首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diversity theory predicts that species numbers should be highest at intermediate levels of both disturbance and environmental stress. We examined woody and herbaceous plant species richness and cover in the San Pedro River flood plain, along lateral gradients of water availability (ground-water depth), flood disturbance (inundation frequency), and distance from and elevation above the channel, and along longitudinal gradients of water availability (ground-water depth, surface flow permanence, and rainfall) and flood disturbance (total stream power). Herbaceous species were recorded during four sampling periods, and spatial patterns for this group were time-dependent, reflecting temporal variation in limiting factors. During the summer dry season of a dry year, when overall richness was low, richness and cover of herbaceous species declined laterally from the stream channel with increasing ground-water depth, consistent with the idea that low resource levels can limit species richness. Following the summer monsoon rains and floods, when water was less limiting and annuals were seasonally abundant, lateral patterns shifted such that herbaceous species richness and cover increased with increasing plot location above or from the channel. The relationship of herbaceous species richness with tree canopy cover also varied seasonally, shifting from positive (greater richness under canopy) in dry seasons to negative (lesser richness under canopy) in wet seasons. Longitudinally, herbaceous species richness and cover were limited primarily by stream flow and/or ground-water availability during the summer dry season of a dry year. Following the summer monsoon rains and floods, patterns were weighted by the seasonally abundant annuals, and richness increased among sites primarily with distance upstream (and related rainfall gradients). Richness and cover patterns also varied between years with different flood conditions. During the two sampling seasons in the year following a large flood, herbaceous species richness increased with flood disturbance intensity but declined at the few most intensely disturbed sites, consistent with intermediate disturbance theory.For woody species, richness within plant functional groups varied in opposing ways along the lateral gradients: hydromesic pioneer species decreased and hydromesic and xeric competitors increased with distance from or above the channel, with no overall change in species richness. Among sites, woody species richness patterns were related to water availability, but not to flood disturbance. However, richness of woody hydromesic pioneer species increased with both increasing site moisture and flood disturbance. Woody and herbaceous species richness both increased among sites as a function of increasing flood-plain width, likely due to species–area effects. Overall, results indicate that flood disturbance and water availability both influence species richness of riparian plants in the flood plain of this semi-arid region river, with the relative influence of each factor varying among plant groups and over time.  相似文献   

2.
Plant communities on semi-arid floodplains are ecologically important and support a diverse local and regional fauna and often pastoral economies. Water resource development may affect these communities and economies by decreasing water supply; determining the nature of these relationships is not straightforward because of the complex nature of plant responses to wetting and possible interactions with other drivers. We investigate the effects of reduced wetting on vegetation by examining spatial patterns in plant communities and above-ground herbaceous plant biomass across a flood frequency gradient, geomorphic settings and grazing exclosures. Community and biomass changes were also examined over time in relation to wetting events. The results demonstrate the importance of wetting on plant communities across timescales. At longer timescales, flood frequency influences community composition; at shorter timescales, wetting increase plant biomass and has a secondary influence on community composition. Plant biomass is also influenced in the short-term by grazing, but there is little influence of grazing on community composition. Soil nutrients do not vary systematically across the floodplain and have little influence on species distributions. We conclude that reduced water availability due to water resource development will result in reduced productivity in the short-term and community composition changes in the long-term.  相似文献   

3.
Floodplains are multi-state systems in which vegetation distribution is associated with the presence or absence of water as a resource. Less is known about the associations between the presence and absence of water and vegetation productivity. We examined patterns of vegetation productivity in a large (10 519 km2) unconfined floodplain during flood, rain and dry resource states. Mosaics of vegetation greenness were derived at two scales using the Normalized Difference Vegetation Index: a whole-of-landscape scale and a geomorphic unit scale with a riparian and floodplain unit. The NDVI was also calculated within a-priori vegetation community types within the floodplain. In all resource states over 50% of the floodplain showed no discernible vegetation greenness. When water is added as rain or flooding vegetation greenness increases, but the highest greenness occurs in the flood state. Trees situated in the riparian geomorphic unit maintain greenness during the dry resource state, whereas grasses situated in the floodplain contribute greenness during rain and flood resource states, with the highest greenness in the flood resource state. Aligned with views that dryland floodplains are boom-bust ecosystems, we suggest that flooding is a fundamental driver of vegetation productivity in this unconfined floodplain, contributing functional heterogeneity to the landscape.  相似文献   

