首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent helioseismic observations have found strong fluctuations at a period of about 1.3 years in the rotation speed around the tachocline in the deep solar convection layer. Similar mid-term quasi-periodicities (MTQP; periods between 1–2 years) are known to occur in various solar atmospheric and heliospheric parameters for centuries. Since the deep convection layer is the expected location of the solar magnetic dynamo, its fluctuations could modulate magnetic flux generation and cause related MTQP fluctuations at the solar surface and beyond. Accordingly, it is likely that the heliospheric MTQP periodicities reflect similar changes in solar dynamo activity. Here we study the occurrence of the MTQP periodicities in the near and distant heliosphere in the solar wind speed and interplanetary magnetic field observed by several satellites at 1 AU and by four interplanetary probes (Pioneer 10 and 11 and Voyager 1 and 2) in the outer heliosphere. The overall structure of MTQP fluctuations in the different locations of the heliosphere is very consistent, verifying the solar (not heliospheric) origin of these periodicities. We find that the mid-term periodicities were particularly strong during solar cycle 22 and were observed at two different periods of 1.3 and 1.7 years simultaneously. These periodicities were latitudinally organized so that the 1.3-year periodicity was found in solar wind speed at low latitudes and the 1.7-year periodicity in IMF intensity at mid-latitudes. While all heliospheric results on the 1.3-year periodicity are in a good agreement with helioseismic observations, the 1.7-year periodicity has so far not been detected in helioseismic observations. This may be due to temporal changes or due to the helioseismic method where hemispherically antisymmetric fluctuations would so far have remained hidden. In fact, there is evidence that MTQP fluctuations may occur antisymmetrically in the northern and southern solar hemisphere. Moreover, we note that the MTQP pattern was quite different during solar cycles 21 and 22, implying fundamental differences in solar dynamo action between the two halves of the magnetic cycle.  相似文献   

2.
Das  T.K.  Nag  T.K. 《Solar physics》1999,187(1):177-184
In the present paper we look for periodicities in the mean solar magnetic field observed at Stanford Observatory, using Fourier transform and autocorrelation techniques. Apart from the periodicity equal to that of the synodic rotational modulation of the Sun, other periods were also found by examining the time series formed at different epochs of the solar cycle. From the aforesaid analyses a 14-day periodicity has been confirmed, which is found to occur in all the cases taken under consideration.  相似文献   

3.
We have detected several periodicities in the solar equatorial rotation rate of sunspot groups in the catalog Greenwich Photoheliographic Results (GPR) during the period 1931?–?1976, the Solar Optical Observing Network (SOON) during the period 1977?–?2014, and the Debrecen Photoheliographic Data (DPD) during the period 1974?–?2014. We have compared the results from the fast Fourier transform (FFT), the maximum entropy method (MEM), and the Morlet wavelet power-spectra of the equatorial rotation rates determined from SOON and DPD sunspot-group data during the period 1986?–?2007 with those of the Mount Wilson Doppler-velocity data during the same period determined by Javaraiah et al. (Solar Phys. 257, 61, 2009). We have also compared the power-spectra computed from the DPD and the combined GPR and SOON sunspot-group data during the period 1974?–?2014 to those from the GPR sunspot-group data during the period 1931?–?1973. Our results suggest a ~?250-day period in the equatorial rotation rate determined from both the Mt. Wilson Doppler-velocity data and the sunspot-group data during 1986?–?2007. However, a wavelet analysis reveals that this periodicity appears mostly around 1991 in the velocity data, while it is present in most of the solar cycles covered by the sunspot-group data, mainly near the minimum epochs of the solar cycles. We also found the signature of a period of ~?1.4 years in the velocity data during 1990?–?1995, and in the equatorial rotation rate of sunspot groups mostly around the year 1956. The equatorial rotation rate of sunspot groups reveals a strong ~?1.6-year periodicity around 1933 and 1955, a weaker one around 1976, and a strong ~?1.8-year periodicity around 1943. Our analysis also suggests periodicities of ~?5 years, ~?7 years, and ~?17 years, as well as some other short-term periodicities. However, short-term periodicities are mostly present at the time of solar minima. Hence, short-term periodicities cannot be confirmed because of the larger uncertainty in the data.  相似文献   

4.
The polar magnetic field on the Sun changes its sign during the maximum of solar cycles. It is known that the phenomenon of three-fold reversal of the polar magnetic field occurred in solar cycle 20. Using the magnetograph data of the Mount Wilson Observatory from 1967 to 1993, we confirm a previously suggested topological model of the three-fold magnetic-field reversal (Benevolenskaya, 1991). From the data set we have found that cycles with three-fold polar magnetic field reversals are characterized by a pronounced high-frequency component of the magnetic field compared with cycles with single polar magnetic-field reversals.  相似文献   

