distribution of the 1963 earthquake was estimated using 21 tsunami waveforms recorded at tide gauges along the Pacific and Okhotsk Sea coasts. The extended rupture area was divided into 24 subfaults, and the slip on each subfault was determined by the tsunami waveform inversion. The result shows that the largest slip amount of 2.8?m was found at the shallow part and intermediate depth of the rupture area. Large slip amounts were found at the shallow part of the rupture area. The total seismic moment was estimated to be 3.9?×?1021?Nm (Mw 8.3). The 2006 Kurile earthquake occurred right next to the location of the 1963 earthquake, and no seismic gap exists between the source areas of the 1963 and 2006 earthquakes.  相似文献   

3.
Many authors have proposed that the study of seismicity rates is an appropriate technique for evaluating how close a seismic gap may be to rupture. We designed an algorithm for identification of patterns of significant seismic quiescence by using the definition of seismic quiescence proposed by Schreider (1990). This algorithm shows the area of quiescence where an earthquake of great magnitude may probably occur. We have applied our algorithm to the earthquake catalog on the Mexican Pacific coast located between 14 and 21 degrees of North latitude and 94 and 106 degrees West longitude; with depths less than or equal to 60 km and magnitude greater than or equal to 4.3, which occurred from January, 1965 until December, 2014. We have found significant patterns of seismic quietude before the earthquakes of Oaxaca (November 1978, Mw = 7.8), Petatlán (March 1979, Mw = 7.6), Michoacán (September 1985, Mw = 8.0, and Mw = 7.6) and Colima (October 1995, Mw = 8.0). Fortunately, in this century earthquakes of great magnitude have not occurred in Mexico. However, we have identified well-defined seismic quiescences in the Guerrero seismic-gap, which are apparently correlated with the occurrence of silent earthquakes in 2002, 2006 and 2010 recently discovered by GPS technology.  相似文献   

4.
A statistical analysis is made for the eastern part of Turkey in the beginning of 2009 by studying the phenomenon of seismic quiescence as a potential precursor of the main shocks. The results produced four areas having seismic quiescence in the beginning of 2009. These areas are observed to be centered at 39.96°N–40.69°E (around A?kale, Erzurum), 39.36°N–39.74°E (around Ovac?k, Tunceli), 39.02°N–40.52°E (including Elaz?? and Bingöl), and 38.45°N–42.94°E (Van Lake). Based on the recent results showing 5 ± 1.5 years quiescence before the occurrence of an earthquake in this region, the future earthquake would be expected between 2009.5 and 2010.5. The future earthquake occurrence may reach 2012 if we consider the standard deviation of average seismic quiescence as ±1.5 years. We have found that the M W = 6.0 Elaz?? earthquake on 8 March 2010, followed a seismic quiescence starting about 5 years before the main shock. Thus, special interest should be given to the other regions where the seismic quiescence is observed.  相似文献   

5.
According to S.A. Fedotov’s long-term earthquake forecast, the Middle Kuril Is. has long (since 1965) been a likely location for the next M ≥ 7.7 earthquake, i.e., a seismic gap. The present study integrates seismological, geological, and geophysical data to assess the earthquake potential of the gap prior to November 15, 2006. Seismological data were used to carry out a comparative analysis of 3D seismic energy density for three zones of the Kuril region. The density for the Middle Kuril Is. turned out to be twice as small as that for the North Kuril Is. and nearly six times as small as that for the South Kurils. Various parameters of the seismic process for the Kuril region have been estimated in quantitative terms. It is shown that the rate of completely reported (M ≥ 6) earthquakes occurring down to 70 km depth in the Middle Kuril Is. is approximately three times as small as that for the entire Kuril arc. Increased heat flow was recorded there (up to 100 mW/m2). The top of the high conductivity layer is shallower (at a depth of 100 km). The trends of major faults and other seismotectonic features have been taken into account. Based on these data (prior to November 15, 2006), the previous conclusion about the low seismic activity of the Middle Kuril Is. was corroborated. Two great earthquakes occurred in the region on November 15, 2006 (M w = 8.3) and January 13, 2007 (M w = 8.1) with subsequent tsunami waves. The erroneous inference as to low seismic activity was related to the fact that the seismic cycle in the Middle Kuril Is. may be as long as 150–200 years. We come to the conclusion that an analysis of the level of seismic activity for the region should start with the construction of standardized recurrence curves and determining the magnitude of the maximum possible earthquake.  相似文献   

