首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
星系红移巡天中的红移畸变效应是指由星系本动速度引起的,观测到红移空间中星系成团性呈现各向异性的效应。它是很重要的宇宙学探针,能够帮助我们重构宇宙结构形成的历史,结合宇宙膨胀历史的研究,我们可以打破暗能量模型和修正引力模型的简便性,更精确地限制宇宙学参数。随着观测精度的提高,下一代星系红移巡天(DESI,Euclid,LSST等)有望将红移畸变效应测量的统计误差降低到1%左右,然而目前红移畸变模型普遍都还有5%~10%的系统误差,因此,红移畸变模型的精度已经成为这个领域发展的瓶颈。我们介绍了几个主流的红移畸变模型,重点讨论每个模型中采用的假设及其局限性,并提出进一步改进的方向。  相似文献   

2.
在红移巡天中,由于星系本动速度的存在,星系的三维空间分布图像将会发生畸变,这种效应使得我们可以用动力学与统计方法,通过测量线性红移畸变因子来获取宇宙中大尺度上物质分布的信息,介绍了线性红移畸变效应的图像、理论,以及线性红移畸变因子β的测量方法和一些最新结果。  相似文献   

3.
星系的红移巡天是观测宇宙学中最基本的工作,有关宇宙大尺度结构研究中的许多关键问题,例如宇宙中最大结构的尺度,宇宙中大尺度结构的拓扑特征,以及有关宇宙物质分布的密度场和速度场的许多基本性质的研究,都依赖于覆盖面积足够大、极限星等足够暗的完备的星系红移大样本.通过对巡天的覆盖天区、巡天深度、选样方法、巡样率等方面的分析,比较了最近已完成的一些红移巡天(IRAS、CfA、SSRS、ORS和LCRS等)并对计划中的2dF和SDSS巡天计划作了简要介绍.  相似文献   

4.
星系的红移巡天是观测宇宙学中最基本的工作,有关宇宙大尺度结构研究中的许多关键问题,例如宇宙中最大结构的尺度,宇宙中大尺度结构的拓扑特征,以及有关宇宙物质分布的密度场和速度场的许多基本性质的研究,都依赖于覆盖面积足够大、极限星等足够暗的完备的星系红移大样本。通过对巡天的覆盖天区、巡天深度、选择方法、巡产率等方面的分析,比较了最近已完成的一些红移巡天(IRAS、CfA、SSRS、ORS和LCRS等)并  相似文献   

5.
宇宙中的物质在大尺度上是均匀分布的,还是保持着分形分布的特点,成为近年来观测宇宙学中争论的一个热点。Pietronero等人认为直到目前观测到的最大尺度(≈1000h^-1Mpc)星系的分布仍保持D≈2的分形结构,而大多数坚持标准模型的宇宙学家都认为宇宙在大尺度上是均匀分布的。宇宙物质在大尺度上是否均匀分布,将由下一代的红移巡天的结果来判断。  相似文献   

6.
本文在Wen等人工作的基础上,对CfA红移巡天样本中银道以北和以南天区中星系的大尺度分布分别进行了分维计算并比较其所得结果。分析表明,这两个区域内星系的大尺度分布存在显著差异。说明CfA样本还不能构成代表宇宙大尺度结构的好样本。另一方面,两个区域中样本分析结果又存在着一些明显的共同点:它们都表现出明显的多级分形特征。结合对IRAS星系红移巡天样本和星系分立小天区红移巡天样本的分析结果。我们认为,多级分形很可能是宇宙大尺度结构的一个普遍和重要的特征。本文对这一特征的含义也作了简略的讨论。  相似文献   

7.
通过分析由五个笔形天区的完备红移巡天和九个1/3采样红移巡天得到的样本,研究了星系分布中的大尺度结构。用一种改进过的方法计算了该分布的分维。结果表明星系分布确实具有3—4.5h~(-1)Mpc的典型尺度,这与Shanks等的结果一致。  相似文献   

8.
从COMBO-17数字巡天数据里,选择了CDFS(Chandra Deep Field South)天区中1231个测光红移在0.1~0.3之间的暗蓝星系作为样本,研究了这些星系分别在只有光学波段和光学加近红外波段数据情况下做测光红移得到的红移分布,以及这些星系在静止参考系下的能谱分布(Spectral Energy Distributions,SEDs)特征.结果表明有183个星系在利用光学加近红外波段数据做测光红移时得到的红移大于1.2,它们的误差为0.046,提高测光的信噪比也有利于区分这类被光学波段误认为低红移的星系.这些暗蓝星系中高红移星系的观测近红外流量相对于光学流量有上升的趋势,而低红移星系的观测近红外流量相对于光学流量有下降的趋势.  相似文献   

