首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentrations of the trace metals Cd, Cu, Fe, Ni, Pb and Zn in the Göta River estuary have been investigated. The following metal fractions have been determined: acid-leachable, dissolved, labile and particulate.The estuary represents a salt wedge type estuary and is situated in a densely populated region of Sweden. The metal concentrations found for the dissolved fraction is in the range of what can be considered as background levels for freshwater. It is difficult to evaluate any estuarine processes other than conservative mixing for Cd, Cu, Ni and Zn. The dissolved levels in the freshwater end member are Cd, 9–25 ngl?1; Cu, 1·1–1·4 μgl?1; Fe, 20–75 μg l?1: Ni, 0·7–0·9 μg l?1: Pb 0·09–0·2 μg l?1; and Zn, 6–7 μg l?1:The results from the acid-leachable fraction show that at high suspended load the particles sediment in the river mouth. The trace metal levels in this fraction are subject to large variations.  相似文献   

2.
Chesapeake Bay is a large and productive estuary that has received close scrutiny in recent years because of indications that its water quality and biota have been damaged by man's activities. Data on primary production for the estuary as a whole, however, are surprisingly sparse. We describe here the distribution of photosynthetic carbon assimilation by phytoplankton in Chesapeake Bay, and relate productivity patterns to hydrographic characteristics of the estuary. Between March 1982 and April 1983, a series of four cruises was conducted on Chesapeake Bay, and two cruises on the urbanized Delaware Bay for comparison. The upper Chesapeake and Delaware were highly turbid with high concentrations of suspended particulate matter and dissolved inorganic nutrients. Low chlorophyll concentrations were usually found in these areas of high turbidity, despite the abundance of nutrients, suggesting light limitation. Application of Wofsy's (1983) model of phytoplanton growth confirmed this suggestion. Chlorophyll and productivity maxima usually occurred seaward of the turbidity maxima where light penetration increased and suffient nutrients were present to support active phytoplankton growth. Further seaward of the chlorophyll maxima in the Chesapeake, the photic zone depth increased, concentrations of nutrients decreased, and phytoplankton biomass decreased, suggesting that nutrient availability, rather than light, controlled phytoplankton growth in the lower portion of the estuary. In contrast to the Chesapeake, Delaware Bay was more turbid, had generally higher nutrient concentrations, and was lower in phytoplankton productivity. The chlorophyll maxima and region of rapid phytoplankton growth occurred further toward the lower estuary and shelf regions in Delaware Bay because the high turbidity extended further seaward. Nutrients were never depleted at the shelf end of the estuary sufficiently to retard phytoplankton growth. Photosynthesis-irradiance (P-I) curves from simulated in situ and constant intensity incubations showed a strong correlation of the light-limited slope (aB) with the light-saturated rate ( ) on each cruise. Spatial variations in corresponded to patterns of phytoplankton abundance, as did integral production (PP) and carbon-based growth rates (μC, μm), and photosynthetic parameters varied significantly with temperature.  相似文献   

3.
To unravel the factors that regulate DOC dynamics in the freshwater tidal reaches of the Schelde estuary, DOC concentration and biodegradability were monitored in the upper Schelde estuary and its major tributaries. Although the Schelde estuary possesses a densely populated and industrialized catchment, our data suggest that the bulk of DOC in the freshwater tidal reaches is not derived from waste water. This was concluded from the low biodegradability of DOC (on average 9%), DOC concentrations that are close to the mean for European rivers (4.61 mg l−1) and the absence of an inverse relationship between DOC and discharge. Most DOC originating from waste water being discharged in tributaries of the estuary appears to be remineralised before these tributaries reach the main estuary. Although dense phytoplankton blooms were observed in the upper estuary during summer (up to 700 μg chl a l−1), these blooms did not appear to produce large quantities of DOC in the freshwater tidal reaches as DOC concentrations were low when phytoplankton biomass was high. The fact that DOC concentrations were high in winter and decreased in summer suggests a predominantly terrestrial source of DOC in the freshwater tidal reaches of the Schelde estuary.  相似文献   