4.
In Mediterranean ecosystems, fire influences plant population dynamics and changes plant community structure by affecting germination and establishment of seeder shrubs. Fabiana imbricata is a long-lived seeder shrub with a broad distribution in South America. In Northwestern Patagonia grasslands there are many records of F. imbricata recruitment after fires. We hypothesized that recruitment is promoted by: 1) soil erosion that exposes deeply buried seeds; 2) direct fire effects such as heat that could break seed dormancy; 3) indirect fire effects (i.e. increase of light availability and elimination of allelopathic substances) and 4) water availability in spring. In field conditions, we tested the effects of shading and soil disturbance on F. imbricata recruitment and seed availability and distribution in the soil profile. Under controlled conditions, we investigated the influence of leaf leachate, light, heat and water on seed germination and seedling emergence. Seed germination was inhibited by leachate, and seedling emergence was inhibited by seed heated to 80 °C and 120° for 5 min. F. imbricata seedlings only emerged in germination treatments that simulated wet and very wet spring conditions. Fire and postfire wind that favor seed exposure, combined with high precipitation early in the growing season, would be necessary for successful shrub recruitment. When F. imbricata shrubland colonizes the grassland, it strongly modifies local vegetation structure, reduces species richness and increases fuel loads. F. imbricata is a key species in the ecosystem specially related to fire regime. Information on the postfire regeneration of this species would provide valuable knowledge of the changes in biomass accumulation in a fire-prone Mediterranean ecosystem.  相似文献   

5.
Root depth influences plant distribution and function but has been little studied in dryland riparian zones. Using values from literature and excavations, this study examined rooting patterns for 125 riparian species of southwestern USA and asked if maximum root depth varies with 1) moisture affinity, 2) growth habit, 3) flowering season, and 4) exotic vs. native status. Root depth varied with all factors analyzed. Hydroriparian species had shallower roots than mesoriparian and xeroriparian species. Annuals had shallower roots than perennials, and shrubs had deeper roots than trees. Hydroriparian perennials and cool-season annuals had the shallowest roots; xeroriparian shrubs had the deepest. Plants varied widely in root depth as well as in root length (near surface laterals) and root:shoot ratios. This wide range is typical of ecosystems that have many water sources, with each rooting pattern being adaptive in a different hydrogeomorphic setting. Exotic species showed trait divergence as evidenced by greater rooting depths. There were many data gaps, with several species having no rooting data. There is a need for site-based studies of rooting patterns in dryland riparian zones to more accurately document hydrogeomorphic niches and predict changes in plant distributions.  相似文献   

6.
黄河下游河滨湿地不同草本植物群落物种多样性研究   总被引:3,自引:0,他引:3  
暖温带河滨湿地植被以草本植物群落为主。以黄河下游河滨湿地的河漫滩和背河洼地的15个草本植物群落为调查对象,研究河滨湿地不同草本植物群落的组成及多样性。结果表明,15个草本植物群落中共有31科73属94种植物,包括2科蕨类植物门植物和29科被子植物门植物,其中,禾本科植物最多(12属17种);丰富度最高的是狗尾草(Setaria viridis)群落;15个草本植物群落的Shannon-wiener指数介于0.22~2.07之间,人工群落荷花(Nelumbo nucifera)的Shannon-wiener指数最低,仅0.22,而另一人工群落水稻(Oryza sativa)的Shan-non-wiener指数却最大,达到2.07;典型湿地植物群落的Pielou均匀度指数较高,如扁秆藨草(Scirpus planiculmis)、芦苇(Phragmites australis)、水烛(Typha angustifolia)群落的Pielou均匀度指数都大于0.6;Simpson多样性指数最高的是荷花群落,而最低的是水稻群落;15个群落中,多样性指数、丰富度、均匀度指数和优势度指数在各群落间存在显著的差异;河滨湿地自然草本植物群落的Shannon-wiener指数、物种丰富度、Pielou均匀度指数均高于人工草本植物群落,而Simpson多样性指数则是前者低于后者,但人工草本植物群落与自然草本植物群落间4个多样性指数的差异并不明显。  相似文献   

