首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yuzuru  Yamamoto  Shunsuke  Kawakami 《Island Arc》2005,14(2):178-198
Abstract   The structure, paleomagnetism and biostratigraphy of the Nishizaki and Kagamigaura formations on the southern Boso Peninsula, central Japan, were investigated to determine the chronographic constraints on the accretion, post-Late Miocene rotation and regional tectonics in the Izu–Bonin island arc collision zone. The geological structures on the southern Boso Peninsula are characterized by an east–west trending and south-verging fold and thrust belt that curves toward the northwest–southeast in the northwest extent of the Nishizaki Formation. Two stages of tectonic rotation were revealed by paleomagnetic and structural studies. The first is believed to have occurred after the accretion of the Nishizaki Formation and before the deposition of the Kagamigaura Formation, while the second is confidently correlated with the 1 Ma Izu block collision. The northwest extent of the Nishizaki Formation was rotated clockwise by approximately 65–80°, whereas the rotation was only 25–30° in the east, and 11–13° in the overlying Kagamigaura Formation. Radiolarian biostratigraphy suggests a depositional age of 9.9–6.8 Ma (Upper Miocene period) for the Nishizaki Formation and 4.19-3.75 Ma (Pliocene period) for the lower Kagamigaura Formation. These results indicate that the age of accretion and first-stage rotation of the Nishizaki Formation can be constrained to the interval of 6.80–3.75 Ma. This structure most likely represents the northward bending caused by collisions of the Tanzawa and Izu blocks with the Honshu island arc, and suggests rapid processes of accretion, collision, uplift and the formation of new sedimentary basins within a relatively short period of time (2.61–3.05 my).  相似文献   

2.
Ryota  Mori  Yujiro  Ogawa 《Island Arc》2005,14(4):571-581
Abstract   Structures developed in metamorphic and plutonic blocks that occur as knockers in the Mineoka Ophiolite Belt in the Boso Peninsula, central Japan, were analyzed. The aim was to understand the incorporation processes of blocks of metamorphic and plutonic rocks with an arc signature into the serpentinite mélange of the Mineoka Ophiolite Belt in relation to changes in metamorphic conditions during emplacement. Several stages of deformation during retrogressive metamorphism were identified: the first faulting stage had two substage shearing events (mylonitization) under ductile conditions inside the crystalline blocks in relatively deeper levels; and the second stage had brittle faulting and brecciation along the boundaries between the host serpentinite bodies in relatively shallower levels (zeolite facies). The first deformation occurred during uplift before emplacement. The blocks were intensively sheared by the first deformation event, and developed numerous shear planes with spacing of a few centimeters. The displacement and width of each shear plane were a few centimeters and a few millimeters, respectively, at most. In contrast, the fault zone of the second shearing stage reached a few meters in width and developed during emplacement of the Mineoka Ophiolite. Both stages occurred under a right-lateral transpressional regime, in which thrust-faulting was associated with strike-slip faulting. Such displacement on an outcrop scale is consistent with the present tectonics of the Mineoka Belt. This implies that the same tectonic stress has been operating in the Boso trench–trench–trench-type triple junction area in the northwest corner of the Pacific since the emplacement of the Mineoka Ophiolite. The Mineoka Ophiolite Belt must have worked as a forearc sliver fault during the formation of a Neogene accretionary prism further south.  相似文献   

3.
Late Cenozoic formations in Boso and Miura have been affected by several tectonic events. Tectonic analysis enables us to reconstruct six different paleostress types: (1) early extension affecting the Oligocene/early Miocene Mineoka Group, (2) and (3), relatively minor compressional and extensional events probably early Pliocene in age, (4) major NNE-SSW compression dominating prior to 2 or 3 Ma ago, and (5) and (6) more recent major NNW-SSE compression to the west and WNW-ESE extension to the east, both types affecting the Pleistocene and prevailing since 1–2 Ma ago. The counterclockwise change from NNE-SSW to NNW-SSE compression is not accurately dated, but very likely occurred between 2 and 3 Ma ago; it is compared to similar evolutions in other areas of the Izu collision zone. We conclude that it corresponds to a major counterclockwise change in the direction of plate convergence (from SSE-NNW to SE-NW). The relationships between the directions of convergence and the distributions of Plio-Quaternary compressional paleostresses in and around the collision zone are described through a simple analogy, for the two stages of Plio-Quaternary collision. This counterclockwise change in stress fields and relative motions, also described in the Taiwan collision zone along the same Philippine Sea plate-Eurasia boundary, is interpreted as a major event at the scale of the plate. The possible significances of the other paleostress types identified in Boso are discussed. We conclude that tectonic analysis in and along collision boundaries provides a key for understanding kinematic evolution.  相似文献   