5.
We have used the daily values of the equatorial rotation rate determined from the Mt. Wilson daily Doppler-velocity measurements during the period 3 December 1985 – 5 March 2007 to search for periodicities in the solar equatorial rotation rate on time scales shorter than 11 years. After the daily values have been binned into 61-day intervals, a cosine fit with a period of one year was applied to the sequence to remove any seasonal trend. The spectral properties of this sequence were then investigated by using standard Fourier analysis, maximum-entropy methods, and a Morlet-wavelet analysis. From the analysis of the Fourier power spectrum we detected peaks with periodicities around 7.6, 2.8, and 1.47 years and 245, 182, and 158 days, but none of them were at a statistically significant level. In the Morlet-wavelet analysis the ≈1.47-year periodicity is detected only for 1990 (i.e., near the maximum of cycle 22) and near the end of cycle 22 in 1995. From the same wavelet analysis we found some evidence for the existence of a 2.8-year periodicity and a 245-day periodicity in the equatorial rotation rate around the years 1990 and 1992, respectively. In the data taken during the period 1996 – 2007, when the Mt. Wilson spectrograph instrumentation was more stable, we were unable to detect any signal from the wavelet analysis. Thus, the detected periodicities during the period before 1996 could be artifacts of frequent changes in the Mt. Wilson spectrograph instrumentation. However, the temporal behavior of most of the activity phenomena during cycles 22 (1986 – 1996) and 23 (after 1997) is considerably different. Therefore, the presence of the aforementioned short-term periodicities during the last cycle and absence of them in the current cycle may, in principle, be real temporal behavior of the solar rotation during these cycles.  相似文献   

6.
We have analyzed the direct records of sunspot number between 1749 and 1990 with the same technique currently used in the study of stellar activity cycles observed with Mount Wilson Observatory's 60-inch telescope. In order to mimic the stellar time series, which span only two decades, we analyzed twenty- and fifty-year intervals of the sunspot data in comparison to the entire record. We also examined the reliability of the oldest (pre-1850) sunspot records. The mean solar cycle period determined from the entire record (1749–1990) is 11.04 yr with a computed precision of ± 0.01 yr, but an overall accuracy of only ±1.1 yr. The large uncertainty is caused by variation of the cycle period with time and not observational uncertainty.The correct sunspot period is found slightly more often (82%) in 50-year intervals compared to 20-year (74%). The cause is twofold: first, a more precise period results from the longer sample length, and second, other periodicities exist in the sunspot record, so that a more accurate determination of the dominant 11.0-year period results from the longer time series. As a guideline for cycle periodicities in other stars, the solar results indicate that the 50-year intervals would produce more precise and accurate periods than the 20-year time series. On the other hand, useful statistics concerning long-term activity could be obtained from a less-frequently sampled group of stars that is substantially larger than the group of 100 lower Main-Sequence stars currently observed at Mount Wilson, although knowledge of short-term variability would be sacrificed.Pre-doctoral fellow, Harvard-Smithsonian Center for Astrophysics.  相似文献   

7.
We use observations of the green corona low-brightness regions to construct a time series of a polar coronal hole area from 1939 to 1996, covering 5 solar cycles. We then perform a power-spectral analysis of the monthly data time series. Several persistent significant periodicities appear in the spectra, which are related with those found in solar magnetic flux emergence, geomagnetic storm sudden commencements and cosmic-ray flux at Earth. Of particular importance are the peak at around 1.6–1.8 yr recently found in cosmic-ray intensity fluctuations, and the peak at around 1 yr, also identified in coronal hole magnetic flux variations. Additional interesting features are the peaks close to 5 yr, 3 yr and the possible peak at around 30 yr, that were also found in other solar and interplanetary phenomena. Our results stress the physical connection between the solar magnetic flux emergence and the interplanetary medium dynamics, in particular the importance of coronal hole evolution in the structuring of the heliosphere.  相似文献   

8.
This article presents a comparative analysis of solar activity data, Mt Wilson diameter data, Super-Kamiokande solar neutrino data, and nuclear decay data acquired at the Lomonosov Moscow State University (LMSU). We propose that salient periodicities in all of these datasets may be attributed to r-mode oscillations. Periodicities in the solar activity data and in Super-Kamiokande solar neutrino data may be attributed to r-mode oscillations in the known tachocline, with normalized radius in the range 0.66–0.74, where the sidereal rotation rate is in the range 13.7–14.6 year−1. We propose that periodicities in the Mt Wilson and LMSU data may be attributed to similar r-mode oscillations where the sidereal rotation rate is approximately 12.0 year−1, which we attribute to a hypothetical “inner” tachocline separating a slowly rotating core from the radiative zone. We also discuss the possible role of the Resonant Spin Flavor Precession (RSFP) process, which leads to estimates of the neutrino magnetic moment and of the magnetic field strength in or near the solar core.  相似文献   