9.
阻尼莱曼α吸收线系统(DLAs)是中性氢柱密度超过2×10~(20) cm~(-2)的类星体吸收线系统。按照现有的观点,DLAs是高红移环境中星系及恒星形成的中性气体库,它们很可能是现今星系的前身。近20年来随着DLAs巡天观测的迅猛发展,尤其是SDSS巡天观测数据的释放,DLAs统计样本达到千计的量级,大大推动了DLAs的观测和研究。由于受到观测的某些限制,样本还有偏,尤其是缺少低红移DLAs,但是,通过大样本DLAs系统的研究,已经获得了有关宇宙中性气体演化的许多信息,如DLAs的数密度在高红移处(z1.5)是有演化的,但在低红移处基本不演化,从而确认了今天的星系形成于较高红移处。研究也发现DLAs对宇宙质量密度的贡献随红移的演化减弱,DLAs的中性氢气体柱密度分布函数与本地星系的中性氢柱密度分布函数十分相似等一些有趣的结论。着重介绍DLAs的基本知识以及20年来巡天的有关进展,包括DLAs的观测证认、统计特性等,并指出目前DLAs样本不完备的主要原因。  相似文献   

10.
宇宙学的基本假设之一是宇宙在大尺度上均匀各向同性.为了验证星系分布在大尺度上的均匀性,分别计算观测样本和观测空间几何体的分形维数,得到SDSS-DR4中星系分布的分形维数.观测空间几何体的分形维数用随机样本来确定.样本中的星系红移z的范围为0.01-0.26.当尺度持续增加至几十个Mpc时,星系分布的分形维数一致地趋向于3.所有的样本均显示了明显的转变尺度,当尺度大于此转变尺度时,星系分布的分形维数D<,G>~3,星系的分布转变为均匀分布.结果支持了宇宙学的基本原理关于宇宙大尺度均匀的假设.样本的转变尺度随着样本的光度增强而变大,说明小尺度上星系的分布不是简单的分形分布,而是多维分形分布.高光度星系的转变尺度非常大,直到100h-1Mpc左右才变得均匀.  相似文献   

11.
在对不同光度星系大尺度分布进行空间两点相关函数分析的基础上,仍以CfA红移巡天资料为样本,对不同光度星系分布进行了交叉相关分析。结果表明,不同光度星系间的交叉相关函数仍可近似地以幂函数表示,说明不同光度星系在空间是一起成团的。但在较小尺度上((?)4—6Mpc),光度较高的星系间相关更强,而在更大一些尺度上光度较高的星系间相关减弱更快,甚至变得比与光度较低星系间的相关更弱。结合前面对自相关函数分析的结果可以看到,统计上看来,星系分布形成群和团。群或团中亮的星系形成更致密的分布而较暗的星系则在这些群和团中分布较弥散。此结果表明星系光度和其环境(密度)有关,从而从观测上为Biased星系形成理论提供了一个可能的证据。  相似文献   

12.
GALEX:为确认宇宙暗能量立功 2011年五月间,国外多家媒体报道星系演化探测器(GALEX)协助证实暗能量的本质。一项为期5年、针对200000个星系的巡天观测计划,回溯了70亿年的宇宙时光,结果给出最好的独立证据之一,即暗能量正让宇宙加速膨胀。此次研究中采用的方法之一是测量宇宙中星系大尺度分布情况。新发现的完成得益于星系巡天观测使用了美国宇航局8年前发射的GALEX以及澳大利亚塞丁泉(Siding Spring)山的英一澳望远镜得出的数据。  相似文献   

13.
基于CANDELS(Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey)5个深场巡天的多波段测光数据和HST WFC3(Hubble Space Telescope Wide Field Camera 3)近红外(F125W和F160W)高分辨率观测图像,利用质量限(恒星质量M_*10~(10)M_⊙)选取了8002个红移分布在1z3范围内的星系样本,并对这些大质量星系的形态和结构性质进行了定量分析研究.通过星系形态的神经网络分类方法(Conv Nets),将样本中的星系划分为4类:椭球星系(SPHeroids,SPH)、早型盘星系(Early-Type Disks,ETD)、晚型盘星系(Late-Type Disks,LTD)和不规则星系(IRRegulars,IRR).结果发现星系的形态和结构随红移发生演化,在高红移宇宙星系主要表现出不规则形态,但到低红移处椭球和盘主导的哈勃星系形态序列已经形成.在相同红移区间内,不同类型星系的物理尺寸(r_e)中值从大到小的排序是IRR、LTD、ETD和SPH,而对应的Sersic指数(n)中值大小排序却相反.另外,不同类型星系的re与红移之间存在明显的演化关系,但这样的现象在平均轴比(b/a)和Sersic指数与红移的关系中并没有被发现.  相似文献   

14.
哈勃空间望远镜的高新巡天照相机(ACS)开始证实它具有探测以往照相机难以窥视的宇宙的实力。在最近的观测中,ACS在室女座一个“空洞”发现了大约30个红色的类似星系的天体。天文学家认为这些是在宇宙比今天小7倍(红移在6左右)时所看到的年轻的  相似文献   