7.
The climatic controls on decomposition rates have gained considerable interest in recent years because of a perceived risk that elevated global temperatures could lead to positive green house gas feedbacks from soil ecosystems. Previous relationships between decomposition rates and abiotic variables like temperature and moisture have been proved confounding, particularly for dryland ecosystems. Decomposition rates of two grass species, Pseudoroegneria spicata (Pursh) Á. Löve and Calamagrostis rubescens Buckley, which represent dominant understory cover at either end of a semi-arid grassland to forest ecocline near Kamloops, British Columbia, Canada, were measured. Despite differences in %N and C:N, decomposition rates between the two species were similar. Elevation was strongly correlated with rate of decomposition for both species. We provide evidence of a positive correlation of water availability and a negative correlation of temperature on decomposition rates along the elevational ecocline. Decomposition rates were higher during the wetter spring period than during summer, at higher elevations and in more mesic ecosystems. We found no ‘home-field’ advantage for P. spicata and C. rubescens on decomposition rates. Our results provide evidence that available moisture is an important control on decomposition rates in dryland ecosystems.  相似文献   

8.
ABSTRACT. Biodiversity varies considerably in Southern Californian riparian vegetation. The intermediate disturbance hypothesis posits greatest diversity in settings that are subject to moderate-intensity disturbance. Flood intensity tends to vary systematically in watersheds, potentially imposing patterns of biodiversity. In two study watersheds, species richness increases with flood severity. Diversity, or heterogeneity, is less predictable: Biodiversity patterns in these watersheds are complicated by atypical patterns of flood severity. Although riparian diversity may be intimately dependent on flood disturbance, the relationship is predictable only with due attention to the physiographic details of individual stream networks.  相似文献   

9.
Invasive plant species are a growing concern in many regions of the world, yet little information is available on the effects of habitat type and distance to urban settlements on the ability of alien plants to become established. We studied plant communities from the arid steppes to the Andean forest within two national parks and surroundings, in northwestern Patagonia, Argentina. Alien and native vascular plant species were sampled using 90 × 100 m2 plots and analyzed in relation to both climatic and environmental variables and distance to urban centres. We also compared life-forms of alien and native species. Precipitation and distance to an urban centre were important determinants of alien species community richness and composition, and shrubland sites had significantly more alien species than forest or steppe sites. Alien flora (15% of the species) was composed of a higher proportion of annuals and biennials than native flora. Our results suggest that precipitation, distance to source population, and anthropogenic disturbance influence the invasion process in this region, together with the availability of open niches. This work stresses the importance of monitoring invasive species in natural reserves, and of considering habitat types as well as idiosyncratic characteristics of the non-natives for developing management strategies.  相似文献   

10.
Undeniably Kelantan is one of the east coast states of Malaysia,which has faced yearly flooding catastrophe especially during north-east-monsoon season.The aims of this study are to record the land uses from upstream to downstream of Kelantan River basin,and to record the riparian vegetation that are resistance and susceptible to flood situations in affected areas along the bank of Kelantan River after December 2014 when the worst flood was recorded for decades.A serial of surveys were conducted at 9 sampling sites(S1 to S9)from the upstream to the downstream in the basin.The massive clearing in the forest in the basin particularly in the upper streams was a serious problem.Heavy loads of sedimentations greatly affected the hydrological system of Kelantan River.There were 64 plant species were recorded in this study.Most sampling sites were submerged and most of the riparian plants survived although the flood levels reached 10 m.On the other hand,some commercial tree species such as Elaeis guenensis,Lansium parasiticum and Nephelium lappaceum could not thrive in flooding conditions.It should be noted that the populations of noxious,such as Mimosa pigra and Piper aduncum had colonized most parts of riparian zones.Perhaps due to the disturbances of catchment and riparian vegetations,the river water regimes have been transformed.Therefore,the ecological assessments and socio-economic approaches were recommended in order to mitigate the flood situation.  相似文献   

