首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent observational study has shown that the southern center of the summer North Atlantic Oscillation (SNAO) was located farther eastward after the late 1970s compared to before. In this study, the cause for this phenomenon is explored. The result shows that the eastward shift of the SNAO southern center after the late 1970s is related to the variability of the Mediterranean-Black Sea (MBS) SST. A warm MBS SST can heat and moisten its overlying atmosphere, consequently producing a negative sea level pressure (SLP) departure over the MBS region. Because the MBS SST is negatively correlated with the SNAO, the negative SLP departure can enhance the eastern part of the negative-phase of the SNAO southern center, consequently producing an eastward SNAO southern center shift. Similarly, a cold MBS SST produces an eastward positive-phase SNAO southern center shift. The reason for why the MBS SST has an impact on the SNAO after the late 1970s but why it is not the case beforehand is also discussed. It is found that this instable relationship is likely to be attributed to the change of the variability of the MBS SST on the decadal time-scale. In 1951--1975, the variability of the MBS SST is quite weak, but in 1978--2002, it becomes more active. The active SST can enhance the interaction between the sea and its overlying atmosphere, thus strengthening the connection between the MBS SST and the SNAO after the late 1970s. The above observational analysis results are further confirmed by sensitivity experiments.  相似文献   

2.
In this study,physical mechanism of the impacts of the tropical Atlantic sea surface temperature(SST)on decadal change of the summer North Atlantic Oscillation(SNAO)was explored using an atmospheric general circulation model(AGCM)developed at the International Centre for Theoretical Physics(ICTP).The simulation results indicate that the decadal warming of the SST over the tropical Atlantic after the late 1970s could have significantly enhanced the convection over the region.This enhanced convection would have strengthened the local meridional circulation over the Eastern Atlantic-North Africa-Western Europe region,exciting a meridional teleconnection.This teleconnection might have brought the signal of the tropical Atlantic SST to the Extratropics,consequently activating the variability of the eastern part of the SNAO southern center,which led to an eastward shift of the SNAO southern center around the late 1970s.Such physical processes are highly consistent with the previous observations.  相似文献   

3.
Based on NCEP/NCAR reanalysis data, the interdecadal variability of Hadley circulation (HC) and its association with East Asian temperature in winter are investigated. Results indicate that the Northern Hemisphere winter HC underwent apparent change in the 1970s, with transition occurring around 1976/77. Along with interdecadal variability of HC, its linkage to surface air temperature (SAT) in East Asia also varied decadally, from weak relations to strong relations. Such a change may be related to the interaction between HC and the atmospheric circulation system over the Philippines, which is associated with the East Asian winter monsoon (EAWM). Before the 1970s, the connection between HC and the anticyclonic circulation around the Philippines was insignificant, but after the late 1970s their linkage entered a strong regime. The intensification of this connection may therefore be responsible for the strong relations between HC and East Asian winter temperatures after the late 1970s.  相似文献   

4.
Climate models predict substantial summer precipitation reductions in Europe and the Mediterranean region in the twenty-first century, but the extent to which these models correctly represent the mechanisms of summertime precipitation in this region is uncertain. Here an analysis is conducted to compare the observed and simulated impacts of the dominant large-scale driver of summer rainfall variability in Europe and the Mediterranean, the summer North Atlantic Oscillation (SNAO). The SNAO is defined as the leading mode of July–August sea level pressure variability in the North Atlantic sector. Although the SNAO is weaker and confined to northern latitudes compared to its winter counterpart, with a southern lobe located over the UK, it significantly affects precipitation in the Mediterranean, particularly Italy and the Balkans (correlations of up to 0.6). During high SNAO summers, when strong anticyclonic conditions and suppressed precipitation prevail over the UK, the Mediterranean region instead is anomalously wet. This enhanced precipitation is related to the presence of a strong upper-level trough over the Balkans—part of a hemispheric pattern of anomalies that develops in association with the SNAO—that leads to mid-level cooling and increased potential instability. Neither this downstream extension nor the surface influence of the SNAO is captured in the two CMIP3 models examined (HadCM3 and GFDL-CM2.1), with weak or non-existent correlations between the SNAO and Mediterranean precipitation. Because these models also predict a strong upward SNAO trend in the future, the error in their representation of the SNAO surface signature impacts the projected precipitation trends. In particular, the attendant increase in precipitation that, based on observations, should occur in the Mediterranean and offset some of the non-SNAO related drying does not occur. Furthermore, the fact that neither the observed SNAO nor summer precipitation in Europe/Mediterranean region exhibits any significant trend so far (for either the full century or the recent half of the record) does not increase our confidence in these model projections.  相似文献   