6.
A systematic search was made for seismicity rate changes in the segment of the Kurile island arc from 45°N to 53°N by studying the cumulative seismicity of shallow (h100 km) earthquakes within 11 overlapping volumes of radius 100 km for the time period 1960 through beginning of 1978. We found that in most parts of this island arc and most of the time the seismicity rate as obtained from the NOAA catalogue and not excluding any events is fairly constant except for increased seismicity in the mid 1960s in the southern portion due to the great 1963 mainshock there, and for seismicity quiescence during part of the time period studied within two well defined sections of the arc. The first of these is a volume of 100 km radius around a 1973 (M s =7.3) mainshock within which the seismicity rate was demonstrated at the 99% confidence level to have been lower by 50% during 2100 days (5.75 years) before this mainshock. The second volume of seismic quiescence coincides with the 400 km long north Kuriles gap. In this gap the seismicity rate is shown (at the 99% confidence level) to be lower by 50% from 1967 to present (1978), in comparison with the rate within the gap befor 1967, as well as with the rate surrounding the gap. We propose that the anomalously low seismicity rate within the Kuriles gap is a precursor to a great earthquake, the occurrence time of which was estimated by the following preliminary relation between precursory quiescence time and source dimensionT=190L 0.545. We predict that an earthquake with source length of 200–400 km (M>8) will occur along the north Kurile island arc between latitude 45.5°N and 49.2°N at a time between now and 1994.  相似文献   

7.
—The test that Kagan and Jackson (1991, 1995) applied to the seismic gap hypothesis did not bring us closer to understanding the generation of large earthquakes. On the contrary, it led some to the conclusion that the rebound theory of earthquake generation should be rejected. We disagree with this point of view and argue that a global test of the simplified gap hypothesis cannot be done because it cannot account for differences in the slip history of fault segments and tectonic differences between separate plate boundaries. Kagan and Jackson did show, however, that the original gap hypothesis was oversimplified and should be refined. We propose that consideration of all the facts, including slip history and seismicity patterns in the Andreanof Islands, show that the concept of seismic gaps and the elastic rebound theory are correct for that segment of the plate boundary. The coseismic slip in the M w 8.7 earthquake that broke this plate boundary segment in 1957 was only 2 m, as published before the repeat earthquake of 1986 (M w 8), and thus, using a plate convergence rate of 7.3 cm/year, the return time in this cycle was expected to be less than 30 years, unless substantial aseismic creep occurs. This supports the time predictable model of mainshock recurrence. In addition, Kisslinger et al. (1985) and Kisslinger (1986) noticed a seismic quiescence in the subsequent source volume before the 1986 earthquake and attempted to predict it. The specific parameters he estimated were not entirely correct although his interpretation of the observed quiescence as a precursor was. We conclude that the 1986, M w 8, Andreanof earthquake was not an example that disproves the seismic gap hypothesis. On the contrary, it shows that the hypothesis that plate motions reload plate boundaries after most of the elastic energy is released in great ruptures was correct in this case. This suggests that great earthquakes occur preferably in mature gaps. We believe the testing of the seismic gap hypothesis by algorithm on a global scale is an example that illustrates that overly simplified tests can lead to erroneous conclusions. To make progress in the actual understanding of the physics of the process of great earthquake ruptures, one must consider all the facts known for case histories.  相似文献   

