首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
与其他卫星导航系统不同,北斗卫星导航系统采用星地双向时间比对技术,直接测量卫星钟相对于地面保持的系统时间的钟差,并用于广播电文钟差参数的建模。讨论了电离层延迟误差、卫星相位中心误差等不同误差源对不同类型卫星双向时间同步卫星钟差精度的影响。实测数据分析结果表明,星地双向卫星钟差内符合精度(RMS)优于0.15 ns。利用双向卫星钟差序列,对广播星历钟差参数预报精度进行了分析,统计结果显示广播电文钟差参数预报1 h,精度在2 ns以内,移动卫星刚入境时,钟差参数预报6 h误差可达10 ns。  相似文献   

2.
精度是北斗卫星导航系统(Beidou Navigation Satellite System,BDS)服务指标体系的重要内容.给出了北斗卫星导航系统精度指标的含义及精度指标的评估方法,利用实测数据分析了北斗系统实际实现的精度指标,并将其与GPS系统实际实现的精度指标作比较分析.DOP(几何精度因子)值由卫星导航系统空间星座分布决定,是影响用户定位授时精度的重要因素,比较了北斗与GPS在中国区域DOP值分布的差异.GPS系统PDOP(定位几何精度因子)分布均匀,随用户经度和纬度变化不大,在1.0–2.0之间.而受混合星座影响,北斗系统PDOP分布随着测站经度和纬度变化较大,变化范围为1.5–5.0;且随测站纬度增加而变大,由中心经度(东经118?)向两侧不断变大.对于影响用户等效距离误差的空间信号精度进行了比较分析.利用IGS(国际GNSS服务组织)提供的事后精密轨道、激光跟踪数据和北斗双向时频传递测量的卫星钟差评估了北斗基本导航电文的精度.结果表明:北斗IGSO(倾斜地球同步轨道)卫星和MEO(中轨道)卫星轨道径向误差约为0.5 m,大于GPS卫星轨道小于0.2 m的径向误差.北斗GEO(地球同步轨道)卫星激光残差约为65 cm,IGSO卫星和MEO卫星激光残差约为50 cm.受卫星钟差数据龄期影响,MEO卫星钟差参数误差明显大于IGSO卫星和GEO卫星,约为0.80 m.最后,采用MGEX(多GNSS系统试验项目)多模接收机进行了定位试验,分析了北斗系统和GPS在定位精度上的差异.结果表明:受星座构型影响,北斗卫星导航系统定位精度与GPS系统定位精度相比有所差异,但满足水平定位精度优于10 m、高程定位精度优于10 m的设计要求,双系统组合定位精度好于单一系统定位精度.  相似文献   

3.
导航系统的完好性关系到用户的安全问题,空间信号精度(SISA)是反映卫星导航系统完好性的重要指标之一。针对导航电文中的广播星历和钟差参数信息处理问题,设计了SISA参数计算方法;利用GPS和BDS系统中的实际数据,分析了不同轨道类型卫星SISA参数对空间信号误差的包络特性,并将导航电文中URA参数与SISA参数进行比较,验证了SISA参数计算方法。实验结果表明,SISA能够准确反映广播星历的空间信号精度,并能够对空间信号误差基本实现平均98%的包络能力;目前北斗广播星历中的URA参数不能够精确反映空间信号的精度,不同卫星的空间信号精度相差较大,SISA能够准确反映和包络北斗空间信号误差。  相似文献   

4.
全球卫星导航系统(Global Navigation Satellite System, GNSS)通过播发卫星钟差和精密轨道信息实现时间和空间基准信息向导航用户的传递.随着高精度原子钟等导航卫星载荷、星间链路等天基/地基监测手段以及数据处理方法等技术的不断更新,卫星轨道和钟差产品的精度和实时性也逐步提升. 2018年12月,北斗三号卫星导航系统正式开通,为"一带一路"国家提供实时高精度、高可靠的基本导航定位服务.综述了北斗导航系统从北斗二号区域系统到北斗三号全球系统精密定轨与时间同步处理面临的困难和挑战,针对上述问题,阐述了北斗运行控制系统的解决途径和实现指标.与GPS等其他GNSS系统进行比较,分析了不同导航系统技术特点.最后展望了精密定轨与时间同步技术未来的发展路线图,为更高精度的GNSS导航定位授时服务提供参考.  相似文献   