5.
This paper reveals that the summer North Atlantic Oscillation (SNAO) is closely related to the extreme hot event (EHE) variability in China during the period of 1979 2009, with a positive-phase (negative-phase) SNAO corresponding to less (more) EHEs in northern China. The summer circulation anomalies associated with the SNAO give further confirmation of the above relationship. In a positive-phase (negative-phase) SNAO year, there is an anomalous cyclone (anticyclone) over central East Asia, which can increase (decrease) the total cloud cover over this region. Such changes of the total cloud cover can then decrease (increase) the solar radiation reaching the surface, which is consequently unfavorable (favorable) to the formation of EHEs over northern China.  相似文献   

6.
With the twentieth century analysis data (1901–2002) for atmospheric circulation, precipitation, Palmer drought severity index, and sea surface temperature (SST), we show that the Asian-Pacific Oscillation (APO) during boreal summer is a major mode of the earth climate variation linking to global atmospheric circulation and hydroclimate anomalies, especially the Northern Hemisphere (NH) summer land monsoon. Associated with a positive APO phase are the warm troposphere over the Eurasian land and the relatively cool troposphere over the North Pacific, the North Atlantic, and the Indian Ocean. Such an amplified land–ocean thermal contrast between the Eurasian land and its adjacent oceans signifies a stronger than normal NH summer monsoon, with the strengthened southerly or southwesterly monsoon prevailing over tropical Africa, South Asia, and East Asia. A positive APO implies an enhanced summer monsoon rainfall over all major NH land monsoon regions: West Africa, South Asia, East Asia, and Mexico. Thus, APO is a sensible measure of the NH land monsoon rainfall intensity. Meanwhile, reduced precipitation appears over the arid and semiarid regions of northern Africa, the Middle East, and West Asia, manifesting the monsoon-desert coupling. On the other hand, surrounded by the cool troposphere over the North Pacific and North Atlantic, the extratropical North America has weakened low-level continental low and upper-level ridge, hence a deficient summer rainfall. Corresponding to a high APO index, the African and South Asian monsoon regions are wet and cool, the East Asian monsoon region is wet and hot, and the extratropical North America is dry and hot. Wet and dry climates correspond to wet and dry soil conditions, respectively. The APO is also associated with significant variations of SST in the entire Pacific and the extratropical North Atlantic during boreal summer, which resembles the Interdecadal Pacific Oscillation in SST. Of note is that the Pacific SST anomalies are not present throughout the year, rather, mainly occur in late spring, peak at late summer, and are nearly absent during boreal winter. The season-dependent APO–SST relationship and the origin of the APO remain elusive.  相似文献   

7.
Previous studies suggest that spring SST anomalies over the northern tropical Atlantic(NTA) affect the tropical cyclone(TC) activity over the western North Pacific(WNP) in the following summer and fall. The present study reveals that the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is not stationary. The influence of spring NTA SST on following summer–fall WNP TC genesis frequency is weak and insignificant before, but strong and significant after, the late 1980 s. Before the late 1980 s, the NTA SST anomaly-induced SST anomalies in the tropical central Pacific are weak, and the response of atmospheric circulation over the WNP is not strong. As a result, the connection between spring NTA SST and following summer–fall WNP TC genesis frequency is insignificant in the former period. In contrast,after the late 1980 s, NTA SST anomalies induce pronounced tropical central Pacific SST anomalies through an Atlantic–Pacific teleconnection. Tropical central Pacific SST anomalies further induce favorable conditions for WNP TC genesis,including vertical motion, mid-level relative humidity, and vertical zonal wind shear. Hence, the connection between NTA SST and WNP TC genesis frequency is significant in the recent period. Further analysis shows that the interdecadal change in the connection between spring NTA SST and following summer–fall WNP TC genesis frequency may be related to the climatological SST change over the NTA region.  相似文献   