4.
An investigation was made into the fate of freshwater algae in the Tamar estuary, south-west England, to examine the hypothesis that oxygen minima, observed at the freshwater-brackish water interface, were a consequence of mass mortality of freshwater algae and the subsequent oxidative degradation of the lysed cells by bacteria. The quantity and species composition of algae in the river and estuary were determined by measurements of chlorophyll and cell numbers. Phytoplankton numbers were transformed into biomass by measuring the volume of the cells and calculating the carbon content. Salinity, dissolved oxygen, turbidity, pH and temperature were also recorded. The size of the upper estuarine community was inversely related to freshwater input. During the summer months, very large populations of freshwater algae (up to 8 mg carbon l−1) were observed between 0 and 8‰ salinity, after long periods of low freshwater input. This population was completely dominated by the diatom Cyclotella atomus and was very stable with respect to changing tides, remaining in the estuary until river flow increased. Death of these algae only occurred at salinities greater than 8‰ and oxygen minima were not observed. The oxygen minima were more closely associated with the turbidity maxima than with algal mortality. There is some evidence that the oxygen depletion may be due to decreased photosynthesis as a result of the reduced light availability at the turbidity maxima.  相似文献   

5.
Nutrient and chlorophyll a concentrations and distributions in two adjoining regions of the South Atlantic Bight (SAB), Onslow Bay and nearshore Long Bay, were investigated over a 3-year period. Onslow Bay represents the northernmost region of the SAB, and receives very limited riverine influx. In contrast, Long Bay, just to the south, receives discharge from the Cape Fear River, draining the largest watershed within the State of North Carolina, USA. Northern Long Bay is a continental shelf ecosystem that has a nearshore area dominated by nutrient, turbidity and water-color loading from inputs from the river's plume. Average planktonic chlorophyll a concentrations ranged from 4.2 μg l−1 near the estuary mouth, to 3.1 μg l−1 7 km offshore in the plume's influence, to 1.9 μg l−1 at a non-plume station 7 km offshore to the northeast. Average areal planktonic chlorophyll a was approximately 3X that of benthic chlorophyll a at plume-influenced stations in Long Bay. In contrast, planktonic chlorophyll a concentrations in Onslow Bay were normally <0.50 μg l−1 at a nearshore (8 km) site, and <0.15 μg l−1 at sites located 45 and 100 km offshore. However, high water clarity (KPAR 0.10–0.25 m−1) provides a favorable environment for benthic microalgae, which were abundant both nearshore (average 58.3 mg m−2) and to at least 45 km offshore in Onslow Bay (average 70.0 mg m−2) versus average concentrations of 10–12 mg m−2 for river-influenced areas of Long Bay. This provides evidence that much of the inner shelf food web in Onslow Bay is based on benthic microalgal production, in contrast to a plankton-based food web in northern Long Bay and more southerly areas of the SAB.  相似文献   

6.
Autotrophic biomass and productivity as well as nutrient distributions and phytoplankton cell populations in the James River estuary, Virginia, were quantified both spatially and temporally over a 17-month period. Emphasis was placed on the very low salinity region of the estuary in order to gain information on the fate of freshwater phytoplankters. Differing amounts of freshwater plant biomass are advected into the estuary as living material, DOC or POC and the demonstrated variability of this input must play an important role in marine biogeochemical cycling.Late summer and fall maxima in both chlorophyll a and the photosynthetic production of particulate organic carbon in very low salinity regions were inversely correlated with river discharge.During periods of low river discharge greater than 50% of the chlorophyll a biomass measured at 0‰ disappeared within a narrow range of salinity (0–2‰). Cell enumeration data suggest that species introduced from the freshwater end-member tend to comprise the bulk of the biomass removed. Confounding factors, which may contribute to the regulation of both the abundance and species of phytoplankters mid-river, include the flocculation of colloidal material with phytoplankton cells, the presence of the turbidity maximum and the growth of endemic phytoplankton populations.An inverse relationship exists between the phytoplankton abundance in very low salinity waters and the abundance of biomass measured in the lower portion of the river (estuary). Thus, autotrophic production in the fresh and very low salinity areas may indirectly regulate the onset on the spring bloom in the estuary by controlling the amount of nutrients available.  相似文献   