8.
The refinement of the accuracy and resolution of the monthly global gravity field models from the GRACE satellite mission, together with the accumulation of more than a decade-long series of these models, enabled us to reveal the processes that occur in the regions of large (Mw≥8) earthquakes that have not been studied previously. The previous research into the time variations of the gravity field in the regions of the giant earthquakes, such as the seismic catastrophes in Sumatra (2004) and Chile (2010), and the Tohoku mega earthquake in Japan (2011), covered the coseismic gravity jump followed by the long postseismic changes reaching almost the same amplitude. The coseismic gravity jumps resulting from the lower-magnitude events are almost unnoticeable. However, we have established a long steady growth of gravity anomalies after a number of such earthquakes. For instance, in the regions of the subduction earthquakes, the growth of the positive gravity anomaly above the oceanic trench was revealed after two events with magnitudes Mw=8.5 in the Sumatra region (the Nias earthquake of March 2005 and the Bengkulu event of September 2007 near the southern termination of Sumatra Island), after the earthquake with Mw=8.5 on Hokkaido in September 2007, a doublet Simushir earthquake with the magnitudes Mw = 8.3 and 8.1 in the Kuriles in November 2006 and January 2007, and after the earthquake off the Samoa Island in September 2009 (Mw=8.1). The steady changes in the gravity field have also been recorded after the earthquake in the Sichuan region (May 2008, Mw = 8.0) and after the doublet event with magnitudes 8.6 and 8.2, which occurred in the Wharton Basin of the Indian Ocean on April 11, 2012. The detailed analysis of the growth of the positive anomaly in gravity after the Simushir earthquake of November 2006 is presented. The growth started a few months after the event synchronously with the seismic activation on the downdip extension of the coseismically ruptured fault plane zone. The data demonstrating the increasing depth of the aftershocks since March 2007 and the approximately simultaneous change in the direction and average velocity of the horizontal surface displacements at the sites of the regional GPS network indicate that this earthquake induced postseismic displacements in a huge area extending to depths below 100 km. The total displacement since the beginning of the growth of the gravity anomaly up to July 2012 is estimated at 3.0 m in the upper part of the plate’s contact and 1.5 m in the lower part up to a depth of 100 km. With allowance for the size of the region captured by the deformations, the released total energy is equivalent to the earthquake with the magnitude Mw = 8.5. In our opinion, the growth of the gravity anomaly in these regions indicates a large-scale aseismic creep over the areas much more extensive than the source zone of the earthquake. These processes have not been previously revealed by the ground-based techniques. Hence, the time series of the GRACE gravity models are an important source of the new data about the locations and evolution of the locked segments of the subduction zones and their seismic potential.  相似文献   

9.
Mexico City high plasticity clays exhibit a small degree of nonlinearity for shear strains as large as 0.1%, which leads to both moderate shear stiffness degradation and small to medium damping increment, even for long duration subduction strong ground motions, such as the 8.1Mw 1985Michoacan earthquake. Nonetheless, current seismic design criteria of strategic infrastructure used worldwide have striven for having larger return periods for establishing the seismic environment, considering recent large magnitude (M>8.5Mw) events. This paper presents the study of the seismic response of typical high plasticity clays found in the so-called Texcoco Lake, in the surrounding of Mexico City valley, for larger to extreme earthquakes. The shear wave velocity profile was characterized using a down-hole test. The seismic environment was established from a set of uniform hazard response spectra developed for a nearby rock outcrop for return periods of 125, 250, 475 and 2475 years. A time-domain spectral matching was used to develop acceleration time histories compatible with each uniform hazard response spectrum. Both frequency and time domain site response analyses were carried out considering each seismic scenario. Ground nonlinearities were clearly observed in the soil response during extreme ground shaken, which increases rapidly with the return period. This fact must be taken into account to avoid costly and potentially unsafe seismic designs.  相似文献   