4.
INTAE  LEE & YUJIRO  OGAWA 《Island Arc》1998,7(3):315-329
Sedimentary structures in the middle–late Miocene to early Pliocene Misaki Formation, Miura Group, Miura Peninsula, Central Japan, were studied, and paleocurrent data were interpreted as the result of deep-sea bottom-current flow. These current data were further compared with present-day bottom currents in the northwestern Pacific region. The Misaki Formation is thought to be a forearc deposit within the Izu oceanic arc, and is composed of thick volcaniclastic beds interbedded with siliceous biogenic clayey sediments. Sedimentary structures showing paleocurrent directions are involved in the upper part of the volcaniclastic beds, in the pumiceous beds just above the volcaniclastic beds, and in the pelagic sediments. Based on paleomagnetic data suggesting considerable rotation of the beds, all the current directions were reconstructed to their original orientation. The paleocurrents are summarized into the following three groups. The first group in the volcaniclastic beds indicates southeast-directed paleocurrent directions. The second group in the upper parts of volcaniclastic beds and in some pumiceous beds exhibits a southwest- and northeast-directed paleoflow. The third group usually observed in the pumiceous beds with parallel lamination displays a northwest- or southeast-directed paleocurrent. The origin of each group's paleoflow direction is attributed to turbidity current, internal tidal current, and contour current influences, respectively. Present-day observations of the deep-sea northwest Pacific suggest that most of the bottom-current indicators in the Misaki Formation are related to North Pacific Deep Water, possibly Antarctic Bottom Water as well as a combination of tidal and local effects. It is concluded that the beds of the Misaki Formation were deposited in the proto-Sagami basin ca 9 Ma and were formed under weak bottom currents in a wide and flat basin during colder climatic conditions, whereas the beds dated at ca 6 Ma were deposited under strong bottom-current flow, and were then accreted to the Honshu arc.  相似文献   

5.
A magnetic anomaly map of the northern part of the Philippine Sea plate shows two conspicuous north–south rows of long-wavelength anomalies over the Izu–Ogasawara (Bonin) arc, which are slightly oblique to the present volcanic front. These anomalies are enhanced on reduced-to-pole and upward-continued anomaly maps. The east row is associated with frontal arc highs (the Shinkurose Ridge), and the west row is accompanied by the Nishi-Shichito Ridge. Another belt of long-wavelength anomalies very similar to the former two occurs over the Kyushu–Palau Ridge. To explain the similarity of the magnetic anomalies, it is proposed that after the spreading of the Shikoku Basin separated the Izu–Ogasawara arc from the Kyushu–Palau Ridge, another rifting event occurred in the Miocene, which divided the Izu–Ogasawara arc into the Nishi-Shichito and Shinkurose ridges. The occurrence of Miocene rifting has also been suggested from the geology of the collision zone of the Izu–Ogasawara arc against the Southwest Japan arc: the Misaka terrain yields peculiar volcanic rocks suggesting back-arc rifting at ~ 15 Ma. The magnetic anomaly belts over the Izu–Ogasawara arc do not extend south beyond the Sofugan Tectonic Line, suggesting a difference in tectonic history between the northern and southern parts of the Izu–Ogasawara arc. It is estimated that the Miocene extension was directed northeast–southwest, utilizing normal faults originally formed during Oligocene rifting. The direction is close to the final stage of the Shikoku Basin spreading. On a gravity anomaly relief map, northeast–southwest lineaments can be recognized in the Shikoku Basin as well as over the Nishi-Shichito Ridge. We thus consider that lines of structural weakness connected transform faults of the Shikoku Basin spreading system and the transfer faults of the Miocene Izu–Ogasawara arc rifting. Volcanism on the Nishi-Shichito Ridge has continued along the lines of weakness, which could have caused the en echelon arrangement of the volcanoes.  相似文献   