8.
晚秋与后冬间欧亚遥相关型波列反相现象探究   总被引:3,自引:0,他引:3       下载免费PDF全文
围绕1979/1980—2013/2014年晚秋(11月)与后冬(次年1、2月)间欧亚遥相关(EU)型波列关系展开研究,揭示了晚秋与后冬间欧亚遥相关指数存在显著负相关,即二者主要呈反位相变化。对比晚秋与后冬间欧亚遥相关型呈反位相和同位相变化时的环流演变规律发现,反位相变化年晚秋环流异常对后冬有显著的指示意义,而同位相变化年晚秋环流异常对后冬指示意义较弱。就可能的外部成因而言,反位相与同位相变化过程均与北大西洋湍流热通量(NATU)异常有较好的对应关系。具体物理过程表现为:当北大西洋湍流热通量正(负)异常时,有利于北大西洋50°N附近上升(下沉)运动及对流层中低层水汽含量显著增多(减少),相应北大西洋上空高度场乃至整个欧亚遥相关型波列表现为负(正)异常。  相似文献   

9.
This paper examines an asymmetric spatiotemporal connection and climatic impact between the winter atmospheric blocking activity in the Euro-Atlantic sector and the life cycle of the North Atlantic Oscillation(NAO) during the period 1950–2012. Results show that, for positive NAO(NAO+) events, the instantaneous blocking(IB) frequency exhibits an enhancement along the southwest–northeast(SW–NE) direction from the eastern Atlantic to northeastern Europe(SW–NE pattern, hereafter), which is particularly evident during the NAO+decaying stage. By contrast, for negative NAO(NAO-)events, the IB frequency exhibits a spatially asymmetric southeast–northwest(SE–NW) distribution from central Europe to the North Atlantic and Greenland(SE–NW pattern, hereafter). Moreover, for NAO-(NAO+) events, the most marked decrease(increase) in the surface air temperature(SAT) in winter over northern Europe is in the decaying stage. For NAO+events, the dominant positive temperature and precipitation anomalies exhibit the SW–NE-oriented distribution from western to northeastern Europe, which is parallel to the NAO+-related blocking frequency distribution. For NAO-events, the dominant negative temperature anomaly is in northern and central Europe, whereas the dominant positive precipitation anomaly is distributed over southern Europe along the SW–NE direction. In addition, the downward infrared radiation controlled by the NAO's circulation plays a crucial role in the SAT anomaly distribution. It is further shown that the NAO's phase can act as an asymmetric impact on the European climate through producing this asymmetric spatiotemporal connection with the Euro-Atlantic IB frequency.  相似文献   

10.
In this study, the association between wintertime temperature anomalies over Northwest China and the weather regime transitions in North Atlantic on synoptic scale is analyzed by using observational surface air temperature(SAT) data and atmospheric reanalysis data. Daily SAT anomaly and duration time are used in order to define SAT anomaly cases. Differences with regard to the circulation anomalies over the Ural Mountains and the upstream North Atlantic area are evident. It is found that the colder than normal SAT is caused by the enhanced Ural high and associated southward flow over Northwest China. Time-lagged composites reveal possible connections between the SAT anomalies and the different development phases of the North Atlantic Oscillation(NAO). The Ural highs tend to be strengthened during the negative phase of NAO(NAO–) to Atlantic ridge transition, which are closely related to the downstream-propagating Rossby wave activity. The opposite circulation patterns are observed in the warm SAT cases. A cyclonic circulation anomaly is distinctly enhanced over the Urals during the positive phase of NAO(NAO+) to Scandinavian blocking transition, which would cause warmer SAT over Northwest China. Further analyses suggest that the intensified zonal wind over North Atlantic would favor the NAO– to Atlantic ridge transition, while the weakened zonal wind may be responsible for the transition between NAO+ and Scandinavian blocking.  相似文献   

11.
The authors present evidence to suggest that variations in the snow depth over the Tibetan Plateau (TP) are connected with changes of North Atlantic Oscillation (NAO) in winter (JFM). During the positive phase of NAO, the Asian subtropical westerly jet intensifies and the India-Myanmar trough deepens. Both of these processes enhance ascending motion over the TP. The intensified upward motion, together with strengthened southerlies upstream of the India-Myanmar trough, favors stronger snowfall over the TP, which is associated with East Asian tropospheric cooling in the subsequent late spring (April--May). Hence, the decadal increase of winter snow depth over the TP after the late 1970s is proposed to be an indicator of the connection between the enhanced winter NAO and late spring tropospheric cooling over East Asia.  相似文献   

