首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
We review various aspects of the evolutionary history of massive X-ray binaries. It is expected that moderately massive close binaries evolve to Be X-ray binaries, while very massive systems evolve to standard X-ray binaries.The compact objects are formed through supernova explosions. The fairly low galactic latitudes of those systems indicate that the explosion should, in general, not have accelerated the system to a velocity larger than 50kms–1. This implies that the mass of the exploding stars is in general less than 5 to 6M .After the explosion, tidal forces will circularize the orbit of short period systems. Even if the tidal evolution has been completed, the expansion of the optical star during the course of its evolution will continously disturb the stability of the orbit. Short period systems with large mass ratio may eventually become tidally unstable. Cen X-3 may be an example of such a system. The predicted rate of the orbital period decrease of Cen X-3 is in agreement with the observed rate.A way to represent the rotational and magnetic evolution of neutron stars in close binary systems is presented. The observed distribution of the pulsation periods of X-ray pulsars with Be companions is consistent with initial magnetic fields of 1012–1013 G of the neutron stars. We suggest that the fast X-ray pulsars 4U 0115+63 and A 0538-66 are young neutron stars, while Cen X-3 and SMC X-1 are recycled pulsars.The evolutionary relationship between massive X-ray binaries, binary pulsars, and millisecond pulsars is also discussed.Invited paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

2.
We investigate the conditions by which neutron star retention in globular clusters is favoured. We find that neutron stars formed in massive binaries are far more likely to be retained. Such binaries are likely to then evolve into contact before encountering other stars, possibly producing a single neutron star after a common envelope phase. A large fraction of the single neutron stars in globular clusters are then likely to exchange into binaries containing moderate-mass main-sequence stars, replacing the lower-mass components of the original systems. These binaries will become intermediate-mass X-ray binaries (IMXBs), once the moderate-mass star evolves off the main sequence, as mass is transferred on to the neutron star, possibly spinning it up in the process. Such systems may be responsible for the population of millisecond pulsars (MSPs) that has been observed in globular clusters. Additionally, the period of mass-transfer (and thus X-ray visibility) in the vast majority of such systems will have occurred 5–10 Gyr ago, thus explaining the observed relative paucity of X-ray binaries today, given the MSP population.  相似文献   

3.
The Hertzsprung-Russell diagram of the Large Magellanic Cloud compiled recently by Fitzpatrick & Garmany (1990) shows that there are a number of supergiant stars immediately redward of the main sequence although theoretical models of massive stars with normal hydrogen abundance predict that the region 4.5 ≤ logT eff ≤ 4.3 should be un-populated (“gap”). Supergiants having surface enrichment of helium acquired for example from a previous phase of accretion from a binary companion, however, evolve in a way so that the evolved models and observed data are consistent — an observation first made by Tuchman & Wheeler (1990). We compare the available optical data on OB supergiants with computed evolutionary tracks of massive stars of metallicity relevant to the LMC with and without helium-enriched envelopes and conclude that a large fraction ( 60 per cent) of supergiant stars may occur in binaries. As these less evolved binaries will later evolve into massive X-ray binaries, the observed number and orbital period distribution of the latter can constrain the evolutionary scenarios of the supergiant binaries. The distributions of post main sequence binaries and closely related systems like WR + O stars are bimodal-consisting of close and wide binaries in which the latter type is numerically dominating. When the primary star explodes as a supernova leaving behind a neutron star, the system receives a kick and in some cases can lead to runaway O-stars. We calculate the expected space velocity distribution for these systems. After the second supernova explosion, the binaries in most cases, will be disrupted leading to two runaway neutron stars. In between the two explosions, the first born neutron star’s spin evolution will be affected by accretion of mass from the companion star. We determine the steady-state spin and radio luminosity distributions of single pulsars born from the massive stars under some simple assumptions. Due to their great distance, only the brightest radio pulsars may be detected in a flux-limited survey of the LMC. A small but significant number of observable single radio pulsars arising out of the disrupted massive binaries may appear in the short spin period range. Most pulsars will have a low velocity of ejection and therefore may cluster around the OB associations in the LMC.  相似文献   