5.
中高轨卫星广播星历精度分析   总被引:17,自引:0,他引:17  
GPS广播星历参数具有物理意义明确、参数少、精度高等优点,可以考虑将它应用于其他卫星导航系统。但是GPS系统的卫星构成比较单一,而其他卫星导航系统可能包含中地球轨道 (MEO)、倾斜地球同步轨道(IGSO)和地球静止轨道(GEO)等多种不同类型的中高轨卫星。分析了采用GPS广播星历参数时,MEO、IGSO和GEO卫星的广播星历拟合精度,特别讨论了轨道倾角接近于0的GEO卫星的广播星历拟合精度,并给出了相应的改进措施。计算表明,对于 MEO卫星,2 h的广播星历拟合精度(三维位置)可达厘米级;对于IGSO卫星和轨道倾角较大的GEO卫星,4 h的广播星历拟合精度约为0.1 m,径向位置误差在厘米量级;而对于轨道倾角接近于0的GEO卫星,若不采取特殊措施,由于轨道倾角和升交点经度统计相关,其广播星历拟合精度很差,为此提出了一种坐标转换方法。采用此方法后的广播星历拟合精度可达0.1 m,径向位置误差为厘米量级。  相似文献   

6.
目前,越来越多的低轨卫星上都搭载了用于精密定轨的星载GPs接收机,星载GPS已成为低轨卫星精密定轨的主要手段之一.星载GPS精密定轨精度依赖于GPS星历及钟差精度.基于SHORDE-Ⅲ非差动力学定轨功能,以2005年8月1日至8月7日一周的GRACE卫星实测数据为例,采用事后精密轨道(igs)、快速轨道(igr)和超快速轨道(igu)三种GPS星历在同等条件下定轨,估计GPS星历精度对低轨卫星定轨精度的影响,实际计算结果表明igs和igr两类GPS星历定轨精度相当,约为9.5 cm,igu星历定轨精度略低于igs和igr星历,约为10.5cm:高频GPS卫星钟差数据对定轨精度会产生1-6cm影响.  相似文献   

7.
越来越多的LEO卫星装载了高精度的星载GPS接收机,星载GPS定轨已成为LEO卫星精密定轨的重要手段之一。星载GPS精密定轨精度依赖于GPS星历及钟差精度,采用CODE(Center for Orbit Determination in Europe)官方网站提供的GPS精密星历及钟差数据,基于瑞士伯尼尔大学开发的Bernese 5.0软件,采用非差减缩动力学定轨方法,解算了60天的CHAMP卫星和SAC-C卫星轨道,并将所得轨道与JPL和GFZ事后科学轨道比较,得出的轨道位置三维精度优于20 cm量级,速度三维精度约为0.20 mm/s。  相似文献   

8.
北斗卫星导航系统目前已经完成北斗卫星导航试验验证系统和北斗区域卫星导航系统,正在建设北斗全球卫星导航系统,简称北斗三号系统.截至2018年11月,北斗三号系统已经发射19颗组网星.为了了解新发射组网星的信号、数据质量和目前能达到的定轨精度,基于2018年5月18日至28日22个国际GNSS (Global Navigation Satellite System)监测评估系统(iGMAS)跟踪站的数据,从观测噪声和伪距多路径两方面分析比较了最早发射的8颗北斗三号组网星新旧信号的数据质量,分别用旧信号B1I、B3I和新信号B1C、B2a对北斗三号组网星和GPS进行联合定轨实验.实验结果表明,新信号B2a的数据质量与旧信号相当, B1C的数据质量略差于老信号;比较3 d解重叠弧段(48 h)轨道和钟差结果,新旧信号的结果相当, B1I/B3I和B1C/B2a定轨的3维位置精度(3D-RMS)都在35 cm左右,钟差结果基本在0.5 ns以内.  相似文献   