11.
Severe erosion, initiated by climatic changes during the Late Pleistocene-Early Holocene period and resultant declines in dust deposition, causes the formation of waterfalls during the winter floods in many wadi systems in the central Negev desert of Israel. In some areas, erosion of the original loess substrate has been complete, so that the underlying rock has been exposed. We examined the effects of this erosion in four wadis in the central Negev desert on soil nutrients, plant community structure and plant quality. We predicted that erosion has caused reductions in soil nutrients. Reductions in soil nutrients should result in reductions in plant cover. Furthermore, reduced soil nutrient availability should cause reductions in the nutrient status and quality of the plants growing there. In addition to the loss of biodiversity that may result, this erosion may result in economic hardship for the Bedouin peoples whose herds depend on these resources. In this study, there were significant negative effects of erosion on soil organic carbon, nitrate nitrogen and water-holding capacity, but not on soil phosphorus, conductivity or pH. Furthermore, there was a negative effect of soil erosion on an overall measure of soil quality derived from a principal components analysis in three of the four wadis we studied. Erosion resulted in an increase in plant species richness and significantly altered plant community structure in eroded areas of wadis. Increased plant species richness in eroded sites is consistent with the intermediate disturbance hypothesis of plant community structure. Plants growing in eroded areas did not differ in two quality indices (nitrogen content and digestibility), although plants typical of eroded areas had significantly lower levels of common digestion inhibitors (total polyphenols) and toxins (alkaloids) than plants from undisturbed sites. These last-mentioned results are contrary to our prediction and are consistent with the notion that plants growing in disturbed (e.g. eroded) sites maximize growth at the expense of investments in defense.  相似文献   

12.
Remote-sensing models have become increasingly popular for identifying, characterizing, monitoring, and predicting avian habitat but have largely focused on single bird species. The Normalized Difference Vegetation Index (NDVI) has been shown to positively correlate with avian abundance and richness and has been successfully applied to southwestern riparian systems which are uniquely composed of narrow bands of vegetation in an otherwise dry landscape. Desert riparian ecosystems are important breeding and stopover sites for many bird species but have been degraded due to altered hydrology and land management practices. Here we investigated the use of NDVI, coupled with vegetation, to model the avian community structure along the San Pedro River, Arizona. We also investigated how vegetation and physical features measured locally compared to those data that can be gathered through remote-sensing. We found that NDVI has statistically significant relationships with both avian abundance and species richness, although is better applied at the individual species level. However, the amount of variation explained by even our best models was quite low, suggesting that NDVI habitat models may not presently be an accurate tool for extensive modeling of avian communities. We suggest additional studies in other watersheds to increase our understanding of these bird/NDVI relationships.  相似文献   

13.
Ecosystems worldwide are subject to the deleterious effects of multiple anthropogenic stressors. Understanding and mitigating the effects of these stressors is difficult both because stressors are confounded in space and have the potential to act both synergistically and antagonistically. Palaeoecological approaches applied to systems where stressors may be confounded in space but not in time offer a way to explore the effects of multiple stressors. This multi-proxy study of sediment records from four floodplain lakes (billabongs) on a dryland river floodplain subject to grazing, commencing in the late 1800s, and irrigated cropping, commencing in the late 1900s, tests this approach. The results suggest that the effects of both grazing and irrigation on floodplain ecosystems can be detected in the pollen and diatoms preserved in sedimentary records of billabongs. For the pollen, these changes are inconsistent, but appear to reflect local shifts in dominance among major tree taxa and among key understorey plant families. For the diatoms, the changes were also not consistent across sites, but can be generalised as reductions in epiphytic diatoms and increases in planktonic and facultative planktonic taxa that likely reflect increased fluxes of sediments and nutrients and reduced flood frequency. Overall, the effects of grazing appear to have been greater than irrigated cropping. The results also show that the relative effects of grazing and irrigated cropping on floodplain and riparian vegetation and on diatom communities vary between billabongs, with some evidence that at least some of this variation relates to the level of hydrological connection to the mainstream. Finally, the study suggests that for the most part, grazing and irrigated cropping act antagonistically in the way they impact these floodplain ecosystems, a pattern that likely reflects a release from grazing pressure associated with the increase in irrigated cropping. Future applications of the approach should increase spatial and temporal replication and develop more sophisticated frameworks that account for temporal variation in driver intensity and proxy indicators of the specific stressors that influence ecosystem structure and function.  相似文献   