12.
西伯利亚高压强度与北大西洋海温异常的关系   总被引:2,自引:0,他引:2       下载免费PDF全文
利用NCEP/NCAR再分析资料和NOAA海温等资料,采用EOF、相关分析等方法,研究了西伯利亚高压(Siberian High,SH)强度和北大西洋海表温度(SST)的变化特征,揭示了二者的联系及其时空变化。结果表明:1)冬季SH在1960s中后期开始偏弱,2003年后略增强。2)各季北大西洋SST指数(全区平均SST的标准化距平)均在1960s中期后偏低,1990s末后偏高。北大西洋海温三极子位相由正转负的时间在春冬季(1970s初)晚于夏秋季(1960s初),而后均在1990s中期后进入正位相。3)各季偏高(低)的北大西洋SST指数和海温三极子正(负)位相均有利于冬季SH偏强(弱),但前者与SH的关系更显著,且冬季最强。北大西洋北部和西南部是影响SH强度的关键区,但SH对北部SST异常的响应范围在冬季最大,而对西南部的响应范围在夏季最大。4)当冬季大西洋SST指数异常偏高时,下游激发出的罗斯贝波列使乌拉尔山高压脊加强,使SH上空负相对涡度平流增大,高层辐合和低层辐散增强,整个对流层下沉气流深厚,促使SH增强,反之亦然。  相似文献   

13.
Hai Lin  Zhiwei Wu 《Climate Dynamics》2012,39(1-2):303-311
Previous studies have shown that climate anomalies over the North Atlantic–Europe (NAE) can influence the Indian summer monsoon (ISM) variability. It is, however, still an outstanding question whether the latter has a significant impact on the former. In this study, observational evidences indicate that the interannual variability of ISM is closely linked to the climate anomalies over NAE. A strong ISM is often associated with significant above normal precipitation over most of western Europe. Meanwhile, positive surface air temperature (SAT) anomalies are usually observed over the Mediterranean, accompanied by below normal SAT in Western Europe during a strong ISM summer. The situation is just opposite during a weak ISM summer. A global primitive equation model is utilized to assess the mechanism of the above observed connection.  相似文献   

14.
Jia X.  Liu X.  Qian Q. 《大气科学》2023,(3):825-836
This work analyzes the abrupt change in summer surface air temperature (SAT) in Central Asia (CA) and its relationship with sea surface temperature (SST) in the North Atlantic and snow cover in the Qinghai Tibet Plateau between 1980 and 2019 based on NCEP/NCAR reanalysis data, CRU SAT, and snow cover and global SST data. The results reveal a significant summer SAT change in CA in 2005. The standardized regional average temperature index in CA shifts from the previous negative phase to the subsequent positive phase, indicating a significant summer SAT increase in CA. Analysis of the anomalous atmospheric circulations related to interdecadal changes in summer SAT in CA shows the abnormally enhanced anticyclonic circulation system in the west of CA after 2005. The atmospheric subsidence associated with the anomalous anticyclone can cause warming. On the other hand, the reduction in the amount of cloud caused by this anticyclone anomaly enhancement results in the increase in downward short-wave radiation and thus is favorable for the increased summer temperature in CA. Furthermore, the interdecadal summer SAT changes in CA in 2005 are closely related to SST warming in the middle and high latitudes of the North Atlantic and the reduction in snow cover in the west of the Tibet Plateau (TP). The SST increase in the middle and high latitudes of the North Atlantic can stimulate a Rossby wave propagating downstream. The reduction in snow cover in the west of the TP can cause warming to the above atmosphere through the snow albedo effect. The changes in both the North Atlantic SST and the TP snow can strengthen the anticyclone over CA, leading to an abnormally high summer SAT over there. © 2023 Science Press. All rights reserved.  相似文献   

