首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Large-area coastal exposure and impact analysis has focussed on using sea-level rise (SLR) scenarios and has placed little emphasis on socioeconomic scenarios, while neglecting spatial variations of population dynamics. We use the Dynamic Interactive Vulnerability Assessment (DIVA) Framework to assess the population exposed to 1 in 100-year coastal flood events under different population scenarios, that are consistent with the shared socioeconomic pathways (SSPs); and different SLR scenarios, derived from the representative concentration pathways (RCPs); and analyse the effect of accounting for regionalised population dynamics on population exposure until 2100. In a reference approach, we use homogeneous population growth on national level. In the regionalisation approaches, we test existing spatially explicit projections that also account for urbanisation, coastal migration and urban sprawl. Our results show that projected global exposure in 2100 ranges from 100 million to 260 million, depending on the combination of SLR and population scenarios and method used for regionalising the population projections. The assessed exposure based on the regionalised approaches is higher than that derived from the reference approach by up to 60 million people (39%). Accounting for urbanisation and coastal migration leads to an increase in exposure, whereas considering urban sprawl leads to lower exposure. Differences between the reference and the regionalised approaches increase with higher SLR. The regionalised approaches show highest exposure under SSP5 over most of the twenty-first century, although total population in SSP5 is the second lowest overall. All methods project the largest absolute growth in exposure for Asia and relative growth for Africa.  相似文献   

2.
Exposure of developing countries to sea-level rise and storm surges   总被引:1,自引:1,他引:0  
An increase in sea surface temperature is strongly evident at all latitudes and in all oceans. The scientific evidence to date suggests that increased sea surface temperature will intensify cyclone activity and heighten storm surges. The paper assesses the exposure of (coastal) developing countries to sea-level rise and the intensification of storm surges. Geographic Information System (GIS) software is used to overlay the best available, spatially-disaggregated global data on critical exposed elements (land, population, GDP, agricultural extent and wetlands) with the inundation zones projected with heightened storm surges and a 1 m sea-level rise. Country-level results indicate a significant increase in exposure of developing countries to these climate-induced changes.  相似文献   

3.
Global sea-level rise poses a significant threat not only for coastal communities as development continues but also for national economies. This paper presents estimates of how future changes in relative sea-level rise puts coastal populations at risk, as well as affect overall GDP in the conterminous United States. We use four different sea-level rise scenarios for 2010–2100: a low-end scenario (Extended Linear Trend) a second low-end scenario based on a strong mitigative global warming pathway (Global Warming Coupling 2.6), a high-end scenario based on rising radiative forcing (Global Warming Coupling 8.5) and a plausible very high-end scenario, including accelerated ice cap melting (Global Warming Coupling 8.5+). Relative sea-level rise trends for each US state are employed to obtain more reasonable rates for these areas, as long-term rates vary considerably between the US Atlantic, Gulf and Pacific coasts because of the Glacial Isostatic Adjustment, local subsidence and sediment compaction, and other vertical land movement. Using these trends for the four scenarios reveals that the relative sea levels predicted by century's end could range – averaged over all states – from 0.2 to 2.0 m above present levels. The estimates for the amount of land inundated vary from 26,000 to 76,000 km2. Upwards of 1.8 to 7.4 million people could be at risk, and GDP could potentially decline by USD 70–289 billion. Unfortunately, there are many uncertainties associated with the impact estimates due to the limitations of the input data, especially the input elevation data. Taking this into account, even the most conservative scenario shows a significant impact for the US, emphasizing the importance of adaptation and mitigation.  相似文献   