4.
The evolution of high-and low-mass X-ray binaries (HMXB and LMXB) into different types of binary radio pulsars, the ‘high-mass binary pulsars’(HMBP) and ‘low-mass binary pulsars’ (LMBP) is discussed. The HMXB evolve either into Thorne-Zytkow objects or into short-period binaries consisting of a helium star plus a neutron star (or a black hole), resembling Cygnus X-3. The latter systems evolve (with or without a second common-envelope phase) into close binary pulsars, in which the companion of the pulsar may be a massive white dwarf, a neutron star or a black hole ( some final systems may also consist of two black holes). A considerable fraction of the systems may also be disrupted in the second supernova explosion. We discuss the possible reasons why the observed numbers of double neutron stars and of systems like Cyg X-3 are several orders of magnitude lower than theoretically predicted. It is argued that the observed systems form the tip of an iceberg of much larger populations of unobserved systems, some of which may become observable in the future. As to the LMBP, we consider in some detail the origins of systems with orbital periods in the range 1–20 days. We show that to explain their existence, losses of orbital angular momentum (e.g., by magnetic braking) and in a number of cases: also of mass, have to be taken into account. The masses of the low-mass white dwarf companions in these systems can be predicted accurately. We notice a clear correlation between spin period and orbital period for these systems, as well as a clear correlation between pulsar magnetic field strength and orbital period. These relations strongly suggest that increased amounts of mass accreted by the neutron stars lead to increased decay of their magnetic fields: we suggest a simple way to understand the observed value of the ‘bottom’ field strengths of a few times 108 G. Furthermore, we find that the LMBP-systems in which the pulsar has a strong magnetic field (> 1011 G) have an about two orders of magnitude larger birth rate (i.e., about 4 × 10-4 yr-1 in the Galaxy) than the systems with millisecond pulsars (which have B < 109 G). Using the observational fact that neutron stars receive a velocity kick of ∼450 km/s at birth, we find that some 90% of the potential progenitor systems of the strong-field LMBP must have been disrupted in the Supernovae in which their neutron stars were formed. Hence, the formation rate of the progenitors of the strong-field LMBP is of the same order as the galactic supernova rate (4 × 10-3 yr-1). This implies that a large fraction of all Supernovae take place in binaries with a close low-mass (< 2.3 M⊙) companion.  相似文献   

5.
I review our understanding of the evolution of the spin periods of neutron stars in binary stellar systems, from their birth as fast, spin-powered pulsars, through their middle life as accretion-powered pulsars, upto their recycling or “rebirth” as spin-powered pulsars with relatively low magnetic fields and fast rotation. I discuss how the new-born neutron star is spun down by electromagnetic and “propeller” torques, until accretion of matter from the companion star begins, and the neutron star becomes an accretion-powered X-ray pulsar. Detailed observations of massive radio pulsar binaries like PSR 1259-63 will yield valuable information about this phase of initial spindown. I indicate how the spin of the neutron star then evolves under accretion torques during the subsequent phase as an accretion-powered pulsar. Finally, I describe how the neutron star is spun up to short periods again during the subsequent phase of recycling, with the accompanying reduction in the stellar magnetic field, the origins of which are still not completely understood.  相似文献   

6.
The 1982 model for the formation of Hulse–Taylor binary radio pulsar PSR B1913+16 is described, which since has become the ‘standard model’ for the formation of the double neutron stars, confirmed by the 2003 discovery of the double pulsar system PSR J0737-3039AB. A brief overview is given of the present status of our knowledge of the double neutron stars, of which 15 systems are presently known. The binary-recycling model for the formation of millisecond pulsars is described, as put forward independently by Alpar et al. (1982), Radhakrishnan & Srinivasan (1982) and Fabian et al. (1983). This now is the ‘standard model’ for the formation of these objects, confirmed by the discovery in 1998 of the accreting millisecond X-ray pulsars. It is noticed that the formation process of close double black holes has analogies to that of close double neutron stars, extended to binaries with larger initial component masses, although there are also considerable differences in the physics of the binary evolution at these larger masses.  相似文献   