15.
Analysis of NCEP-NCAR I reanalysis data of 1948–2009 and ECMWF ERA-40 reanalysis data of 1958–2001 reveals several significant interdecadal changes in the storm track activity and mean flow-transient eddy interaction in the extratropics of Northern Hemisphere. First, the most remarkable transition in the North Pacific storm track (PST) and the North Atlantic storm track (AST) activities during the boreal cold season (from November to March) occurred around early-to-mid 1970s with the characteristics of global intensification that has been noticed in previous studies. Second, the PST activity in midwinter underwent decadal change from a weak regime in the early 1980s to a strong regime in the late 1980s. Third, during recent decade, the PST intensity has been enhanced in early spring whereas the AST intensity has been weakened in midwinter. Finally, interdecadal change has been also noted in the relationship between the PST and AST activities and between the storm track activity and climate indices. The variability of storm track activity is well correlated with the Pacific Decadal Oscillation and North Atlantic Oscillation prior to the early 1980s, but this relationship has disappeared afterward and a significant linkage between the PST and AST activity has also been decoupled. For a better understanding of the mid-1970s’ shift in storm track activity and mean flow-transient eddy interaction, further investigation is made by analyzing local barotropic and baroclinic energetics. The intensification of global storm track activity after the mid-1970s is mainly associated with the enhancement of mean meridional temperature gradient resulting in favorable condition for baroclinic eddy growth. Consistent with the change in storm track activity, the baroclinic energy conversion is significantly increased in the North Pacific and North Atlantic. The intensification of the PST and AST activity, in turn, helps to reinforce the changes in the middle-to-upper tropospheric circulation but acts to interfere with the changes in the low-tropospheric temperature field.  相似文献   

16.
南极涛动和北半球大气环流异常的联系   总被引:5,自引:2,他引:3  
宋洁  李崇银 《大气科学》2009,33(4):847-858
使用ECMWF逐日再分析资料分析研究了北半球冬季南极涛动和北半球大气环流异常之间的联系。资料的分析结果表明, 南极涛动和滞后其25~40天位于北大西洋地区的一个弱的类似于北大西洋涛动 (North Atlantic Oscillation, 简称NAO) 的偶极子模态, 以及伴随这一偶极子模态而出现的北半球中纬度纬向风异常之间存在着统计上的联系。处于正 (负) 位相的南极涛动对应着滞后25~40天后, 北大西洋高纬极区出现位势高度负 (正) 异常, 副热带大西洋出现位势高度正 (负) 异常; 同时, 在北半球中高纬度地区(45°N~65°N) 出现西 (东) 风异常, 中低纬度地区(25°N~40°N)出现东 (西) 风异常。文中也对资料分析结果进行了简单的动力学分析, 表明与南极涛动相联系的涡动动量异常是驱动北半球纬向平均纬向风异常的主要原因。  相似文献   

17.
In the period 1960–2010, the land surface air temperature (SAT) warmed more rapidly over some regions relative to the global mean. Using a set of time-slice experiments, we highlight how different physical processes shape the regional pattern of SAT warming. The results indicate an essential role of anthropogenic forcing in regional SAT changes from the 1970s to 2000s, and show that both surface–atmosphere interactions and large-scale atmospheric circulation changes can shape regional responses to forcing. Single forcing experiments show that an increase in greenhouse gases can lead to regional changes in land surface warming in winter (DJF) due to snow-albedo feedbacks, and in summer (JJA) due to soil-moisture and cloud feedbacks. Changes in anthropogenic aerosol and precursor (AA) emissions induce large spatial variations in SAT, characterized by warming over western Europe, Eurasia, and Alaska. In western Europe, SAT warming is stronger in JJA than in DJF due to substantial increases in clear sky shortwave radiation over Europe, associated with decreases in local AA emissions since the 1980s. In Alaska, the amplified SAT warming in DJF is due to increased downward longwave radiation, which is related to increased water vapor and cloud cover. In this case, although the model was able to capture the regional pattern of SAT change, and the associated local processes, it did not simulate all processes and anomalies correctly. For the Alaskan warming, the model is seen to achieve the correct regional response in the context of a wider North Pacific anomaly that is not consistent with observations. This demonstrates the importance of model evaluation that goes beyond the target variable in detection and attribution studies.  相似文献   