14.
旅游干扰对马仑亚高山草甸植物物种多样性的影响   总被引:5,自引:0,他引:5  
在野外样带调查的基础上,以物种重要值为综合指标,分析了不同旅游干扰程度对马仑亚高山草甸植物物种多样性指数、丰富度指数和均匀度指数的影响效应及变化规律。结果表明:(1)随旅游干扰强度降低,马仑亚高山草甸的优势种披针苔草和珠芽蓼的重要值逐渐增大,而广生态幅植物蒲公英重要值却呈降低趋势。(2)中等强度的旅游干扰所形成的生境,既不会使群落种类组成有明显的变更,同时也不会抑制优势种群在群落中的重要性,从而有利于群落植物物种多样性的发展。(3)6条样带之间的群落差异系数随旅游干扰强度减弱而降小,样带1~6之间的相异性表现为逐渐递减的势态。旅游干扰强度超过了群落的自恢复能力,就会导致群落性质完全改变。上述结果为亚高山草甸旅游业的合理开发,生态环境保护和植物物种多样性保育提供了较高的理论参考和科学决策依据。  相似文献   

15.
荒漠河岸植被的受损过程与受损机理分析   总被引:9,自引:0,他引:9  
以塔里木河多年平均地下水位数据为依据,将地下水位划分为6个环境梯度,各梯度上6次重复采集植被样地数据。从物种多样性、植被盖度与群落类型等几方面分析了植被的受损过程,以及导致此过程的受损机理。结果表明:(1) 草本植物丰富度受损发生在地下水埋深大于4 m,而木本植物丰富度受损发生在地下水埋深大于8 m。(2) 植被盖度减少始于草本植物盖度受损,与群落多样性受损的临界地下水位相同,发生在地下水埋深大于4 m;在地下水埋深大于6 m之后,植被盖度不断减少则是由木本植物盖度的减少所引起。(3) 群落类型受损体现在芦苇群落和胡杨林群落的结构与类型变化上,芦苇群落的衰退演变出现了优势种的更替,而胡杨林群落中优势种的优势地位没有变化。(4) 此受损过程是由荒漠河岸生态系统脆弱的生态基质和外界干扰共同作用的结果,起因于人口的增加、需求的增长。植被退化是人类干扰作用于植被赖以生存的环境主导因子所致。在生态受损过程中,植物功能型差异与所承受的干扰强度差异对植被退化的程度有一定影响。  相似文献   

16.
The structure and functioning of semi-arid ecosystems are strongly influenced by precipitation patterns. Water availability in such environments is highly pulsed, and discrete rainfall events interspersed with drought periods are important components of the annual water supply. Plant communities do not only respond to rainfall quantity, but also to variations in time, so that relatively small changes in rainfall frequency (i.e., pulsed inputs) may have strong effects on communities. Within the Mediterranean basin, climate change models forecast a decrease in mean annual precipitation and more extreme events (i.e., less rainy days and longer drought periods between events), along with seasonal changes. However, little is known on the consequences of these future precipitation changes on plant communities, especially in semi-arid environments. Here, we summarize the few experiments that have manipulated rainfall patterns in arid and semi-arid areas worldwide, and introduce the first results of a pioneer, long-term rainfall exclusion in the semi-arid southeast region of the Iberian Peninsula. The experiment is not only manipulating the amount of rainfall, but also its frequency and seasonal distribution in a grassland-shrubland in the Tabernas desert (Almería, Spain). This work monitored the effect of precipitation changes on different ecosystem processes for five years, at the species and community level, concluding that this plant community (as other communities studied in the same area) exhibited great resilience to changes in rainfall availability, likely caused by plant adaptation to large intra- and inter-annual precipitation variability.  相似文献   

17.
The typical patchy structure of dryland vegetation is a result of soil–plant feedbacks occurring in water-limited areas. The resilience of dryland ecosystems depends largely on the persistence of fertility islands associated with vegetated patches, which determines the efficiency of the vegetation regarding recolonising the gaps that result from disturbances. In this study, we investigated the mechanisms underlying soil–plant interactions throughout the process of the growth and senescence of alpha grass (Macrochloa tenacissima) and the subsequent disintegration of islands of fertility and microtopography formed during the process at two nearby alpha grass communities exhibiting different degrees of development. The life cycle of alpha grass and the rise and disintegration of the underlying microrelief were accompanied by feedback changes in the content of soil C fractions presenting different times of cycling and incorporation to the soil, the collection of particles from splash erosion, redistribution phenomena related to particles of different sizes, and erosion of the most easily erodible materials. Despite their ecological and geographical proximity, the study sites differ with respect to the persistence, after plant death, of fertility islands, which almost disappear in one case, while they remain in the other, constituting a resource for the growth of new plants and resulting in greater development and resilience in the community. A subtle erodibility threshold emerges as a cause of the considerable differences in vegetation between the two sites.  相似文献   