7.
A modified version of the Coomassie Brilliant Blue dye binding protein assay has been developed for oceanographic samples and intercalibrated with the widely used Lowry assay. Particulate protein measurements were made at seven stations in the Gulf of Maine using the method. Measurements were made on cell-free homogenates. Protein concentration ranged from 2 to 212 μg l?1 (0.02–0.68 μg at N l?1) and averaged 58 μg l?1. ETS activity, chlorophyll and particulate nitrogen were significantly correlated with protein concentrations.  相似文献   

8.
A study of dissolved chromium in the St. Lawrence estuary and Gulf of St. Lawrence has been carried out. A chromium concentration of 0·7 μg l?1 was found in the St. Lawrence River. In the turbidity maximum of the upper estuary, chromium is removed from solution onto fine-grained resuspended sediments and internally produced organic-rich floccules. A simple flux calculation shows that these processes remove ~50% of the total dissolved chromium input of the river. At salinities greater than 5‰ dissolved chromium mixes conservatively.  相似文献   

9.
In the coastal and estuarine waters of Goa, particulate organic carbon (POC) varied from 0.52 to 2.51 mg l?1 and from 0.28 to 5.24 mg l?1 and particulate phosphorus (PP) varied from 0.71 to 5.18 μg l?1 and from 0.78 to 20.34 μg l?1, respectively. The mean values of chlorophyll and primary productivity were 1.94 mg m?3 and 938.1 mg C m?2 day?1 in the coastal waters and 4.3 mg m?3 and 636.5 mg C m?1 day?1 in the estuarine waters, respectively.POCchl ratios were low in June and October even when POC values were quite high. The POC in surface waters was linearly correlated with the chlorophyll content. Also PP increased when chlorophyll and primary productivity remained high. The results suggest that the phytoplankton was sharply increasing and contributed to POC and PP content. The percentage of detritus calculated from the intercept values of chlorophyll on POC varied from 46 to 76% depending on season. Results indicate that the major portion of POC and PP during postmonsoon (October–January) is derived from phytoplankton production while the allochthonous matter predominate during monsoon (June–September).  相似文献   

10.
《Marine Chemistry》2001,75(3):229-248
Dissolved and particulate mercury and methylmercury concentrations were determined in the Southern Bight of the North Sea and the Scheldt estuary in the period 1991–1999. Mercury and methylmercury concentrations are higher before 1995 than after 1995, especially in the fluvial part.The North Sea: In the offshore stations, dissolved Hg concentrations are generally higher in winter than in summer while the reverse is true for particulate Hg KD values (KD=the concentration of particulate Hg (HgP in pmol kg−1) divided by the concentration of dissolved Hg (HgD in pmol l−1)) range from 100,000 to 1000,000 l kg−1. Dissolved methylmercury concentrations vary from 0.05 to 0.25 pmol l−1 in summer and from d.l. to 0.23 pmol l−1 in winter and particulate methylmercury concentrations from 1.8 to 36 pmol g−1 in summer and from 0.9 to 21 pmol g−1 in winter. The KD ranges from 9,000 to 219,000 l kg−1.The Scheldt estuary: In winter, dissolved Hg concentrations are elevated in the upper estuary, decrease exponentially in the low salinity range followed by a very slow decrease towards the mouth. In summer, they are low in the fluvial part, increase in the low salinity range or in the mid-estuary and sometimes show an increase in the lower estuary. Particulate Hg concentrations do not show any seasonal trend.Dissolved MMHg concentrations are much lower in winter, when maximum concentrations are found in the upper estuary, than in summer. In summer, the MMHg concentrations are low at low salinity, they show a first increase in the salinity range from 3 to 12, a decrease in the mid-estuary and a second increase in the lower estuary.The highest particulate MMHg concentrations are found in the upper estuary, while in the lower estuary generally lower and more constant values are observed. The ratio of dissolved MMHg to dissolved Hg (cruise averages between 1.3% and 20%), is higher than the ratio of particulate MMHg to particulate Hg (cruise averages of 0.27–0.90%). The KD values for MMHg are lower in the summer (30,000–65,000) than in autumn and winter (77,000–114,000).The Scheldt river: In the fluvial part of the Scheldt, dissolved increases in the most upstream stations, while particulate Hg shows no particular pattern. Dissolved MMHg ranges from 0.1 to 0.39 pmol l−1 and particulate MMHg from 3.1 to 43.5 pmol g−1. The MMHg concentrations are comparable to those found in the estuary and no seasonal variations could be observed.  相似文献   