6.
Erratum     
The Philippine Sea at 5 m.y. B.P has been reconstructed by the following process. Firstly, it was rotated rigidly relative to the Eurasian plate around the pole of rotation at 45.5°N, 150. 2°E with a rotation angle of 6.0° for the past 5 m.y. Secondly, the evolution and deformation along the plate boundaries were incorporated in the rigid rotation. This reconstruction suggests: (1) the Izu Peninsula, which was originally a volcanic island of the Izu-Bonin Arc, collided with central Honshu in a west-northwest direction a few million years B.P.; (2) a TTT(a)-type triple junction east of Honshu has migrated west-northwestward relative to the Eurasian plate; and (3) the subduction zone of the Pacific plate, beneath the central part of the Mariana Arc, has remained fixed relative to Eurasia. Westward motion of the Philippine Sea plate and subduction beneath the eastern Eurasian margin resulted in the opening of the Marian Trough.  相似文献   

7.
Abstract The Miura Group (Miocene-Pliocene) of south-central Japan shows a number of unique lithological and structural features. The group is composed of volcanic arc-derived marine sediments, and those in the south of the Mineoka Tectonic Belt particularly show various kinds of complex structures such as layer-parallel faults, thrust duplexes, imbricate thrusts and vein structures, yet the degree of compaction of the sediments is still remarkably low. These structures involve deformations at a very early stage and at shallow depths. They arose shortly after sedimentation within the Izu fore arc, and continued during accretion to the Honshu fore arc. The deformational stages are classified here into three stages, the first comprises bedding-parallel faulting associated with gravitational sliding and sediment injection. The first vein structures formed during this stage in the Izu fore arc area. These structures are cut by features developed during the second and third stages: especially thrusting, including duplex and imbricate thrusts. This horizontal shortening occurred during the accretionary prism formation on the subduction plate boundary. The second vein structures formed during this stage in the accretionary prism formation. The origin of the vein structures was discussed both by field observation and laboratory experiments. The latter suggests earthquake origin and the formative process is explained in relation to the field evidence.  相似文献   

8.
The Taishu Group, a marine formation with a thickness of >5400 m, crops out on Tsushima Island, located in the southwestern Japan Sea. The group, which is generally regarded as early Eocene to early Miocene in age, provides important information about the tectonic setting of the Japan Sea. In this study, we present new SHRIMP U–Pb dates for igneous zircons from the Kunehama Tuff, which is in the basal part of the Taishu Group, and the Oobaura Tuff, which is in the uppermost part of the group. Results show that the Taishu Group was deposited rapidly, during the short interval of 17.9–15.9 Ma (early–middle Miocene), and is equivalent to other early–middle Miocene strata found in the Japan Sea region. Our results provide new constraints on the geological history of the Japan Sea and its islands.  相似文献   

9.
Analysis of seismic anisotropy in the crust and mantle wedge above subduction zones gives much information about the dynamic processes inside the Earth. For this reason, we measure shear wave polarization anisotropy in the crust and upper mantle beneath central and southwestern Japan from local shallow, intermediate, and deep earthquakes occurring in the subducting Pacific slab. We analyze S phases from 198 earthquakes recorded at 42 Japanese F-net broadband seismic stations. This data set yields a total of 980 splitting parameter pairs for central and southwestern Japan. Dominant fast polarization directions of shear waves obtained at most stations in the Kanto–Izu–Tokai areas are oriented WNW–ESE, which are sub-parallel to the subduction direction of the Pacific plate. However, minor fast polarization directions are oriented in NNE–SSW directions being parallel to the strike of the Japan Trench, especially in the north of Izu Peninsula and the northern Tokai district. Generally, fast directions obtained at stations located in Kii Peninsula and the Chubu district are oriented ENE–WSW, almost parallel to the Nankai Trough, although some fast directions have NW–SE trends. The fast directions obtained at stations in northern central Honshu are oriented N–S. Delay times vary considerably and range from 0.1 to 1.25 s depending on the source depth and the degree of anisotropy along the ray path. These lateral variations in splitting character suggest that the nature of anisotropy is quite different between the studied areas. Beneath Kanto–Tokai, the observed WNW–ESE fast directions are probably caused by the olivine A-fabric induced by the corner flow. However, the slab morphology in this region is relatively complicated as the Philippine Sea slab is overriding the Pacific slab. This complex tectonic setting may induce lateral heterogeneity in the flow and stress state of the mantle wedge, and may have produced NNE–SSW orientations of fast directions. The ENE–WSW fast directions in Kii Peninsula and the Chubu district are more coherent and may be partly induced by the subduction of the Philippine Sea plate. The N–S fast directions in northern central Honshu might be produced by the trench-parallel stretching of the wedge due to the curved slab at the arc–arc junction.  相似文献   