4.
The threat of an abrupt and extreme rise in sea level is widely discussed in the media, but little understood in practise, especially the likely impacts of such a rise including a potential adaptation response. This paper explores for the first time the global impacts of extreme sea-level rise, triggered by a hypothetical collapse of the West Antarctic Ice Sheet (WAIS). As the potential contributions remain uncertain, a wide range of scenarios are explored: WAIS contributions to sea-level rise of between 0.5 and 5 m/century. Together with other business-as-usual sea-level contributions, in the worst case this gives an approximately 6-m rise of global-mean sea level from 2030 to 2130. Global exposure to extreme sea-level rise is significant: it is estimated that roughly 400 million people (or about 8% of global population) are threatened by a 5-m rise in sea level, just based on 1995 data. The coastal module within the Climate Framework for Uncertainty, Negotiation and Distribution (FUND) model is tuned with global data on coastal zone characteristics concerning population, land areas and land use, and then used for impact analysis under the extreme sea-level rise scenarios. The model considers the interaction of (dry)land loss, wetland loss, protection costs and human displacement, assuming perfect adaptation based on cost-benefit analysis. Unlike earlier analyses, response costs are represented in a non-linear manner, including a sensitivity analysis based on response costs. It is found that much of the world’s coast would be abandoned given these extreme scenarios, although according to the global model, significant lengths of the world’s coast are worth defending even in the most extreme case. This suggests that actual population displacement would be a small fraction of the potential population displacement, and is consistent with the present distribution of coastal population, which is heavily concentrated in specific areas. Hence, a partial defence can protect most of the world’s coastal population. However, protection costs rise substantially diverting large amounts of investment from other sectors, and large areas of (dry)land and coastal wetlands are still predicted to be lost. Detailed case studies of the WAIS collapse in the Netherlands, Thames Estuary and the Rhone delta suggest greater abandonment than shown by the global model, probably because the model assumes perfect implementation of coastal protection and does not account for negative feedbacks when implementation is imperfect. The significant impacts found in the global model together with the potential for greater impacts as found in the detailed case studies shows that the response to abrupt sea-level rise is worthy of further research.  相似文献   

5.
This paper describes a simulation study of some of the socio-economic consequences of a rise in sea level on Dutch society. A computer simulation model for the greenhouse problem has been developed, which tries to capture the climate change cause-effect relationship for a combination of greenhouse-gas emissions. The impact of emissions of greenhouse gases on global temperature and sea-level rise can be calculated using the model. Additionally, separate, independent modules have been implemented in order to quantify the socio-economic consequences for the Netherlands. Four consistent sets of scenarios have been developed, based on differences in economic growth, energy use, international environmental measures, etc. On the basis of these scenarios estimates are made of the costs of coastal defence and water management in the Netherlands as a result of adaptation to the impacts of sea-level rise.  相似文献   

6.
This paper uses two models to examine the direct and indirect costs of sea-level rise for Europe for a range of sea-level rise scenarios for the 2020s and 2080s: (1) the DIVA model to estimate the physical impacts of sea-level rise and the direct economic cost, including adaptation, and (2) the GTAP-EF model to assess the indirect economic implications. Without adaptation, impacts are quite significant with a large land loss and increase in the incidence of coastal flooding. By the end of the century Malta has the largest relative land loss at 12% of its total surface area, followed by Greece at 3.5% land loss. Economic losses are however larger in Poland and Germany (483 and483 and 391 million, respectively). Coastal protection is very effective in reducing these impacts and optimally undertaken leads to protection levels that are higher than 85% in the majority of European states. While the direct economic impact of sea-level rise is always negative, the final impact on countries’ economic performances estimated with the GTAP-EF model may be positive or negative. This is because factor substitution, international trade, and changes in investment patterns interact with possible positive implications. The policy insights are (1) while sea-level rise has negative and huge direct economic effects, overall effects on GDP are quite small (max −0.046% in Poland); (2) the impact of sea-level rise is not confined to the coastal zone and sea-level rise indirectly affects landlocked countries as well (Austria for instance loses −0.003% of its GDP); and (3) adaptation is crucial to keep the negative impacts of sea-level rise at an acceptable level.  相似文献   