7.
By reviewing the methods of mass measurements of neutron stars in four different kinds of systems, i.e., the high-mass X-ray binaries (HMXBs), low-mass X-ray binaries (LMXBs), double neutron star systems (DNSs) and neutron star-white dwarf (NS-WD) binary systems, we have collected the orbital parameters of 40 systems. By using the boot-strap method and the Monte-Carlo method, we have rebuilt the likelihood probability curves of the measured masses of 46 neutron stars. The statistical analysis of the simulation results shows that the masses of neutron stars in the X-ray neutron star systems and those in the radio pulsar systems exhibit different distributions. Besides, the Bayes statistics of these four different kind systems yields the most-probable probability density distributions of these four kind systems to be (1.340 ± 0.230)M8, (1, 505 ± 0.125)M8,(1.335 ± 0.055)M8 and (1.495 ± 0.225)M8, respectively. It is noteworthy that the masses of neutron stars in the HMXB and DNS systems are smaller than those in the other two kind systems by approximately 0.16M8. This result is consistent with the theoretical model of the pulsar to be accelerated to the millisecond order of magnitude via accretion of approximately 0.2M8. If the HMXBs and LMXBs are respectively taken to be the precursors of the BNS and NS-WD systems, then the influence of the accretion effect on the masses of neutron stars in the HMXB systems should be exceedingly small. Their mass distributions should be very close to the initial one during the formation of neutron stars. As for the LMXB and NS-WD systems, they should have already under- gone the process of suffcient accretion, hence there arises rather large deviation from the initial mass distribution.  相似文献   

8.
The post-RLOF structure of the secondary after relaxation towards thermal equilibrium is calculated for a large grid of massive close binaries evolving through an early caseB of mass transfer. The initial primary masses range between 15 and 30M o, the initial mass ratio between 0.3 and 0.9. The possibility that matter leaves the system during RLOF is included using an additional free parameter . The calculations are based on the accretion and relaxation properties of massive accretion stars. Conclusions on the post-RLOF secondaries are presented in function of , M1i, andq i , in the form of tables and figures on the post-RLOF positions in the HR diagram, the final masses, mass ratios, chemical profiles and the remaining core-hydrogen burning lifetime. It is found that all systems starting from initial conditions in the grid specified above evolve sequentially, i.e. the primary evolves into a supernova before the end of core H burning of the secondary. No WR+WR systems are encountered. The results are used to determine the masses of ten double lined spectroscopic WR+OB binaries. Most of the WR masses are in the range 8–14M o, although the sample is subject to some important selection effects. One WR+OB binary has a WR mass between 4 and 5M o. It is argued that mass determinations based only on the spectral type of the secondary yield WR masses that are too high up to a factor two.  相似文献   

9.
Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of  ∼1100 km s−1  , which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of  106– 107 stars pc−3  . Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.  相似文献   

10.
A new sample of possibly massive early-type emission-line stars (METELS) based on the previous lists of peculiar Be stars is presented. It consists of 36 objects divided amongst supergiants, possible binaries, and candidates to the list. The central stars are probably more massive than 10M . Two new relations allowing idientification of possible binaries among the objects are proposed.  相似文献   