15.
王放  郑宪忠 《天文学报》2011,52(2):105-114
从观测上测定早型星系中恒星形成活动随红移的演化有助于理解这类星系的形成演化.结合GEMS(Galaxy Evolution from Morphology and SEDs)巡天的HST/ACS(Hubble Space Telescope/Advanced Camera for Surveys)高分辨图像和CDFS(ChandraDeep Field South)天区Spitzer、GALEX(Galaxy Evolution Explorer)等多波段数据,基于形态、颜色和恒星质量选出一个0.2≤z≤1.0红移范围的包含456个早型星系的完备样本.利用stacking技术测量了样本星系紫外与红外平均光度,估计早型星系的恒星形成率.结果显示,早型星系中的恒星形成率较低(<3 M·yr-1),随红移递减而降低.在红移z=1以来的恒星形成贡献的质量小于15%.星族分析亦肯定大质量早型星系的主体星族形成于宇宙早期(z>2).  相似文献   

16.
二维与三维星系巡天观测表明,存在着长纤维状超星系团和巨大的空洞。邻近超星系团的详细研究表明它们互相连通而形成巨大的网络。有效的定量识别图案的集团分析方法用于大天区三维巡天资料,使上述直观印象进一步得到了证实。星系分布的这些特征和它们的拓补结构,可以用绝热模型解释。更深度的巡天观测,多粒子数值模拟和进一步的理论研究正在进行中,会在不久的将来进一步揭示星系在大尺度上的分布特征。  相似文献   

17.
为探索红移畸变对空洞性质的影响, 利用了一组星系形成半解析模拟星表数据, 采用VIDE (Void Identification and Examination toolkit)算法寻找真实空间和红移空间的宇宙学空洞, 根据空洞外围墙结构处的星系运动速度将空洞分为``塌缩型''和``膨胀型''. 结果表明: ``塌缩型''空洞所占比例会随着空洞的尺度变大而减少, ``膨胀型''空洞则与之相反, 两类空洞的平均有效半径在实空间中相差20%, ``塌缩型''空洞的平均径向密度轮廓显著高于``膨胀型''空洞. 利用成员星系将两种空间中的空洞进行匹配, 通过比较实空间和红移空间中空洞的数目分布, 发现实空间和红移空间中空洞的数目差异与空洞大小有关, 并且红移空间中有一半左右的空洞无法对应到实空间. 对匹配空洞, 红移畸变对``塌缩型''空洞的密度影响更大; 对未匹配空洞, 其密度轮廓与匹配空洞存在明显区别, 并且实空间中未匹配空洞其壳层星系向空洞内部运动的趋势更加明显.  相似文献   

18.
本文对两点相关函数及关联分维间的关系进行了讨论,以IRAS星系红移巡天样本作为例子进行分析,分析结果表明,在大尺度(≥15─20hMpc)上,IRAS星系的分布既不能用简单幂律形式的两点相关函数,也不能用简单分形来描写。它可以用多级分形来更好地描写。多级分形结构的主要特征之一是存在典型尺度,即相邻分形级间的转变尺度,用非归一计数方法可以有效而准确地确定这些典型尺度,存在典型尺度对目前已有的结构形成模型提出了挑战。  相似文献   

19.
自对类星体红移解释发生激烈争论以来,近7、8年新的观测证据、统计分析和理论解释,都是有利于宇宙学红移解释的。它们包括: a)与类星体红移相等但光学光度弱得很多的成协星系的系统观测和结果; b)引力透镜事例的发现和解释; c)标准烛光化后获得的视星等-红移关系; d)标准宇宙模型下解释了类星体发射线红移分布; e)射电子源间最大角径θ与红移图上上包络线的存在; f)理论上给出了可能的产能机制和传能过程,并获得新的观测证据。但是与类星体红移不等的星系成协事例,仍有待深入观测和进一步研究。  相似文献   

20.
在宇宙的已观测的范围内,从尺度10~(10)cm直到10~(26)cm可视物质的分布是不均匀的。对星系三维分布的研究结果表明,绝大多数的星系集中在由星系的带、群和团组成的超星系团中;而在超星系团之间是几乎没有可视天体的巨洞。宇宙的大尺度结构(在尺度10Mpc—10~2Mpc上星系分布不均匀性的特征)似乎是网状的。对类星体红移分布的统计分析结果表明,在大尺度结构中可能有周期性分布的成分。周期尺度是10~2Mpc的数量级。 在另一方面,关于微波背景辐射的温度起伏的观测(δT/T 10~(-5),在角尺度10′—180°的范围)表明,宇宙中的物质在更大尺度(10~3Mpc)上的分布是均匀的。 大尺度结构是怎样从早期均匀的背景宇宙中增长起来的?这是在宇宙学中最重要也是最困难的问题上一;要解决这个问题需要有关于宇宙的完善的模型。目前所流行的、关于大尺度结构的理论,基本上是以膨胀宇宙论和密度扰动的理论为基础的理论。 在绝热密度扰动(假定初始扰动是绝热的)的方案中,有两种观念特别值得注意: 1,宇宙密度波的观念。在早期宇宙中的扰动有可能在氢复合前形成有物理意义的相干波列;这种波——“宇宙密度波”在氢复合之后有可能影响物质的分布。作为宇宙密度波的可观测遗迹,可以解释已观测的星系分布不均匀性的上限尺度,以及在类星  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号