11.
Concentrations of chlorophyll a and suspended particulate concentrations were measured during three lake-wide surveys of St Lucia, a shallow, turbid estuary on the east coast of South Africa. There was no salinity gradient in the system during any of the surveys, but between the surveys there were considerable salinity differences. Summer turbidities were higher than those of winter and spring, and turbidity along the eastern edge of the system was lower than elsewhere. Chlorophyll a was present over a wide range of salinities and turbidities and was generally highest in summer. However, there was no relationship between salinity and concentrations of chlorophyll a, and the concentrations were not significantly higher along the less turbid eastern shore. Concentrations of total paniculate matter (TPM) and particulate organic matter (POM) in the < 100 μm fraction were significantly correlated with turbidity throughout the year, but chlorophyll a and POM (< 100 μm) were significantly correlated only in summer. Concentrations of TPM in the > 100 μm fraction were two orders of magnitude lower than those in the < 100 μm fraction, but the organic content of the former fraction was very much higher. There was no relationship between turbidity and TPM (> 100 μm), nor between chlorophyll a and POM (> 100 μm) concentrations. Under conditions of high TPM load and in the salinity range 2–25 × 10?3, phytoplankton would probably still occur in St Lucia. Estimates of phytoplankton production ranged between 218 and 252 mg C·m?2·day?1. A comparison of estimates of the standing stocks of carbon from phytoplankton and suspended POM < 100 μm indicated that carbon input from sources other than phytoplankton may be important.  相似文献   

12.
The inner zone of the Bahía Blanca Estuary is shallow, nutrient-rich and turbid. Tidal energy and water turbulence strongly affect the water column resulting in a well-mixed structure and high concentrations of suspended sediment. The phytoplankton community is mostly dominated by diatoms and the annual pattern has been characterized by a recurrent winter-early spring bloom. Here, we investigated to what extent the temporal variations of suspended particulate matter (SPM) regulate the phytoplankton blooms in the head of the estuary by light-limitation. Sampling was done on a fortnightly basis (weekly during the blooming season) at a fixed station in the inner zone of the estuary from January 2007 to February 2008. SPM concentrations and light extinction coefficients (k) in the water column were significantly correlated and showed relatively lower values during the phytoplankton maximal biomass levels. During winter, SPM and k reached values of 23.6 mg l−1 and 0.17 m−1 which were significantly lower than the annual means of 77.6 mg l−1 and 2.94 m−1, respectively. The particulate organic matter (POM) concentration was significantly correlated with the calculated phytoplankton biomass although the contribution of the latter to the total POM was rather low. Both, POM and biomass, had maximal values during winter (21.8 mg l−1 and 393.5 μg C l−1) and mid summer (24.3 mg l−1 and 407.0 μg C l−1), with cell densities up to 8 × 106 cells l−1 and chlorophyll a up to 24.6 μg l−1. Our results suggest that the decrease of SPM concentrations in the water column with a concomitant increase in the penetration of solar radiation seems to be one of the main causes for the development of the phytoplankton winter bloom in the Bahía Blanca Estuary.  相似文献   

13.
Abstract

Thirty sites were sampled in three New Zealand rivers (Waikato, Maitai, and Wakapuaka) during late summer 1977. Samples were collected from just below the surface at mid river or in the tailraces below hydro‐electric dams.

Parameters measured included bacterial numbers (direct counts), heterotrophic potential (Vmax ), adenosine triphosphate (ATP), chlorophyll a (Chi a), and concentrations of nitrogen and phosphorus compounds.