7.
To develop improved estimates of (1) flooding due to storm surges, and (2) wetland losses due to accelerated sea-level rise, the work of Hoozemans et al. (1993) is extended to a dynamic analysis. It considers the effects of several simultaneously changing factors, including: (1) global sea-level rise and subsidence; (2) increasing coastal population; and (3) improving standards of flood defence (using GNP/capita as an “ability-to-pay” parameter). The global sea-level rise scenarios are derived from two General Circulation Model (GCM) experiments of the Hadley Centre: (1) the HadCM2 greenhouse gas only ensemble experiment and (2) the more recent HadCM3 greenhouse gas only experiment. In all cases there is a global rise in sea level of about 38 cm from 1990 to the 2080s. No other climate change is considered. Relative to an evolving reference scenario without sea-level rise, this analysis suggests that the number of people flooded by storm surge in a typical year will be more than five times higher due to sea-level rise by the 2080s. Many of these people will experience annual or more frequent flooding, suggesting that the increase in flood frequency will be more than nuisance level and some response (increased protection, migration, etc.) will be required. In absolute terms, the areas most vulnerable to flooding are the southern Mediterranean, Africa, and most particularly, South and South-east Asia where there is a concentration of low-lying populated deltas. However, the Caribbean, the Indian Ocean islands and the Pacific Ocean small islands may experience the largest relative increase in flood risk. By the 2080s, sea-level rise could cause the loss of up to 22% of the world's coastal wetlands. When combined with other losses due to direct human action, up to 70% of the world's coastal wetlands could be lost by the 2080s, although there is considerable uncertainty. Therefore, sea-level rise would reinforce other adverse trends of wetland loss. The largest losses due to sea-level rise will be around the Mediterranean and Baltic and to a lesser extent on the Atlantic coast of Central and North America and the smaller islands of the Caribbean. Collectively, these results show that a relatively small global rise in sea level could have significant adverse impacts if there is no adaptive response. Given the “commitment to sea-level rise” irrespective of any realistic future emissions policy, there is a need to start strategic planning of appropriate responses now. Given that coastal flooding and wetland loss are already important problems, such planning could have immediate benefits.  相似文献   

8.
Global exposure to river and coastal flooding: Long term trends and changes   总被引:1,自引:0,他引:1  
Flood damage modelling has traditionally been limited to the local, regional or national scale. Recent flood events, population growth and climate change concerns have increased the need for global methods with both spatial and temporal dynamics. This paper presents a first estimation of global economic exposure to both river and coastal flooding for the period 1970–2050, using two different methods for damage assessment. One method is based on population and the second is based on land-use within areas subject to 1/100 year flood events. On the basis of population density and GDP per capita, we estimate a total global exposure to river and coastal flooding of 46 trillion USD in 2010. By 2050, these numbers are projected to increase to 158 trillion USD. Using a land-use based assessment, we estimated a total flood exposure of 27 trillion USD in 2010. For 2050 we simulate a total exposure of 80 trillion USD. The largest absolute exposure changes between 1970 and 2050 are simulated in North America and Asia. In relative terms we project the largest increases in North Africa and Sub-Saharan Africa. The models also show systematically larger growth in the population living within hazard zones compared to total population growth. While the methods unveil similar overall trends in flood exposure, there are significant differences in the estimates and geographical distribution. These differences result from inherent model characteristics and the varying relationship between population density and the total urban area in the regions of analysis. We propose further research on the modelling of inundation characteristics and flood protection standards, which can complement the methodologies presented in this paper to enable the development of a global flood risk framework.  相似文献   

9.
中国城镇和乡村住房建筑地震设防水平差距较大,暴露在低设防农村与高密集城镇下的人口因此面临较高的地震风险,面向地震设防风险分析未来城乡人口及暴露特征具有重要意义。本文基于地震烈度区划图和人口-发展-环境(PDE)模型,模拟分析了5种共享社会经济路径(SSPs)情景下的未来城乡人口地震灾害时空暴露。结果表明:(1)除SSP3下城镇人口数量持续增加外,其他SSP情景下各地区城镇人口数量均先增后降,农村人口数量受城镇化影响呈持续下降趋势;(2)城镇与农村地震灾害高、较高人口暴露等级空间分布相似,集中在华北、西南与东部沿海地区;(3)相较于有设防的城镇地区,无设防农村地震人口暴露等级偏高,高暴露、较高暴露等级的数量偏多,未来城镇人口暴露等级有所上升,而农村人口暴露等级逐渐降低。  相似文献   

10.
基于RCP4.5(中等温室气体排放)情景下5个全球模式模拟结果的降尺度数据,及SSP2社会经济路径下的GDP和人口密度数据,对21世纪京津冀地区(北京、天津和河北的统称)未来2021—2040年(近期)、2046—2065年(中期)、2080—2099年(末期)的高温GDP和人口暴露度进行多模式集合预估。结果表明:未来京津冀地区热事件将增加,21世纪末期京津冀东南部平原和沿海地区的闷热事件、中部平原地区的高温事件出现频率明显增加。GDP和人口暴露度大值区主要分布在北京、天津、保定、石家庄和邯郸等经济发达、交通便利、人口聚集的城市及其周边地区。21世纪京津冀地区的GDP暴露度区域平均值持续增加,21世纪末期多年平均值约为参照时段的58.9倍;各城市的区域平均值也表现出一致增加。京津冀地区人口暴露度区域平均值在21世纪中期达到最大,为参照时段的2.3倍;北京、秦皇岛、张家口、承德和唐山人口暴露度区域平均值将持续增长,其他城市人口暴露度区域平均值在21世纪中期达到最大。GDP暴露度的变化主要取决于非线性因子,且其贡献率随时间逐渐增加,到21世纪末期可达70.9%。21世纪近期和中期人口暴露度的变化主要取决于非线性因子,气候因子在末期占主导地位。  相似文献   