11.
Massive stars     
We describe the present state of massive star research seen from the viewpoint of stellar evolution, with special emphasis on close binaries. Statistics of massive close binaries are reasonably complete for the Solar neighbourhood. We defend the thesis that within our knowledge, many scientific results where the effects of binaries are not included, have an academic value, but may be far from reality. In chapter I, we summarize general observations of massive stars where we focus on the HR diagram, stellar wind mass loss rates, the stellar surface chemistry, rotation, circumstellar environments, supernovae. Close binaries can not be studied separately from single stars and vice versa. First, the evolution of single stars is discussed (chapter I). We refer to new calculations with updated stellar wind mass loss rate formalisms and conclusions are proposed resulting from a comparison with representative observations. Massive binaries are considered in chapter II. Basic processes are briefly described, i.e. the Roche lobe overflow and mass transfer, the common envelope process, the spiral-in process in binaries with extreme mass ratio, the effects of mass accretion and the merging process, the implications of the (asymmetric) supernova explosion of one of the components on the orbital parameters of the binary. Evolutionary computations of interacting close binaries are discussed and general conclusions are drawn. The enormous amount of observational data of massive binaries is summarized. We separately consider the non-evolved and evolved systems. The latter class includes the semi-detached and contact binaries, the WR binaries, the X-ray binaries, the runaways, the single and binary pulsars. A general comparison between theoretical evolution and observations is combined with a discussion of specially interesting binaries: the evolved binaries HD 163181, HD 12323, HD 14633, HD 193516, HD 25638, HD 209481, Per and Sgr; the WR+OB binary V444 Cyg; the high mass X-ray binaries Vela X-1, Wray 977, Cyg X-1; the low mass X-ray binaries Her X-1 and those with a black hole candidate; the runaway Pup, the WR+compact companion candidates Cyg X-3, HD 50896 and HD 197406. We finally propose an overall evolutionary model of massive close binaries as a function of primary mass, mass ratio and orbital period. Chapter III deals with massive star population synthesis with a realistic population of binaries. We discuss the massive close binary frequency, mass ratio and period distribution, the observations that allow to constrain possible asymmetries during the supernova explosion of a massive star. We focuss on the comparison between observed star numbers (as a function of metallicity) and theoretically predicted numbers of stellar populations in regions of continuous star formation and in starburst regions. Special attention is given to the O-type star/WR star/red supergiant star population, the pulsar and binary pulsar population, the supernova rates. Received 17 July 1998  相似文献   

12.
The pulse-period distribution of binary X-ray pulsars has been considered. A gap in this distribution, in the period rangeP10 s toP100s has been explained in terms of the character of mass transfer in the X-ray binary systems. It is shown that this gap arises because the rotating magnetised neutron stars in these systems are slowed down by accretion torques, either toP10 s when the mass transfer is by means of Roche-lobe overflow in low mass binaries, or toP100 s by stellar winds in massive binaries. The gap is maintained as the slow pulsars (P>100 s) in their spin-up phase cross the gap in a time short compared to their life-time, because of the increase in mass transfer with the evolution of the normal star.  相似文献   

13.
The results of evolutionary computations for massive binary systems (initial masses of the primary 10M ) with mass ratios between 0.3 and 0.8 are summarized and compared with observations in order to verify how far one can go with the conservative assumption of mass exchange. It is found that conservative mass exchange leads to acceptable first-order models of W-R and massive X-ray binaries. However, the comparison between this theory and observation reveals that for the observed systems (W-R and X-ray binaries) a preference exists for low intial mass ratios; moreover, the X-ray luminosities of the theoretical models are systematically too low, though this may be due to the adopted wind model. In addition, the influences of several parameters (distance between the components, chemical composition, primary mass, mass ratio and atmosphere) are examined. These parameters influence the remnant mass and any further evolution only marginally. Attention is also given to the effect on the system parameters of a supernova explosion of the remnant of the mass-losing component. For a large range of systems a disruption probability smaller than 25% is found.  相似文献   

14.
Consideration is given to a search for relativistic objects in massive close binary systems without strong X-ray emission (L x <1034 erg s–1). It is pointed out that, according to the present-day theory on the evolution of massive close binaries, the number of neutron stars and black holes in non-X-ray binary systems must be 100 times the number of the known X-ray binaries comprising OB supergiant stars; that is why, in studying non-X-ray binary systems, the chances are to detect about a hundred of black holes in the Galaxy.Criteria are formulated for the relativistic nature of companions in the binary systems, such as high spatial velocity values and height Z over the galactic plane for OB stars (runaway stars) and for Wolf-Rayet stars. As reported by Tutukov and Yungelson (1973), as well as by van den Heuvel (1976), the presence of ring-type nebulae can serve as another indication of a relativistic nature of companions in the case of Wolf-Rayet stars.Data are collected on Wolf-Rayet stars with low-mass companions (Table I), which can be relativistic objects accreting within a strong stellar wind from Wolf-Rayet stars. Presented are new findings in respect of spectral examination of the runaway OB-stars (Table II), bringing together data on eight OB stars which can represent binary systems with relativistic companions (Table III).A list of 28 OB-stars (Table IV) which offer a good chance for finding relativistic companions is given.  相似文献   