Bacterial populations per millilitre fluctuated threefold (6.4–19.4 × 105) along the Waikato River and were lower and more consistent in the two South Island rivers (1.46–2.55 × 105). In contrast, Vmax varied 5000‐fold in the Waikato River, from a characteristically oligotrophic value of 0.0035 μg. l?1·h?1 (Lake Taupo outlet) to a eutrophic value of 18.4 μg. l?1·h?1 at the Mihi bridge. Vmax for the two South Island rivers ranged from 0.0091 to 0.189 μg. l?1 · h?1.

ATP, Chi a, Kjeldahl nitrogen, nitrate nitrogen, and total phosphorus concentrations for the 20 sites on the Waikato River varied in a similar way to the Vmax and bacterial data. There were large peaks at the Mihi bridge, lower values for the dam tailraces and significant increases for the sites below Hamilton. Concentrations for these parameters were lower and more consistent along the lengths of the two South Island rivers.

Most parameters were significantly correlated with each other for the Waikato River samples. The strongest correlations were between Vmax and bacterial numbers and between Vmax and nitrate nitrogen. In the Maitai and Wakapuaka River series these correlations were also significant, but the only other significant correlations recorded there were between ATP and nitrate nitrogen, and between ATP and bacterial numbers.  相似文献   

14.
The concentrations of suspended matter and particulate Cd, Cu, Pb and Zn were determined for 36 samples collected at 6 stations in the Antarctic Ocean during December, 1970 and January, 1971 using membrane filters. The concentration of suspended matter was determined gravimetrically and trace metal levels were determined using anodic stripping voltammetry. For waters deeper than 100 m the concentration of suspended matter was < 100 μg l?1. Concentrations up to 542 μg l?1 were recorded between surface and 100 m. Individual concentrations of the metals were scattered with depth. Average concentrations of particulate metals were: Cd, 3.5 ng l?1; Cu, 100 ng l?1; Pb, 35 ng l?1; and Zn, 230 ng ;l?1 These measurements represent non-steady state conditions of early Antarctic summer as the ice pack disintegrates and biological activity increases.  相似文献   

15.
226Ra and 228Ra have non-conservative excess concentrations in the mixing zones of the Pee Dee River-Winyah Bay estuary, the Yangtze River estuary, and the Delaware Bay estuary. Laboratory experiments, using Pee Dee River sediment, indicate desorption of 226Ra to increase with increasing salinities up to 20‰. In Winyah Bay desorption from river-borne sediments could contribute almost all of the increases for both isotopes. Desorption adds only a portion of the excess 228Ra measured in the Yangtse River and adjacent Shelf waters and Delaware Bay. In the Yangtze River the mixing zone extends over a considerable portion of the Continental Shelf where 228Ra is added to the water column by diffusion from bottom sediments, while 226Ra concentrations decrease from dilution. Diffusion of 228Ra from bottom sediments in Delaware Bay primarily occurs in the upper part of the bay (< 22‰ water) where fine grained sediments predominate. A diffusive flux for 228Ra of 0·33 dpm cm?2 year was determined for Delaware Bay.  相似文献   

16.
A mathematical model that computes the accumulation of Kepone in the striped bass food chain of the James River estuary was developed. The purpose of the model was to help understand the relationship of Kepone levels in important fish species to sediment and water column Kepone concentrations and then to address the question of why these levels still exceed Food and Drug Administration limits eight years after discharge ceased. The model considers exposure through diet and respiration at rates based on species bioenergetics. It was successfully calibrated to the Kepone concentrations observed in the period 1976 through 1982 in striped bass, white perch, and Atlantic croaker. The model indicates that for the upper levels of the food chain, diet is the major route of contamination, accounting for 87–88% of the observed concentration in croaker and white perch and 91% of the observed concentration in striped bass. The two Kepone sources; sediment and water column, contribute approximately equally to the croaker and white perch. The water column is more significant for striped bass, being the original source for approximately 60% of the observed body burdens. It was estimated that a criterion requiring Kepone concentrations in fish to be at or below 0·3 μg g?1 would require dissolved water column and sediment Kepone concentrations to be reduced to somewhere between 3 and 9 ng l?1 and 13–39 ng g?1, respectively, depending on the species. Striped bass require the greatest reductions in dissolved water column and sediment Kepone concentrations to somewhere between 3 and 5 ng l?1 and 13 and 24 ng g?1, respectively.  相似文献   