11.
This paper studies the effects of mitigation and adaptation on coastal flood impacts. We focus on a scenario that stabilizes concentrations at 450 ppm-CO2-eq leading to 42 cm of global mean sea-level rise in 1995–2100 (GMSLR) and an unmitigated one leading to 63 cm of GMSLR. We also consider sensitivity scenarios reflecting increased tropical cyclone activity and a GMSLR of 126 cm. The only adaptation considered is upgrading and maintaining dikes. Under the unmitigated scenario and without adaptation, the number of people flooded reaches 168 million per year in 2100. Mitigation reduces this number by factor 1.4, adaptation by factor 461 and both options together by factor 540. The global annual flood cost (including dike upgrade cost, maintenance cost and residual damage cost) reaches US$ 210 billion per year in 2100 under the unmitigated scenario without adaptation. Mitigation reduces this number by factor 1.3, adaptation by factor 5.2 and both options together by factor 7.8. When assuming adaptation, the global annual flood cost relative to GDP falls throughout the century from about 0.06 % to 0.01–0.03 % under all scenarios including the sensitivity ones. From this perspective, adaptation to coastal flood impacts is meaningful to be widely applied irrespective of the level of mitigation. From the perspective of a some less-wealthy and small island countries, however, annual flood cost can amount to several percent of national GDP and mitigation can lower these costs significantly. We conclude that adaptation and mitigation are complimentary policies in coastal areas.  相似文献   

12.
Global warming may result in substantial sea level rise and more intense hurricanes over the next century, leading to more severe coastal flooding. Here, observed climate and sea level trends over the last century (c. 1900s to 2000s) are used to provide insight regarding future coastal inundation trends. The actual impacts of Hurricane Katrina (2005) in New Orleans are compared with the impacts of a similar hypothetical hurricane occurring c. 1900. Estimated regional sea level rise since 1900 of 0.75 m, which contains a dominant land subsidence contribution (0.57 m), serves as a ‘prototype’ for future climate-change induced sea level rise in other regions. Landform conditions c. 1900 were estimated by changing frictional resistance based on expected additional wetlands at lower sea levels. Surge simulations suggest that flood elevations would have been 15 to 60 % lower c. 1900 than the conditions observed in 2005. This drastic change suggests that significantly more flood damage occurred in 2005 than would have occurred if sea level and climate conditions had been like those c. 1900. We further show that, in New Orleans, sea level rise dominates surge-induced flooding changes, not only by increasing mean sea level, but also by leading to decreased wetland area. Together, these effects enable larger surges. Projecting forward, future global sea level changes of the magnitude examined here are expected to lead to increased flooding in coastal regions, even if the storm climate is unchanged. Such flooding increases in densely populated areas would presumably lead to more widespread destruction.  相似文献   

13.
Global GDP projections for the 21st century are needed for the exploration of long-term global environmental problems, in particular climate change. Greenhouse gas emissions as well as climate change mitigation and adaption capacities strongly depend on growth of per capita income. However, long-term economic projections are highly uncertain. This paper provides five new long-term economic scenarios as part of the newly developed shared socio-economic pathways (SSPs) which represent a set of widely diverging narratives. A method of GDP scenario building is presented that is based on assumptions about technological progress, and human and physical capital formation as major drivers of long-term GDP per capita growth. The impact of these drivers differs significantly between different shared socio-economic pathways and is traced back to the underlying narratives and the associated population and education scenarios. In a highly fragmented world, technological and knowledge spillovers are low. Hence, the growth impact of technological progress and human capital is comparatively low, and per capita income diverges between world regions. These factors play a much larger role in globalization scenarios, leading to higher economic growth and stronger convergence between world regions. At the global average, per capita GDP is projected to grow annually in a range between 1.0% (SSP3) and 2.8% (SSP5) from 2010 to 2100. While this covers a large portion of variety in future global economic growth projections, plausible lower and higher growth projections may still be conceivable. The GDP projections are put into the context of historic patterns of economic growth (stylized facts), and their sensitivity to key assumptions is explored.  相似文献   