10.
We present the seismic source zoning of the tectonically active Greater Kashmir territory of the Northwestern Himalaya and seismicity analysis (Gutenberg-Richter parameters) and maximum credible earthquake (m max) estimation of each zone. The earthquake catalogue used in the analysis is an extensive one compiled from various sources which spans from 1907 to 2012. Five seismogenic zones were delineated, viz. Hazara-Kashmir Syntaxis, Karakorum Seismic Zone, Kohistan Seismic Zone, Nanga Parbat Syntaxis, and SE-Kashmir Seismic Zone. Then, the seismicity analysis and maximum credible earthquake estimation were carried out for each zone. The low b value (<1.0) indicates a higher stress regime in all the zones except Nanga Parbat Syntaxis Seismic Zone and SE-Kashmir Seismic Zone. The m max was estimated following three different methodologies, the fault parameter approach, convergence rates using geodetic measurements, and the probabilistic approach using the earthquake catalogue and is estimated to be M w 7.7, M w 8.5, and M w 8.1, respectively. The maximum credible earthquake (m max) estimated for each zone shows that Hazara Kashmir Syntaxis Seismic Zone has the highest m max of M w 8.1 (±0.36), which is espoused by the historical 1555 Kashmir earthquake of M w 7.6 as well as the recent 8 October 2005 Kashmir earthquake of M w 7.6. The variation in the estimated m max by the above discussed methodologies is obvious, as the definition and interpretation of the m max change with the method. Interestingly, historical archives (~900 years) do not speak of a great earthquake in this region, which is attributed to the complex and unique tectonic and geologic setup of the Kashmir Himalaya. The convergence is this part of the Himalaya is distributed not only along the main boundary faults but also along the various active out-of-sequence faults as compared to the Central Himalaya, where it is mainly adjusted along the main boundary fault.  相似文献   

11.
In this study, the seismic quiescence prior to hazardous earthquakes was analyzed along the Sumatra-Andaman subduction zone (SASZ). The seismicity data were screened statistically with mainshock earthquakes of M w?≥?4.4 reported during 1980–2015 being defined as the completeness database. In order to examine the possibility of using the seismic quiescence stage as a marker of subsequent earthquakes, the seismicity data reported prior to the eight major earthquakes along the SASZ were analyzed for changes in their seismicity rate using the statistical Z test. Iterative tests revealed that Z factors of N?=?50 events and T?=?2?years were optimal for detecting sudden rate changes such as quiescence and to map these spatially. The observed quiescence periods conformed to the subsequent major earthquake occurrences both spatially and temporally. Using suitable conditions obtained from successive retrospective tests, the seismicity rate changes were then mapped from the most up-to-date seismicity data available. This revealed three areas along the SASZ that might generate a major earthquake in the future: (i) Nicobar Islands (Z?=?6.7), (ii) the western offshore side of Sumatra Island (Z?=?7.1), and (iii) western Myanmar (Z?=?6.7). The performance of a stochastic test using a number of synthetic randomized catalogues indicated these levels of anomalous Z value showed the above anomaly is unlikely due to chance or random fluctuations of the earthquake. Thus, these three areas have a high possibility of generating a strong-to-major earthquake in the future.  相似文献   

12.
Evaluating Tsunami Hazard in the Northwestern Indian Ocean   总被引:1,自引:0,他引:1  
We evaluate here the tsunami hazard in the northwestern Indian Ocean. The maximum regional earthquake calculated from seismic hazard analysis, was used as the characteristic earthquake for our tsunami hazard assessment. This earthquake, with a moment magnitude of M w 8.3 and a return period of about 1000 years, was moved along the Makran subduction zone (MSZ) and its possible tsunami wave height along various coasts was calculated via numerical simulation. Both seismic hazard analysis and numerical modeling of the tsunami were validated using historical observations of the Makran earthquake and tsunami of the 1945. Results showed that the possible tsunami may reach a maximum height of 9.6 m in the region. The distribution of tsunami wave height along various coasts is presented. We recommend the development of a tsunami warning system in the region, and emphasize the value of education as a measure to mitigate the death toll of a possible tsunami in this region.  相似文献   

13.
This paper explores reduced micropolar theory to simulate ground motion during an earthquake. In this theory, rotational motions are kinematically independent of translational motions. Analytical expressions for ground displacement and rotational motions due to a buried seismic source are presented in this paper. This theory requires two additional material constants which characterise the microstructure of the medium compared with linear elastic theory. Ground motions are simulated for an earthquake of magnitude (M w) 5.0. The sensitivity of ground motion to these new material constants is reported. It is observed that rotations are sensitive to microstructure of the medium. A comparison with recorded rotations of the M w 5.2 Izu peninsula, Japan event is also presented in this article.  相似文献   

14.
A rational choice of the scalar seismic moment and ordering index is proposed that can be advantageously used for the monitoring of source zones of strong earthquakes in order to predict the development of a seismic situation. These parameters are the main characteristics of seismotectonic deformation. The ordering index characterizes a regular change in time of chaotization and ordering phases of the seismic process related to the occurrence of strong aftershocks. Using the December 5, 1997, Kronotskii (M w = 7.8) and December 26, 2004, Sumatra (M w = 9.0) earthquakes as an example, temporal variations of the studies parameters in the aftershock zones of these earthquakes are analyzed in detail.  相似文献   