9.
目前,在轨的5颗新一代北斗卫星(北斗三号)可同时向用户播发北斗二号信号与新的卫星信号,而且北斗三号搭载了高精度的铷钟或被动氢钟.因北斗三号的星钟作为卫星导航、定位和授时服务的主要载荷组成部分,为分析北斗三号卫星钟的时频性能,采用北斗数据处理与分析中心估计的卫星钟差产品评估北斗三号卫星钟的频率稳定度、漂移率和准确度.同时,考虑到北斗三号卫星钟精度较差且存在频繁的相位跳变以及数据中断等问题,筛选出了一种最优的钟差预报模型,即对频率数据进行建模并采用抗差估计的方法进行参数估计.实验结果显示北斗三号钟差预报精度相对传统预报模型提升1.6%–61.9%.  相似文献   

10.
利用IGS星历预报GPS卫星轨道   总被引:1,自引:0,他引:1  
在动力学轨道拟合以及轨道积分的基础上,提出了基于IGS精密星历的GPS卫星轨道预报方法。该方法首先利用已知的IGS精密星历作为虚拟观测值,采用动力学方法拟合出GPS卫星的初始轨道和动力学参数,然后再通过积分来预报GPS卫星的轨道。主要讨论了基于不同弧段的IGS星历时,该方法对GPS卫星轨道的拟合和预报情况。研究结果显示:对于6 d弧段以内的IGS精密星历,其拟合轨道与IGS精密星历差值的三维RMS值均优于4 cm,随着拟合弧段的增加,拟合残差变大;当利用2~6 d弧段的IGS星历来预报GPS轨道时,大部分卫星第1天、第7天和第30天的三维预报精度可优于0.1 m、3 m和100 m。其中,2d弧段的IGS星历对GPS卫星第1天和第7天的预报结果最好,5 d弧段的IGS星历对GPS卫星第30天的预报结果最好。  相似文献   

11.
In the form of satellite ephemerides and clock parameters, the space datum and system time information of one global navigation satellite system (GNSS) is transferred to users. With the continuous updating in the satellite payload such as the high-precision atomic clock, the monitoring and tracking technique such as the inter-satellite link, and in the data processing technique, the accuracy and real-time performance of the satellite ephemeris and clock error products are steadily improved. Starting from December 27th, 2018, the BeiDou Navigation System 3, or BDS-3, has provided the accurate and reliable basic positioning, navigation, and timing (PNT) service for the users in the countries within the “one belt and one road”. This paper has summarized the faced challenges of the precise orbit determination and time synchronization from the regional BDS-2 system to the BDS-3 global system, and the specific solutions at the control segment. In addition, this paper has compared the BDS with other GNSS systems in terms of technical characteristics. Finally, aiming at a higher accuracy and more reliable PNT service, the road map of precise orbit determination and time synchronization technique for the next generation navigation systems is discussed, which will provide a reference for developing the global navigation satellite systems with an even higher accuracy.  相似文献   

12.
The satellite-borne GPS receivers dedicated to precise orbit determination are now being carried by more and more low earth orbit (LEO) satellites and the satellite-borne GPS has become one of the main means for the precise orbit determination of low earth orbit satellites. The accuracy of satellite-borne GPS precise orbit determination depends on the accuracies of the GPS ephemeris and the clock error. Based on the orbit determination function of SHORDEIII zero-difference dynamics and using the observational data obtained by the GRACE satellites for the week from 2005 August 1 to 7 as an example, three versions of GPS ephemerides (igs, igr and igu) are used to carry out orbit determination under the same conditions and to estimate the effect of the GPS ephemeris accuracy on the accuracy of orbit determination of low earth orbit satellites. Our calculated results show that the two ephemerides, igs and igr, are equivalent to each other in orbit determination accuracy (about 9.5 cm), while igu is slightly less accurate, at about 10.5 cm. The effect produced by the data of the high frequency GPS satellite clock error on the accuracy of orbit determination is 1–6 cm.  相似文献   