10.
In order to clarify the ultra low frequency (ULF) seismo-magnetic phenomena, a sensitive geomagnetic network has been installed in Kanto, Japan. In this study, we have analyzed geomagnetic data observed during the past decade in Izu and Boso Peninsulas. Energy of ULF geomagnetic signals at the frequency around 0.01 Hz has been investigated by wavelet transform analysis. To identify anomalous changes in ionospheric disturbances, the station Memabutsu has been chosen as a reference station. Case studies of magnitude 6 class earthquakes have demonstrated that there are unusual geomagnetic energy enhancements in the vertical component before the main shocks. Statistical studies by superposed epoch analysis have indicated that, before a sizeable earthquake, there are clearly higher probabilities of ULF anomalies than after the earthquake: statistical results of daily counts were found significant at about 3–4 weeks before, 1 week before, few days before, and 1 day after the event for Seikoshi station in Izu and around 2 weeks before, few days before, and 1 day after the event for Kiyosumi station in Boso, respectively.  相似文献   

11.
12.
WONN  SOH  KAZUO  NAKAYAMA & TAKU  KIMURA 《Island Arc》1998,7(3):330-341
The Pleistocene Ashigara Basin and adjacent Tanzawa Mountains, Izu collision zone, central Japan, are examined to better understand the development of an arc–arc orogeny, where the Izu–Bonin – Mariana (IBM) arc collides with the Honshu Arc. Three tectonic phases were identified based on the geohistory of the Ashigara Basin and the denudation history of the Tanzawa Mountains. In phase I, the IBM arc collided with the Honshu Arc along the Kannawa Fault. The Ashigara Basin formed as a trench basin, filled mainly by thin-bedded turbidites derived from the Tanzawa Mountains together with pyroclastics. The Ashigara Basin subsided at a rate of 1.7 mm/year, and the denudation rate of the Tanzawa Mountains was 1.1 mm/year. The onset of Ashigara Basin Formation is likely to be older than 2.2 Ma, interpreted as the onset of collision along the Kannawa Fault. Significant tectonic disruption due to the arc–arc collision took place in phase II, ranging from 1.1 to 0.7 Ma in age. The Ashigara Basin subsided abruptly (4.6 mm/year) and the accumulation rate increased to approximately 10 times that of phase I. Simultaneously, the Tanzawa Mountains were abruptly uplifted. A tremendous volume of coarse-grained detritus was provided from the Tanzawa Mountains and deposited in the Ashigara Basin as a slope-type fan delta. In phase III, 0.7–0.5 Ma, the entire Ashigara Basin was uplifted at a rate of 3.6 mm/year. This uplift was most likely caused by isostatic rebound resulting from stacking of IBM arc crust along the Kannawa Fault which is not active as the decollement fault by this time. The evolution of the Ashigara Basin and adjacent Tanzawa Mountains shows a series of the development of the arc–arc collision; from the subduction of the IBM arc beneath the Honshu Arc to the accretion of IBM arc crust onto Honshu. Arc–arc collision is not the collision between the hard crusts (massif) like a continent–continent collision, but crustal stacking of the subducting IBM arc beneath the Honshu Arc intercalated with very thick trench fill deposits.  相似文献   