15.
An interpretation of the type, size, and interrelations of sources is proposed for the three large Aleutian earthquakes of March 9, 1957, May 7, 1986, and June 10, 1996, which occurred in structures of the Andreanof Islands. According to our interpretation, the earthquakes were caused by steep reverse faults confined to different structural units of the southern slope of the Andreanof Islands and oriented along the strike of these structures. An E-W reverse fault that generated the largest earthquake of 1957 is located within the Aleutian Terrace and genetically appears to be associated with the development of the submarine Hawley Ridge. The western and eastern boundaries of this source are structurally well expressed by the Adak Canyon in the west (~177°W) and an abrupt change in isobaths in the east (~173°W). The character of the boundaries is reflected in the focal mechanisms. The source of the earthquake of 1957 extends for about 300 km, which agrees well with modern estimates of its magnitude (M w = 8.6). Because the earthquake of 1957 caused, due to its high strength, seismic activation of adjacent areas of the Aleutian island arc, its aftershock zone appreciably exceeded in size the earthquake source. Reverse faults that activated the seismic sources of the earthquakes of 1986 and 1996 were located within the southern slope of the Andreanof Islands, higher than the Aleutian Terrace, outside the seismic source of the 1957 earthquake. The boundaries of these sources are also well expressed in structures and focal mechanisms. According to our estimate, the length of the 1986 earthquake source does not exceed 130–140 km, which does not contradict its magnitude (M w = 8). The length of the 1996 earthquake source is ~100 km, which also agrees with the magnitude of the earthquake (M w = 7.8).  相似文献   

16.
The results of the long (2011–2016) investigation of background seismic noise (BSN) in Kamchatka by the method suggested by Doct. Sci. (Phys.-Math.) A.A. Lyubushin with the use of the data from the network of broadband seismic stations of the Geophysical Survey of the Russian Academy of Sciences are presented. For characterizing the BSN field and its variability, continuous time series of the statistical parameters of the multifractal singularity spectra and wavelet expansion calculated from the records at each station are used. These parameters include the generalized Hurst exponent α*, singularity spectrum support width Δα, wavelet spectral exponent β, minimal normalized entropy of wavelet coefficients En, and spectral measure of their coherent behavior. The peculiarities in the spatiotemporal distribution of the BSN parameters as a probable response to the earthquakes with Мw = 6.8–8.3 that occurred in Kamchatka in 2013 and 2016 are considered. It is established that these seismic events were preceded by regular variations in the BSN parameters, which lasted for a few months and consisted in the reduction of the median and mean α*, Δα, and β values estimated over all the stations and in the increase of the En values. Based on the increase in the spectral measure of the coherent behavior of the four-variate time series of the median and mean values of the considered statistics, the effect of the enhancement of the synchronism in the joint (collective) behavior of these parameters during a certain period prior to the mantle earthquake in the Sea of Okhotsk (May 24, 2013, Mw = 8.3) is diagnosed. The procedures for revealing the precursory effects in the variations of the BSN parameters are described and the examples of these effects are presented.  相似文献   

17.
The Central Apennines, Italy, are characterized by moderate seismic activity on normal faults, oriented in directions parallel to the Apenninic chain. The subject of this study is the Umbria-Marche Apennines, a segment approximately 200-km long, where three main seismic events occurred in the last three decades. The 1979 Norcia earthquake was a Mw = 5.8 event, taking place at the south end of the considered segment. The 1984 Gubbio earthquake was a Mw = 5.6 event which took place at the north end. The 1997-1998 Colfiorito sequence constituted 8 main shocks with magnitudes Mw between 5 and 6 and epicenters located between the Gubbio and the Norcia earthquake areas. A model made of an elastic half-space is considered, in which the seismic sources are represented by rectangular dislocations which have the appropriate values of source parameters, and in which the static stress field produced by each event is calculated. The analysis of the Coulomb stress change (ΔC) as a function of time shows that the coseismic stress transfer and fault interaction played an important role in the region during the past three decades: 7 earthquakes of the 9 considered took place where ΔC>0. Such an interaction has been confirmed by the analysis of the aftershocks in the Colfiorito zone post September 26, 1997: about the 61% of the aftershocks considered took place where ΔC>0. The comparison between the ΔCs due to the coseismic stress transfer and the rate ΔĊt due to the tectonic stress allows us to quantify the time advance of the earthquakes. The ΔCs pattern shows positive values in two areas that can be regarded as historical seismic gaps.  相似文献   