15.
The peculiar combination of a relatively short pulse period and a relatively weak surface dipole magnetic field strength of binary radio pulsars finds a consistent explanation in terms of (i) decay of the surface dipole component of neutron-star magnetic fields on a timescale of (2–5) × 106 yr, in combination with (ii) spin-up of the rotation of the neutron star during a subsequent mass-transfer phase. The four known binary radio pulsars appear to fall into two different categories. Two of them, PSR 0655 + 64 and PSR 1913 + 16, have short orbital periods (<25 h) and high mass functions, indicating companion masses 0.7M⊙ (∼1 (± 0.3) M⊙ and 1.4 M⊙, respectively). The other two, PSR 0820 + 02 and PSR 1953 + 29, have long orbital periods (117d), nearly circular orbits, and low, almost identical mass functions of about 3×10-3 M⊙, suggesting companion masses of about 0.3M⊙. It is pointed out that these two classes of systems are expected to be formed by the later evolution of binaries consisting of a neutron star and a normal companion star, in which the companion was (considerably) more massive than the neutron star, or less massive than the neutron star, respectively. In the first case the companion of the neutron star in the final system will be a massive white dwarf, in a circular orbit, or a neutron star in an eccentric orbit. In the second case the final companion to the neutron star will be a low-mass (∼ 0.3 M⊙) helium white dwarf in a wide and nearly circular orbit. In systems of the second type the neutron star was most probably formed by the accretion-induced collapse of a white dwarf. This explains in a natural way why PSR 1953 + 29 has a millisecond rotation period and PSR 0820 + 02 has not. Among the binary models proposed for the formation of the 1.5-millisecond pulsar, the only ones that appear to be viable are those in which the companion disappeared by coalescence with the neutron star. In such models the companion may have been a red dwarf of mass 0.03M⊙, a neutron star, or a massive (>0.7M⊙) white dwarf. Only in the last-mentioned case is a position of the pulsar close to the galactic plane a natural consequence. In the first-mentioned case the progenitor system most probably was a cataclysmic-variable binary in which the white dwarf collapsed by accretion.  相似文献   

16.
The evolution of close binary systems was followed for ten systems with the initial mass of the primary in the range 1–4M and with different initial mass ratios and initial separations. A brief discussion of the evolution of the contact component is presented for two separate cases: when the primary reaches its Roche lobe during central hydrogen burning (case A) and after the exhaustion of hydrogen in the center (case B).The models obtained are compared with observed semi-detached systems separately for massive (with total mass greater than 5M ) and low mass (with total mass below 4M ) binaries. It is shown that the contact components of the observed massive binaries are probably burning hydrogen in the core. On the contrary, the majority of contact components of the observed low-mass binaries are burning hydrogen in the shell. The observed distribution of such binaries as a function of different luminosity excesses of contact components seems to indicate that their origin is connected with case A rather than with case B.  相似文献   

17.
Main results of computations of evolution for massive close binaries (10M +9.4M , 16M +15M , 32M +30M , 64M +60M ) up to oxygen exhaustion in the core are described. Mass exchange starting in core hydrogen, shell hydrogen and core helium burning stages was studied. Computations were performed assuming both the Ledoux and Schwarzschild stability criteria for semiconvection. The influence of UFI-neutrino emission on evolution of close binaries was investigated. The results obtained allow to outline the following evolutionary chain: two detached Main-Sequence stars — mass exchange — Wolf-Rayet star or blue supergiant plus main sequence star — explosion of the initially more massive star appearing as a supernova event — collapsed or neutron star plus Main-Sequence star, that may be observed as a runaway star — mass exchange leading to X-rays emission — collapsed or neutron star plus WR-star or blue supergiant — second explosion of supernova that preferentially disrupts the system and gives birth to two single high spatial velocity pulsars.Numerical estimates concerning the number and properties of WR-stars, pulsars and X-ray sources are presented. The results are in favour of the existence of UFI-neutrino and of the Ledoux criterion for describing semiconvection. Properties of several well-known X-ray sources and the binary pulsar are discussed on base of evolutionary chain of close binaries.  相似文献   