9.
The periodicities of monthly values of major flare numbers and comprehensive major flare index (CFI) have been studied for the 20th solar cycle. It has been proved that the periodicity 152 days exists also in the southern (S) solar hemisphere. This periodicity has been previously defined in the earlier cycles to be a northern (N) periodicity, but it has migrated to the southern hemisphere (S) during the cycles 19, 20, 21. For the whole solar disk data, it has been found that the periodicity at 78.43d is much remarkable than its first harmonic at 156.86d. We have also detected very strong periodicity at 548.96d in N-hemisphere while a strong one has been found near 100d in both solar hemispheres. The detected periodicities at 80±2d and 101-+1d seems to have a global origin . The 87.1d periodicity is present and it is suggested that it is related to 88d periodicity attributed to the tidal influence of the planet Mercury on sunspots. Both hemispheres present their periodicities independently.  相似文献   

10.
11.
Robert Howard 《Solar physics》1985,100(1-2):171-187
The Mount Wilson solar program has figured prominently in the field of solar physics throughout this century. This review describes the development of the instrumentation and the progress of the research at Mount Wilson from 1904 to 1984.The National Optical Astronomy Observatories are operated by the Association of Universities for Research in Astronomy, Inc., under contract to the National Science Foundation.  相似文献   

12.
Snodgrass  H.B.  Kress  J.M.  Wilson  P.R. 《Solar physics》2000,191(1):1-19
The Mount Wilson synoptic magnetic data for the period September 1987 through March 1996 are completely revised and used to provide polar plots of the solar magnetic fields for both hemispheres. This period, from Carrington rotations 1793 to 1906, covers the reversals of the polar magnetic fields in cycle 22. Comparison of our plots with the presently available H filtergrams for this period shows that the polarity boundaries are consistent in these two data sets where they overlap. The Mount Wilson plots show that the polar field reversals involve a complex sequence of events. Although the details differ slightly, the basic patterns are similar in each hemisphere. First the old polarity becomes isolated at the pole, then shortly thereafter, the isolation is broken, and the polar field includes unipolar regions of both polarities. The old polarity then reclaims the polar region, but when the isolation of this field is established for a second time, it declines in both area and strength. We take the reversal to be complete when the old polarity field is no longer observed in the Mount Wilson plots. With this criterion we find that the polar field reversal is completed in the north by CR 1836, i.e., by December 1990, and in the south by CR 1853, i.e., March 1992.  相似文献   

13.
Two 9400-year long 10Be data records from the Arctic and Antarctic and a 14C record of equal length were used to investigate the periodicities in the cosmic radiation incident on Earth throughout the past 9400 years. Fifteen significant periodicities between 40 and 2320 years are observed in the 10Be and 14C records, there being close agreement between the periodicities in each record. We found that the periodic variations in the galactic cosmic radiation are the primary cause for periods <?250 years, with minor contributions of terrestrial origin possible >?250 years. The spectral line for the Gleissberg (87-year) periodicity is narrow, indicating a stability of ≈?0.5 %. The 9400-year record contains 26 Grand Minima (GM) similar to the Maunder Minimum, most of which occurred as sequences of 2?–?7 GM with intervals of 800?–?1200 years in between, in which there were no GM. The intervals between the GM sequences are characterised by high values of the modulation function. Periodicities <?150 years are observed in both the GM intervals and the intervals in between. The longer-period variations such as the de Vries (208-year) cycle have high amplitudes during the GM sequences and are undetectable in between. There are three harmonically related pairs of periodicities (65 and 130 years), (75 and 150 years), and (104 and 208 years). The long periodicities at 350, 510, and 708 years closely approximate 4, 6, and 8 times the Gleissberg period (87 years). The well-established properties of cosmic-ray modulation theory and the known dependence of the heliospheric magnetic field on the solar magnetic fields lead us to speculate that the periodicities evident in the paleo-cosmic-ray record are also present in the solar magnetic fields and in the solar dynamo. The stable, narrow natures of the Gleissberg and other periodicities suggest that there is a strong “frequency control” in the solar dynamo, in strong contrast to the variable nature (8?–?15 years) of the Schwabe (11-year) solar cycle.  相似文献   