18.
—A moderately strong earthquake (M w = 6.2) occurred in the town of Dinar at 17.57 UT on October 1, 1995, taking the lives of 90 people and damaging about 4500 buildings. Its epicenter is located near the Dinar-Çivril fault and its focal mechanism is linked to a northeast-southwesterly tensional stress field arising from the interaction between the subducting African plate and the overriding Aegean-Anatolian plate in the eastern Mediterranean.¶Surface cracks of the October 1 earthquake have been observed 10 km continuously along the Dinar-Çivril fault. The cracks have displayed a mode of dip-slip; however, some have also indicated lateral slip. The different modes of slip are generally in agreement with the fault plane solution and are indicators of the complex nature of the rupture process.¶In investigating the earthquake hazard of the Dinar-Çivril fault and proximity, the maximum likelihood method was used to estimate seismic hazard parameters of b-value, seismicity activity rate λ m and the expected maximum magnitude M max?. The data consisted of the historical data covering the period between 1800–1900 and instrumental data between 1900 and 1992. This method, allowing use of the mixed earthquake catalogue containing both historical and instrumental earthquake data, yielded values of 0.70, 1.92 and 7.14 for b, λ m and M max?, respectively. The recurrence time estimated for an earthquake of a magnitude of M w = 6.2 is 123 years. The non-occurrence probabilities of such an earthquake in 1 and 50 years are 0.21 and 0.04, respectively.  相似文献   

19.
—The 12 November 1996 M w 7.7 Peru subduction zone earthquake occurred off the coast of southern Peru, near the intersection of the South American trench and the highest topographical point of the subducting Nazca Ridge. We model the broadband teleseismic P-waveforms from stations in the Global Seismic Network to constrain the source characteristics of this subduction zone earthquake. We have analyzed the vertical component P-waves for this earthquake to constrain the depth, source complexity, seismic moment and rupture characteristics. The seismic moment determined from the nondiffracted P-waves is 3–5 × 1020 N·m, corresponding to a moment magnitude M w of 7.6–7.7. The source time function for the 1996 Peru event has three pulses of seismic moment release with a total duration of approximately 45–50 seconds. The largest moment release occurs at approximately 35–40 seconds and is located ~90km southeast of the rupture initiation. Approximately 70% of the seismic moment was released in the third pulse.¶We find that the 1996 event reruptured part of the rupture area of the previous event in 1942. The location of the 1996 earthquake corresponds to a region along the Peru coast with the highest uplift rates of marine terraces. This suggests that the uplift may be due to repeated earthquakes such as the 1996 and 1942 events.  相似文献   

20.
Two zones of seismicity (ten events with M w = 7.0–7.7) stretching from Makran and the Eastern Himalaya to the Central and EasternTien Shan, respectively, formed over 11 years after the great Makran earthquake of 1945 (M w = 8.1). Two large earthquakes (M w = 7.7) hit theMakran area in 2013. In addition, two zones of seismicity (M ≥ 5.0) occurred 1–2 years after theMakran earthquake in September 24, 2013, stretching in the north-northeastern and north-northwestern directions. Two large Nepal earthquakes struck the southern extremity of the “eastern” zone (April 25, 2015, M w = 7.8 and May 12, 2015, M w = 7.3), and the Pamir earthquake (December 7, 2015, M w = 7.2) occurred near Sarez Lake eastw of the “western” zone. The available data indicate an increase in subhorizontal stresses in the region under study, which should accelerate the possible preparation of a series of large earthquakes, primarily in the area of the Central Tien Shan, between 70° and 79° E, where no large earthquakes (M w ≥ 7.0) have occurred since 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号