13.
Abstract Apatite and zircon fission track ages from Ryoke Belt basement in northeast Kyushu show late Cretaceous, middle to late Eocene, middle Miocene and Quaternary groupings. The basement cooled through 240 ± 25°C, the closure temperature for fission tracks in zircon, mainly during the interval 74-90 Ma as a result of uplift and denudation, the pattern being uniform across northeast Kyushu. In combination with published K-Ar ages and the Turonian-Santonian age of sedimentation in the Onogawa Basin, active suturing along the Median Tectonic Line from 100-80 Ma, at least, is inferred. Ryoke Belt rocks along the northern margin of Hohi volcanic zone (HVZ) cooled rapidly through ∼100°C to less than 50°C during the middle Eocene to Oligocene, associated with 2.5-3.5 km of denudation. The timing of this cooling follows peak heating in the Eocene-Oligocene part (Murotohanto subbelt) of the Shimanto Belt in Muroto Peninsula (Shikoku) inferred previously, and coincides with the 43 Ma change in convergence direction of the Pacific-Eurasian plate and the demise of the Kula-Pacific spreading centre. Ryoke Belt rocks along the southern margin of HVZ have weighted mean apatite fission track ages of 15.3 ± 3.1 Ma. These reset ages are attributed to an increase in geothermal gradient in the middle Miocene combined with rapid denudation and uplift of at least 1.4 km. These ages indicate that heating of the overriding plate associated with the middle Miocene start of subduction of hot Shikoku Basin lithosphere extended into the Ryoke Belt in northeast Kyushu. Pleistocene apatite fission track ages from Ryoke Belt granites at depth in the centre of HVZ are due to modern annealing in a geothermal environment.  相似文献   

14.
Takehiko  Suzuki  Dennis  Eden  Toru  Danhara  Osamu  Fujiwara 《Island Arc》2005,14(4):666-678
Abstract A Middle Pleistocene widespread tephra referred to here as Hakkoda–Kokumoto Tephra (Hkd–Ku) has been newly recognized. Hkd–Ku, derived from the Hakkoda Caldera located in northernmost Honshu Is. of northeast Japan, covers much of Honshu Is. At the type locality in the proximal area, Hkd–Ku comprises Plinian pumice deposits and an immediately overlying ignimbrite. The fine vitric ash nature of the distal ash‐fall deposits of Hkd–Ku suggests that they are coignimbrite ash‐fall deposits. Hkd–Ku was identified using a combination of refractive indices and chemical compositions of major, trace and rare earth elements of glass shards, heavy mineral content, refractive indices of orthopyroxene and paleomagnetic polarity. On the basis of these properties, Hkd–Ku was identified in Oga and Boso Peninsulas and Osaka Plain, 830 km southwest of the source. Stratigraphic positions in Boso Peninsula and Osaka Plain within marine sediments that have a reliable chronology based on oxygen‐isotope, and litho‐, bio‐, magneto‐ and tephrostratigraphy indicate that the age of Hkd–Ku is ca 760 ka, positioned in the transition between marine oxygen‐isotope stages 19.1 and 18.4. The widespread occurrence of Hkd–Ku providing a tie line between many different Pleistocene sections over a distance of 800 km is a key marker horizon in the early part of the Middle Pleistocene. This tephra gives a time control point of ca 760 ka to marine sediments in the Oga Peninsula – where no datum plane exists between the Brunhes–Matuyama chron boundary and oxygen‐isotope stage 12 – and to the volcanostratigraphy of the Hakkoda Caldera. The distribution of Hkd–Ku showing emplacement of coignimbrite ash‐fall deposits in the area 830 km southwest of the source emphasizes the upwind transport direction, relative to the prevailing westerly winds, typical of other coignimbrite ash‐fall deposits in the Japanese islands.  相似文献   