14.
Digitized data on solar magnetic fields recorded at the Mount Wilson Observatory during the period August 1959–May 1970 have been used to study the large-scale evolution of the photospheric magnetic fields. The latitude distribution (butterfly diagram) of the magnetic field is compared with the distribution of sunspots, faculae, prominences and the intensity of the green-line corona. The evolution of the sector structure of the field is calculated. 36 synoptic charts, each representing an average of four solar rotations, illustrate the evolution of the magnetic field over the 11-year period.On leave from the Lund Observatory, Lund, Sweden.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
In order to investigate the relationship between magnetic-flux emergence, solar flares, and coronal mass ejections (CMEs), we study the periodicity in the time series of these quantities. It has been known that solar flares, sunspot area, and photospheric magnetic flux have a dominant periodicity of about 155 days, which is confined to a part of the phase of the solar cycle. These periodicities occur at different phases of the solar cycle during successive phases. We present a time-series analysis of sunspot area, flare and CME occurrence during Cycle 23 and the rising phase of Cycle 24 from 1996 to 2011. We find that the flux emergence, represented by sunspot area, has multiple periodicities. Flares and CMEs, however, do not occur with the same period as the flux emergence. Using the results of this study, we discuss the possible activity sources producing emerging flux.  相似文献   

16.
T. W. Cole 《Solar physics》1973,30(1):103-110
The techniques of power spectral analysis are used to determine significant periodicities in the annual mean relative sunspot numbers. The main conclusion is that a period of 10.45 yr is very basic and can be associated with an excitation of new solar cycles. When combined with a period of 11.8 yr, associated here with the free-running length of a solar cycle, the mean cycle length of 11.06 yr and a phase variation of 190 yr are explained. Similarly the amplitude variations with periods 88 and 59 yr (previously described as the 80-yr cycle) are due to an amplitude modulation of the solar cycle by a period of 11.9±0.3 yr. The results dispute several associations of planetary position and solar activity.Radiophysics Publication RPP 1647, January, 1973.  相似文献   

17.
We have analyzed the intermediate-term periodicities in soft X-ray flare index (FISXR) during solar cycles 21, 22 and 23. Power-spectral analysis of daily FISXR reveals a significant period of 161 days in cycle 21 which is absent during cycles 22 and 23. We have found that in cycle 22 periodicities of 74 and 83 days are in operation. A 123-day periodicity has been found to be statistically significant during part of the current solar cycle 23. The existence of these periodicities has been discussed in the light of earlier results.  相似文献   

18.
We study quasi-periodical changes in the amplitudes of the 27-day variation of the galactic cosmic ray (GCR) intensity, and the parameters of solar wind and solar activity. We have recently found quasi-periodicity of three to four Carrington rotation periods (3?–?4 CRP) in the amplitudes of the 27-day variation of the GCR intensity (Gil and Alania in J. Atmos. Solar-Terr. Phys. 73, 294, 2011). A similar recurrence is recognized in parameters of solar activity (sunspot number, solar radio flux) and solar wind (components of the interplanetary magnetic field, solar wind velocity). We believe that the 3?–?4 CRP periodicity, among other periodicities, observed in the amplitudes of the 27-day variation of the GCR intensity is caused by a specific cycling structure of the Sun’s magnetic field, which may originate from the turbulent nature of the solar dynamo.  相似文献   

19.
Sunspot number, sunspot area, and radio flux at 10.7 cm are the indices which are most frequently used to describe the long‐term solar activity. The data of the daily solar full‐disk magnetograms measured at Mount Wilson Observatory from 19 January 1970 to 31 December 2012 are utilized together with the daily observations of the three indices to probe the relationship of the full‐disk magnetic activity respectively with the indices. Cross correlation analyses of the daily magnetic field measurements at Mount Wilson observatory are taken with the daily observations of the three indices, and the statistical significance of the difference of the obtained correlation coefficients is investigated. The following results are obtained: (1) The sunspot number should be preferred to represent/reflect the full‐disk magnetic activity of the Sun to which the weak magnetic fields (outside of sunspots) mainly contribute, the sunspot area should be recommended to represent the strong magnetic activity of the Sun (in sunspots), and the 10.7 cm radio flux should be preferred to represent the full‐disk magnetic activity of the Sun (both the weak and strong magnetic fields) to which the weak magnetic fields mainly contribute. (2) On the other hand, the most recommendable index that could be used to represent/reflect the weak magnetic activity is the 10.7 cm radio flux, the most recommendable index that could be used to represent the strong magnetic activity is the sunspot area, and the most recommendable index that could be used to represent the full‐disk magnetic activity of the Sun is the 10.7cm radio flux. Additionally, the cycle characteristics of the magnetic field strengths on the solar disk are given. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
A study of the orbital period variation of the W UMa system CK Bootis is made using an extended observational time base. The biperiodicity of the orbital period modulation is emphasized. Both detected periodicities (24.14 yr and 10.62 yr) cannot be explained through the light-time effect unless the companion would be a white dwarf as suggested by other authors, too. Moreover, we also argue that, nowadays at least, it seems that there is no causal relation between the orbital period variation and the recently discovered visual companion. Consequently, we infer that at least one of the two periodicities may be related to the magnetic activity cycles in the component stars of CK Boo, while the other periodicity could be related to the presence of a fourth companion in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号