18.
Mycorrhizas are worldwide symbiotic associations established between certain soil fungi and most vascular plants and are fundamental in optimizing plant fitness and soil quality. Mycorrhizal symbioses improve the resilience of plant communities against environment stresses, including nutrient deficiency, drought and soil disturbance. Since these stresses are paramount in the degradation of semi-arid ecosystems in the SE Spain, a series of basic, strategic and applied studies have been made to ascertain how the activity and diversity of mycorrhizal fungi affect plant community composition, structure and dynamics in this region. These investigations are reviewed here in terms of: (i) analysing the diversity of mycorrhizal fungi; (ii) assessing the ecological and functional interactions among plant communities and their associated mycorrhizal fungal populations; and (iii) using mycorrhizal inoculation technology for the restoration of degraded semi-arid areas in Southeast Spain. Disturbance of the target semi-arid ecosystems decreases the density and diversity of mycorrhizal fungust populations. Nevertheless, the mycorrhizal propagules do not disappear completely suggesting a certain degree of stress adaptation, and these remaining, resilient ecotypes are being used as plant inoculants. Numerous field experiments, using plant species from the natural succession inoculated with a community of indigenous mycorrhizal fungi, have been carried out in revegetation projects in the semi-arid Iberian Southeast. This management strategy improved both plant development and soil quality, and is a successful biotechnological tool to aid the restoration of self-sustaining ecosystems. However, despite a 20-year history of this work, we lack a comprehensive view of the mycorrhizal potential to improve the composition, diversity, structure and functionality of drought-adapted plant communities in the Region.  相似文献   

19.
The allocation of water for environmental purposes is a key management issue in many dryland regions. Many different methods have been developed for determining environmental water requirements but these are not directly applicable to dryland rivers because of inherent flow and habitat variability. An ecosystem approach for determining environmental water allocations in dryland regions is presented in this paper. This four-step process involves (1) a hierarchical characterisation of the river system, to assess what mesohabitats are present and where they are located; (2) the determination of flows that would inundate these habitats and perform other key ecological processes; (3) hydrological analyses in which the key hydrological signatures of the river are identified and the impact of water resource development on these is determined; and (4) the derivation of a water management decision tree that enables managers to allocate water to consumptive users during individual flood pulses (events). It is recommended that the flood pulse should be the focus for environmental flow management in dryland regions. If rivers are indeed nested hierarchies, then a change in hydrological behaviour at the scale of a flood pulse will, with time, extend throughout the hydrological hierarchy. Current environmental flow management strategies in dryland river systems are essentially focused at the flow regime and history scale; this is inappropriate given the inherent flow variability of these systems. The ecosystem approach is outlined for the Condamine-Balonne River, a large dryland system in Australia.  相似文献   

20.
We studied current recruitment failure of Dobera glabra, an important famine-food throughout the dryland parts of the Horn of Africa. The species has previously been found to have recalcitrant seeds, a strategy not common for plants in dryland areas. We experimentally tested (1) how germination capacity of D. glabra is affected by seed form, storage period and moisture under nursery conditions, and (2) how seed predation by vertebrate herbivore and seed exposure at germination site affect germination under field conditions in northern Afar rangelands, Ethiopia. D. glabra seeds that received either mulching or supplementary watering (3 days/week) had a higher germination success than controls. The seeds are probably desiccation sensitive since stored seeds had poor germination performance compared to fresh seeds. Seeds in the rangeland plots protected from herbivores had significantly higher germination success compared to open plots. Our findings demonstrate that seed predation and moisture limitation highly reduced the germinability of the recalcitrant D. glabra seeds, indicating that the species might have persisted due to past wetter periods and low herbivore density in dry environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号