14.
We made projections of relative sea-level rise, horizontal inundation, and the associated impacts on people and infrastructure in the coastal portion of the Mid- and Upper-Atlantic Region (MUAR) of the United States. The output of five global climate models (GCMs) run under two greenhouse gas scenarios was used in combination with tide gauge observations to project sea-level increases ranging from 200 to 900 mm by 2100, depending on location, GCM and scenario. The range mainly reflects equal contributions of spatial variability (due to subsidence) and GCM uncertainty, with a smaller fraction of the range due to scenario uncertainty. We evaluated 30-m Digital Elevation Models (DEMs) using 10-m DEMs and LIDAR data at five locations in the MUAR. We found average RMS differences of 0.3 m with the 10-m DEMs and 1.2 m with the LIDAR data, much lower than the reported mean RMS errors of 7 m for the 30-m DEMs. Using the 30-m DEMs, the GCM- and scenario-means of projected sea-level rise, and local subsidence estimates, we estimated a total inundation of 2,600 km2 for the MUAR by 2100. Inundation area increases to 3,800 km2 at high tide if we incorporate local tidal ranges in the analysis. About 510,000 people and 1,000 km of road lie within this area. Inundation area per length of coastline generally increases to south, where relative sea-level rise is greater and relief is smaller. More economically developed states, such as New York and New Jersey, have the largest number of people and infrastructure exposed to risk of inundation due to sea-level rise.  相似文献   

15.
The current global geographic distribution of malaria results from a complex interaction between climatic and non-climatic factors. Over the past century, socio-economic development and public health measures have contributed to a marked contraction in the distribution of malaria. Previous assessments of the potential impact of global changes on malaria have not quantified the effects of non-climate factors. In this paper, we describe an empirical model of the past, present and future-potential geographic distribution of malaria which incorporates both the effects of climate change and of socio-economic development. A logistic regression model using temperature, precipitation and gross domestic product per capita (GDPpc) identifies the recent global geographic distribution of malaria with high accuracy (sensitivity 85% and specificity 95%). Empirically, climate factors have a substantial effect on malaria transmission in countries where GDPpc is currently less than US$20,000. Using projections of future climate, GDPpc and population consistent with the IPCC A1B scenario, we estimate the potential future population living in areas where malaria can be transmitted in 2030 and 2050. In 2050, the projected population at risk is approximately 5.2 billion when considering climatic effects only, 1.95 billion when considering the combined effects of GDP and climate, and 1.74 billion when considering GDP effects only. Under the A1B scenario, we project that climate change has much weaker effects on malaria than GDPpc increase. This outcome is, however, dependent on optimistic estimates of continued socioeconomic development. Even then, climate change has important effects on the projected distribution of malaria, leading to an increase of over 200 million in the projected population at risk.  相似文献   

16.
广东省台风灾害风险综合评估   总被引:6,自引:3,他引:6  
利用1951—2010年的台风数据和2010年人口及统计数据,结合国内灾害系统理论和国外通用风险评估公式,对广东省各市台风灾害风险进行评估,并应用GIS技术分析各个指标的分级分布情况。通过建立台风路径缓冲区,并根据计算灾次比的方法评估台风灾害的危险性;利用各市总人口数和生产总值表示暴露程度,选取5个指标分别表征人口和社会资产两种承灾体的敏感性;再结合暴露度和敏感性得到承灾体脆弱性指标;最终由灾害危险性和承灾体脆弱性两项指标综合计算出广东省各市的台风灾害风险性。结果表明:台风对广东省的影响程度总体上呈现出沿海向内陆递减的趋势,粤西沿海台风危险性最高;广州、湛江人口暴露度最高,广州、深圳社会经济资产暴露度最高;人口敏感性指数等级高的城市人口总抚养比值高、女性所占人口比值高、人均可支配收入相对较低,社会经济敏感性指数等级高的城市往往经济发展水平相对较低;湛江、汕尾等城市人口数目多和人口敏感性高从而人口脆弱性很高,广州、东莞等经济发达的城市虽然社会经济敏感性低,但高的暴露值导致其脆弱性值很高。根据评估结果,当前广东省台风灾害风险值最高的城市为湛江、广州和佛山。   相似文献   