13.
The Beidou Navigation Satellite Demonstration System and Beidou Regional Satellite Navigation System are accomplished, and the Beidou Global Satellite Navigation System (BDS-3) is under construction. Nineteen networking satellites have been launched by the end of November 2018. To assess the new and old signals of new networking satellites, the data quality is analyzed from the observation noise and pseudo-range multipath two aspects based on the data of iGMAS stations from 18th to 28th May 2018. The accuracies of BDS-3/GPS combined orbit determinations with B1I/B3I and B1C/B2a are compared. The results show that the data quality of the new signal B2a is similar to that of B1I/B3I, and the data quality of B1C is slightly worse than that of B1I/B3I. Comparing the orbit and clock correction accuracies of overlapped arcs (48 hours), the results with B1C/B2a are slightly better than those with B1I/B3I. The averaged 3D position accuracies (3D RMSs) of precise orbit determinations with B1C/B2a and B1I/B3I are around 35 cm. The RMS values of clock corrections are less than 0.5 ns.  相似文献   

14.
区域北斗星基增强系统提供等效钟差改正数统一修正星历和钟差误差。随着系统的建设发展,新一代北斗星基增强系统将区分星历和钟差误差改正信息,以提高差分改正精度。由于北斗卫星混合星座设计及区域监测网的局限,星历和钟差误差的高精度分离计算面临着新的挑战。对北斗星基增强系统的星历和钟差改正算法进行了研究,分别采用动力学和运动学模式计算了卫星星历和钟差改正数,并基于北斗实测数据,对两种处理模式的差分改正精度进行了对比研究。试验结果表明,采用动力学和运动学差分方法,得到的双频伪距实时定位精度分别为1.76m和1.78m,定位精度与WAAS及EGNOS相当。利用运动学和动力学差分改正数后均可得到分米级的精密单点定位(precise point position,PPP)结果,其中采用动力学广域差分改正数,收敛后定位精度可达到15cm;采用运动学广域差分改正数,收敛后定位精度可达45cm。  相似文献   

15.
基于GPS与三轴磁强计的联合导航算法   总被引:2,自引:0,他引:2  
为了修正近地轨道(小于1000 km)地磁场模型,提高导航的精度,在地磁导航系统中引入GPS作为一个新的测量设备,提出了一种基于三轴磁强计与GPS的联合导航算法.该算法取卫星的位置和速度向量作为状态向量,建立状态方程;取卫星周围的磁场强度和GPS接收的信号作为观测量,建立观测方程;并以GPS确定的轨道状态量为标准量,去估计磁场模型参数的修正量,构成冷备冗余导航算法.仿真结果表明,提出的导航算法对轨道位置的估计误差小于50 m,速度的估计误差小于0.1 m/s,导航算法的精度和收敛性都优于使用单一地磁导航的系统.  相似文献   

16.
The regional BeiDou Satellite System, or BDS2, broadcasts a differential correction as Equivalent Satellite Clock Correction to correct both orbit and satellite clock errors. For the global BDS, or BDS3, satellite orbit and clock corrections conforming with RTCA standards will be broadcast to authorized users. The hybrid constellation and regional monitoring network pose challenges for the high precision separation of orbit and satellite clock corrections. Three correction models of kinematic,dynamic and Two-way Satellite Time Frequency Transfer(TWSTFT)-based dynamic were studied to estimate the satellite orbit and clock corrections. The correction accuracy of the three models is compared and analyzed based on the BDS observation data. Results show that the accuracies(root mean square, RMS) of dual-frequency real-time positioning for the three models are about 1.76 m, 1.78 m and 2.08 m respectively, which are comparable with the performance of WAAS and EGNOS. With dynamic corrections, the precision of Precise Point Positioning(PPP) experiments may reach about 23 cm after convergence.  相似文献   

17.
利用全球卫星激光测距服务系统(ILRS,International Laser Ranging Service)标准点资料对Ajisai卫星进行精密定轨,残差均方根(RMS)优于3 cm,得到该星的精密轨道.进而对长春站40 cm空间碎片光电望远镜获得的Ajisai卫星的天文定位资料进行精度分析,外符合精度约3″左右.单独利用天文定位数据进行轨道改进,内符合精度优于3″.改进轨道的x、y、z坐标3分量在观测数据覆盖范围内的精度在100 m之内.同样地对Jason-1卫星作数据分析,结果和Ajisai卫星精度相当.分析各个弧段的精度变化,发现定标星个数减少,会导致天文定位精度下降.据此提出可以把最少定标星比例作为评定数据质量的参考指标之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号