18.
On the basis of the most recent data, the fraction of known Wolf-Rayet binaries is 0.22. In the solar neighbourhood (d<2.5 kpc) this fraction is 0.34In order to assess the relative importance of massive binary evolution as one of the ways to produce WR stars, the galactic distribution of WR binaries is compared with that of single WR stars using improved intrinsic parameters and new data for the fainter WR stars.In the galactic plane the increase of the binary frequency with galactocentric distance is confirmed.In a direction perpendicular to the galactic plane it is demonstrated at all distances from the Sun that the single-line spectroscopic WR binaries with small mass functions have definitely larger -distances than the single WR stars and the WR binaries with massive companions. This is consistent with the evolutionary scenario for massive binaries summarized by van den Heuvel (1976). Among the single WR stars the fraction of those with large |z|-distances is increasing with galactocentric distance, like the fraction of the known binaries. This implies that among the high-|z| single WR stars as well as among the WR stars with lower |z|-values many binaries are still to be discovered.The total WR binary frequency in the Galaxy could be well above 50%.Contribution from the Bosscha Observatory No. 79.Invited paper presented at the Lembang-Bamberg IAU Colloquium No. 80 on Double Stars: Physical Properties and Generic Relations, held at Bandung, Indonesia, 3–7 June, 1983.  相似文献   

19.
The results of investigations of a number of eclipsing Wolf-Rayet binaries are presented. The ‘core’ radiuses, the ‘core’ temperatures and masses of WR stars in the eclipsing WR+OB binary systems V 444 Cyg, CX Cep, CQ Cep, and CV Ser are obtained (see Table I). The results obtained from the light curves analysis of the V 444 Cyg in the range λλ2460 Å-3.5μ give strong evidence for the Beals (1944) model of WR phenomenon. The chromospheric-coronal effects in the WN5 extended atmosphere are not observed up to a distance ofr?20R . In the Hertzsprung—Russell diagram all the WR stars lie on the left side from the main sequence between the main sequence and the sequence of uniform helium stars (see Figure 9). Their locations are close to those of the helium remnants formed as a result of mass exchange in massive close binary systems. The period variations in the systems V 444 Cyg and CQ Cep have been discovered and a reliable value of the mass loss rateM=10?5 M yr?1 is obtained, for the two WR stars. The results of the photometric and spectroscopic investigations of the WR stars with low mass companions (post X-ray binary stage?) are presented too (see Table II). The masses of the companions are (1–2)M , their optical luminosity is ~1036, erg s?1 which implies that these companions cannot be the normal stars. It is possible that these companions are neutron stars accreting from the stellar wind of the WR stars. Low values of the X-ray luminosities of such WR stars with low mass companions imply that the accretion of matter in such systems is distinct from the accretion process in classical X-ray binary systems. It is noted also that the parameters of low massive companions coupled with WR stars are close to those of helium stars.  相似文献   

20.
The investigation of the angular momentum vs mass relation for binary stars is completed with a study of the 847 systems contained in theFourth Catalog of Orbits of Visual Binary Stars. Because bothJ andM of a visual binary depend steeply on the distance to the system (5th and 3rd powers, respectively), and many of the distances are not well known, the study makes use of an auxiliary parameterR which is independent of distance and proportional toJM –5/3.R appears to be uncorrelated withM for the 789 systems for which both can be determined. The non-correlation implies thatJ M 5/3, expected from Kepler's third law, provides a better fit to the visual binaries than doesJ M 2, predicted by some more complex considerations.The distribution functionf(q=M 2/M1) of mass ratios for the visual binaries results as a byproduct of the investigation. It peaks extremely sharply towardq=1.0 (much more so than for spectroscopic binaries). Because most visual binaries are wide enough to consist of stars that condensed independently (and so that can be thought of as chosen at random from an initial mass function), one expects the realf(q) to rise toward low ratios. Observational selection against the discovery and study of systems with large magnitude differences between the components must be very large indeed to account for the discrepancy between expectation and observation. The alternative is a mechanism for formation of wide binaries that favours equal components. The distribution of mass ratios for eclipsing binaries is given in an appendix. It peaks strongly atq=0.6–0.75 and largely reflects processes of angular momentum, mass, and energy exchange between the stars in contact systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号