17.
本文将海平面上升作为上海地面沉降防治策略研究的一个考虑因素,主要通过分析对比黄浦江外滩防汛墙沉降监测结果与工程沿线区域地面沉降监测结果,以及海平面上升对防汛墙防御能力的影响,得到区域地面沉降对防汛墙沉降作用明显、地面沉降叠加了海平面上升因素将进一步降低城市防洪(潮)排涝能力。在此基础上,提出了考虑海平面上升因素下的未来地面沉降防治策略,包括重大市政工程地面沉降监测预警机制建设、实施地面沉降分区管控、加强地下水资源开发利用管理、建立完善地面沉降监测网络等。  相似文献   

18.
Projecting twenty-first century regional sea-level changes   总被引:2,自引:0,他引:2  
We present regional sea-level projections and associated uncertainty estimates for the end of the 21 st century. We show regional projections of sea-level change resulting from changing ocean circulation, increased heat uptake and atmospheric pressure in CMIP5 climate models. These are combined with model- and observation-based regional contributions of land ice, groundwater depletion and glacial isostatic adjustment, including gravitational effects due to mass redistribution. A moderate and a warmer climate change scenario are considered, yielding a global mean sea-level rise of 0.54 ±0.19 m and 0.71 ±0.28 m respectively (mean ±1σ). Regionally however, changes reach up to 30 % higher in coastal regions along the North Atlantic Ocean and along the Antarctic Circumpolar Current, and up to 20 % higher in the subtropical and equatorial regions, confirming patterns found in previous studies. Only 50 % of the global mean value is projected for the subpolar North Atlantic Ocean, the Arctic Ocean and off the western Antarctic coast. Uncertainty estimates for each component demonstrate that the land ice contribution dominates the total uncertainty.  相似文献   

19.
Surging population associated with large-scale colonization, tropical deforestation, and industrialization in parts of Asia that constitute over 60% of the global population may lead to changes in the climate of that region. Identifying such changes is of great importance to scientists and policy makers. Concerning this, an approach is made here to assess the chemical composition in the troposphere over the region that happens to be the globe's longest belt of largest population density (LBLPD) and to assess the long term rainfall pattern of a tropical region lying along the belt of mountain ranges where an intense deforestation has been taking place on a large scale for several decades. Further, this paper reports the long term temperature and rainfall pattern of highly industriatized cities that have one of the fastest population growth rates. The tropospheric levels of CH4, CO and O3 over LBLPD are found to be remarkably higher than those over the stations lying outside the belt. The long term rainfall data of the belt of high mountain ranges shows a significant decreasing trend, whereas the data for adjacent coastal belt, which is normally the upwind side of the mountain belt, does not show any kind of trend. Surface air temperature and rainfall data for industrial cities with population greater than ten million shows a definite increasing trend whereas no trend is seen in data for adjacent non-industrialized towns.  相似文献   

20.
Flood risks of deltaic areas increase because of population growth, economic development, land subsidence and climatic changes such as sea-level rise. In this study, we analyze trends in flood exposure by combining spatially explicit historical, present, and future land-use data with detailed information on the maximum flood inundation in the Netherlands. We show that the total amount of urban area that can potentially become inundated due to floods from the sea or main rivers has increased six-fold during the 20th century, and may double again during the 21st century. Moreover, these developments took, and probably will take, place in areas with progressively higher potential inundation depths. Potential flood damage has increased exponentially over the 20th century (16 times) and is expected to continue to increase exponentially (∼ten-fold by 2100 with respect to 2000) assuming a high economic growth scenario. Flood damages increase more moderately (two- to three-fold by 2100 with respect to 2000) assuming a low growth scenario. The capacity to deal with catastrophic flood losses - expressed as the ratio damage/GDP - will, however, decrease slightly in the low growth scenario (by about 20%). This trend deviates from the historical trend of the 20th century, which shows an increasing capacity to cope with flood damage (almost doubling). Under the high growth scenario the capacity to deal with such losses eventually increases slightly (by about 25%). These findings illustrate that, despite higher projections of potential flood damage, high economic growth scenarios may not necessarily be worse than low growth scenarios in terms of the impact of floods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号