15.
The Japanese archipelago underwent two arc–arc collisions during the Neogene. Southwest Honshu arc collided with the Izu‐Bonin‐Mariana arc and the northeast Honshu arc collided with the Chishima arc. The complicated geological structure of the South Fossa Magna region has been attributed to the collision between the Izu‐Bonin‐Mariana arc and the southwest Honshu arc. Understanding the geotectonic evolution of this tectonically active region is crucial for delineating the Neogene tectonics of the Japanese archipelago. Many intrusive granitoids occur around the Kofu basin, in the South Fossa Magna region. Although the igneous ages of these granitoids have been mainly estimated through biotite and hornblende K–Ar dating, here, we perform U–Pb dating of zircon to determine the igneous ages more precisely. In most cases, the secondary post‐magmatic overprint on the zircon U–Pb system was minor. Based on our results, we identify four groups of U–Pb ages: ca 15.5 Ma, ca 13 Ma, ca 10.5 Ma, and ca 4 Ma. The Tsuburai pluton belongs to the first group, and its age suggests that the granite formation within the Izu‐Bonin‐Mariana arc dates back to at least 15.5 Ma. The granitoids of the second group intruded into the boundary between the Honshu arc and the ancient Izu‐Bonin‐Mariana arc, suggesting that the arc–arc collision started by ca 13 Ma. As in the case of the Kaikomagatake pluton, the Chino pluton likely corresponds to a granodiorite formed in a rear‐arc setting in parallel with the other granodiorites of the third group. The U–Pb age of the Kogarasu pluton, which belongs to the fourth group, is the same as those of the Tanzawa tonalitic plutons. This might support a syncollisional rapid granitic magma formation in the South Fossa Magna region.  相似文献   

16.
One of the more prominent architectural elements of the Nankai subduction margin, offshore southwest Japan, is an out‐of‐sequence thrust fault (megasplay) that separates the inner accretionary prism from the outer prism. The inner prism (hanging wall of the megasplay) is dominated by mudstone, which is enigmatic when the sedimentary facies is compared to coeval deposits in the Shikoku Basin (i.e. inputs from the subducting Philippine Sea plate) and to coarser‐grained turbidite sequences from the Quaternary trench wedge. Clay mineral assemblages amplify the mismatches of sedimentary facies. Mudstones from the inner prism are uniformly depleted in smectite, with average bulk values of 23–24 wt%, whereas the Shikoku Basin deposits show progressive decreases in proportions of smectite over time, from averages of 46–48 wt% at 10 Ma to 17–21 wt% at 1 Ma. Plate‐boundary reconstructions for the Philippine Sea region provide one solution to the conundrum. Between 15 Ma and 10 Ma, the Pacific plate subducted near the NanTroSEIZE transect, and a trench‐trench‐trench triple junction migrated to the northeast. Accretion during that period involved sediments that had been deposited on the Pacific plate. Motion of the Philippine Sea plate changed from 10 Ma to 6 Ma, resulting in sinistral slip along the proto‐Nankai Trough. Sediments accreted during that period probably had been deposited near the triple junction, with a hybrid detrital provenance. Renewed subduction of the Philippine Sea plate at 6 Ma led to reorganization of watersheds near the Izu–Honshu collision zone and gradual incision of large submarine canyons on both sides of the colliding Izu arc. Accreted Pliocene mudstones share more of an affinity to the triple junction paleoenvironment than they do to Shikoku Basin. These differences between subducting Shikoku Basin strata and accreted Pacific plate sediments have important implications for interpretations of frictional properties, structural architecture, and diagenetic fluid production.  相似文献   

17.
Abstract   The present paper describes the newly discovered early Miocene unconformity in the northern Noto Peninsula, on the Japan Sea side, central Japan. The unconformity marks the boundary between an early Miocene non-marine to marine succession and a more extensive, late early to early middle Miocene marine succession, and contains a time gap of an order of 1 million years or less from 18 Ma or earlier to 17 Ma. The early Miocene succession likely represents an early phase of marine transgression and initial slow rifting. The overlying early to early middle Miocene succession records the climax of the opening of the Japan Sea at ca  16 Ma with widespread, rapid subsidence of the Japan Arc. The unconformity between the two transgressive successions may represent a global sealevel fall or, more likely, crustal uplifting because no upward-shallowing or regressive facies remains between the two successions. Early Miocene unconformities that are thought to be correlative with this unconformity in the northern Noto Peninsula occur in places along the Japan Sea coast of Sakhalin and Japan. They are likely to have been produced during rifting in response to upwelling of asthenospheric mantle, although more accurate age constraints are necessary to evaluate this idea.  相似文献   