18.
A strong (weak) East Asian summer monsoon (EASM) is usually concurrent with the tripole pattern of North Atlantic SST anomalies on the interannual timescale during summer, which has positive (negative) SST anomalies in the northwestern North Atlantic and negative (positive) SST anomalies in the subpolar and tropical ocean. The mechanisms responsible for this linkage are diagnosed in the present study. It is shown that a barotropic wave-train pattern occurring over the Atlantic-Eurasia region likely acts as a link between the EASM and the SST tripole during summer. This wave-train pattern is concurrent with geopotential height anomalies over the Ural Mountains, which has a substantial effect on the EASM. Diagnosis based on observations and linear dynamical model results reveals that the mechanism for maintaining the wave-train pattern involves both the anomalous diabatic heating and synoptic eddy-vorticity forcing. Since the North Atlantic SST tripole is closely coupled with the North Atlantic Oscillation (NAO), the relationships between these two factors and the EASM are also examined. It is found that the connection of the EASM with the summer SST tripole is sensitive to the meridional location of the tripole, which is characterized by large seasonal variations due to the north-south movement of the activity centers of the NAO. The SST tripole that has a strong relationship with the EASM appears to be closely coupled with the NAO in the previous spring rather than in the simultaneous summer.  相似文献   

19.
Global North Atlantic Oscillation (NAO) oceanic precipitation features in the latter half of the twentieth century are documented based on the intercomparison of multiple state-of-the-art precipitation datasets and the analysis of the NAO atmospheric circulation and SST anomalies. Most prominent precipitation anomalies occur over the ocean in the North Atlantic, where in winter a “quadrupole-like” pattern is found with centers in the western tropical Atlantic, sub-tropical Atlantic, high-latitude eastern Atlantic and over the Labrador Sea. The extent of the sub-tropical and high-latitude center and the amount of explained variance (over 50%) are quite remarkable. However, the tropical Atlantic center is probably the most intriguing feature of this pattern apparently linking the NAO with ITCZ variability. In summer, the pattern is “tripole-like” with centers in the eastern Mediterranean Sea, the North Sea/Baltic Sea and in the sub-polar Atlantic. In the eastern Indian Ocean, the correlation is positive in winter and negative in summer, with some link to ENSO variability. The sensitivity of these patterns to the choice of the NAO index is minor in winter while quite important in summer. Interannual NAO precipitation anomalies have driven similar fresh water variations in these “key” regions. In the sub-tropical and high-latitude Atlantic in winter precipitation anomalies have been roughly 15 and 10% of climatology per unit change of the NAO, respectively. Decadal changes of the NAO during the last 50 years have also influenced precipitation and fresh water flux at these time-scales, with values lower (higher) than usual in the high-latitude eastern North Atlantic (Labrador Sea) in the 1960s and the late 1970s, and an opposite situation since the early 1980s; in summer the North Sea/Baltic region has been drier than usual during the period 1965–1975 when the NAO was generally positive.  相似文献   

20.
基于1979-2016年ERA-Interim再分析资料和CAM5.3模式,研究了2016年和1998年北大西洋海温异常对中国夏季降水以及大尺度环流的可能影响及其机制。结果表明,这两年前夏(6-7月)长江中下游及其以南地区降水均异常偏多,但1998年降水异常较2016年更为显著。后夏(8月),2016年长江以南地区降水异常偏多,长江-黄河流域降水异常偏少,而1998年降水异常分布与之相反。2016年和1998年夏季中国东部降水异常的差异与西北太平洋对流层低层异常反气旋以及欧亚中高纬度环流变化的共同作用直接相关。敏感性数值试验的结果表明,北大西洋海温异常的显著差异是导致2016年和1998年夏季中国东部降水以及大尺度环流异常存在明显差异的重要原因之一。一方面,北大西洋海温异常可以通过改变欧亚中高纬度环流进而对中国夏季降水产生影响。1998年北大西洋海温异常自热带至副极地呈类似"+ - +"型分布,这种海温异常型能够在前夏欧亚中高纬度地区激发出双阻型的环流异常响应。2016年北大西洋海温异常自热带至副极地呈相对弱的"- + -"型分布,欧亚中高纬度环流异常响应总体偏弱。另一方面,北大西洋海温异常还可以通过影响热带纬向环流进而对西北太平洋对流层低层异常反气旋起调制作用。1998年北大西洋海温异常对夏季西北太平洋异常反气旋起增强作用,这与热带印度洋-太平洋海温的强迫作用相协调。然而,2016年北大西洋海温异常则有利于西北太平洋异常反气旋的减弱,这与热带印度洋-太平洋海温的强迫作用相反。因此,在这3个大洋的协同作用下,2016年和1998年前夏西北太平洋异常反气旋均偏强,但前者的振幅弱于后者。在后夏,1998年西北太平洋对流层低层仍受异常反气旋控制,2016年则为异常气旋控制。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号