18.
I suggest that earthquake precursors can be divided into two major categories, physical and tectonic. I define physical precursor to be a direct or indirect indication of initiation or progression of an irreversible rupture-generating physical process within the preparation zone of a forthcoming earthquake. Tectonic precursor is defined as a manifestation of tectonic movement which takes place outside the preparation zone of an impending earthquake as a link in a chain of particular local tectonism in each individual area preceding the earthquake.Most intermediate-term, short-term and immediate precursors of various disciplines within the source regions of main shocks are considered physical ones. Some precursory crustal deformations around the source regions are, however, possibly tectonic precursors, because they may be caused by episodic plate motions or resultant block movements in the neighboring regions of the fault segments that will break. A possible example of this phenomena is the anomalous crustal uplift in the Izu Peninsula, Japan, before the 1978 Izu-Oshima earthquake ofM s 6.8. Some precursory changes in seismicity patterns in wide areas surrounding source regions also seem to be tectonic precursors, because they were probably caused by the particular tectonic setting of each region. A typical example is a so-called doughnut pattern before the 1923 Kanto, Japan, earthquake ofM s 8.2.Although most studies on earthquake precursors so far seem to regard implicitly all precursory phenomena observed as physical ones, the two categories should be distinguished carefully when statistical analysis or physical modeling is carried out based on reported precursory phenomena. In active plate boundary zones, where a practical strategy for earthquake prediction may well be different from that in intraplate regions, tectonic precursors can be powerful additional tools for intermediate-term earthquake prediction.  相似文献   

19.
During the late Miocene (~5.5 Ma), a large-scale submarine slide with an area of approximately 18000 km2 and a maximum thickness of 930 m formed in the deep-water region of the Qiongdongnan Basin. The large-scale submarine slide has obvious features in seismic profile, with normal faults in the proximal region, escarpments at the lateral boundary, and a pronounced shear surface at the base. The internal seismic reflections are chaotic and enclosed by parallel and sub-parallel seismic events. The main direction of sediment transport was from south to north and the main sediment source was the southern region of the Qiongdongnan Basin, which is located in the east of the Indo-China Peninsula and the north of the Guangle uplift. In this region, late Miocene strike-slip reversal of the Red River Fault, uplift and increased erosion of the Indo-China Peninsula, and an abrupt rise in the rate of deposition in the western part of the South China Sea provided the basic conditions and triggering mechanism for the large-scale submarine slide. The discovery of the large-scale submarine slide provides sedimentological evidence for the tectonic event of late Miocene strike-slip reversal of the Red River Fault. It can also be inferred that the greatest tectonic activity during the process of the Red River Fault reversal occurred at ~5.5 Ma from the age of top surface of the submarine slide.  相似文献   

20.
We present field and core observations, nannofossil biostratigraphy, and stable oxygen isotope fluctuations in foraminiferal tests to describe the geology and to construct an age model of the Lower Pleistocene Nojima, Ofuna, and Koshiba Formations (in ascending order) of the middle Kazusa Group, a forearc basin‐fill succession, exposed on the northern Miura Peninsula on the Pacific side of central Japan. In the study area, the Nojima Formation is composed of sandy mudstone and alternating sandy mudstone and mudstone, the Ofuna Formation of massive mudstone, and the Koshiba Formation of sandy mudstone, muddy sandstone, and sandstone. The Kazusa Group contains many tuff beds that are characteristic of forearc deposits. Thirty‐six of those tuff beds have characteristic lithologies and stratigraphic positions that allow them to be traced over considerable distances. Examination of calcareous nannofossils revealed three nannofossil datum planes in the sequences: datum 10 (first appearance of large Gephyrocapsa), datum 11 (first appearance of Gephyrocapsa oceanica), and datum 12 (first appearance of Gephyrocapsa caribbeanica). Stable oxygen isotope data from the tests of the planktonic foraminifer Globorotalia inflata extracted from cores were measured to identify the stratigraphic fluctuations of oxygen isotope ratios that are controlled by glacial–interglacial cycles. The observed fluctuations were assigned to marine isotope stages (MISs) 49–61 on the basis of correlations of the fluctuations with nannofossil datum planes. Using the age model obtained, we estimated the ages of 24 tuff beds. Among these, the SKT‐11 and SKT‐12 tuff beds have been correlated with the Kd25 and Kd24 tuff beds, respectively, of the Kiwada Formation on the Boso Peninsula. The Kd25 and Kd24 tuff beds are widely recognized in Pleistocene strata in Japan. We used our age model to date SKT‐11 at 1573 ka and SKT‐12 at 1543 ka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号