17.
A spectrophotometric procedure for the determination of aldehydes was optimized for use in seawater, it involves the sequential reaction of aldehydes with 3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH) and FeCl3 to produce a colored compound which is soluble in 50% acetone. The standard curve obeyed Beer's law to 90 μM formaldehyde in 0.7 m NaCl. The molar absorptivity of 21 800 absorbance units μM?1 cm?1 at 635 nm was not affected by changes in salinity. The limit of detection was 180 nM HCHO l?1 when a pathlength of 1 cm was used, and 72 nM HCHO l?1 when a pathlength of 5 cm was used.The MBTH procedure was used to compare formaldehyde production in cultures of the marine methanotroph, Methylomonas pelagica, growing on methane or methanol. The average rate of formaldehyde production, normalized to cell number, was almost 20 times greater in cultures grown on methanol than in cultures grown on methane.A depth profile of aldehyde concentrations from a station in the Peru upwelling region (10°S, 79°W) showed one peak in the oxygen gradient in the photic zone (80 m), two in the oxygen minimum (200 and 300 m), and one in the oxygen gradient below the minimum (800m). Aldehyde concentrations ranged from 0.6 to 8.8 μM formaldehyde equivalents l?1. Except for the maxima where the aldehydes account for 13–15% of expected DOC concentrations, the background level of aldehydes was approximately 1% of DOC.  相似文献   

18.
The inner part of the Ariake Sea is one of the most productive estuarine systems in Japan. To examine potential food items for estuarine organisms, we conducted monthly observations of the dynamics of particulate organic matter along the macrotidal Chikugo River estuary in 2005 and 2006. In the neighboring macrotidal Midori and Kuma River estuaries, comparative observations were made. High turbidity and strong vertical mixing were observed only at low salinities (<10) in the Chikugo River estuary. In contrast, the Midori and Kuma River estuaries were characterized by less turbid and less mixed waters. Concentrations of particulate organic carbon often exceeded 5?mg?l?1 in or close to the estuarine turbidity maximum (ETM) of the Chikugo River estuary. However, such high concentrations were rarely observed in the other two estuaries. The observed differences could be attributable to different hydrodynamic processes related to the different lengths of tidal reaches: 23, 8, and 6?km in the Chikugo, Midori, and Kuma Rivers, respectively. In the Chikugo River estuary, spatiotemporal changes of chlorophyll a suggested that phytoplankton occurred abundantly up- and/or downstream from the ETM especially during the warm season. In contrast, pheophytin (i.e., plant detritus) always accumulated in or close to the ETM. Carbon stable isotope ratios and carbon to nitrogen ratios indicated that the plant detritus was derived from phytoplankton and terrestrial plants. The Chikugo River estuary has a high potential to support the production of estuarine organisms through abundant plant detritus in the well-developed ETM all the year round.  相似文献   

19.
The inter-annual variability in phytoplankton summer blooms in the upper reaches of the Schelde estuary was investigated between 1996 and 2005 by monthly sampling at 10 stations. The large inter-annual variations of the chlorophyll a concentration in the freshwater tidal reaches were independent from variations in chlorophyll a in the tributary river Schelde. Summer mean chlorophyll a concentrations were significantly negatively correlated with flushing rate (Spearman correlation: r = −0.67, p = 0.05, n = 9) but not with temperature, irradiance and suspended particulate matter or dissolved silica (DSi) concentrations. During dry summers, low flushing rates permitted the development of dense phytoplankton populations in the upper part of the estuary, while during wet summers high flushing rates prevented the development of dense phytoplankton blooms. Flushing rate was also found to be important for the phytoplankton community composition. At low flushing rates, the community was dominated by diatoms that developed within the upper estuary. At high flushing rates, chlorophytes imported from the tributary river Schelde became more important in the phytoplankton community. The position of the chlorophyll a maximum shifted from the head of the estuary when flushing rates were low, to more downstream when flushing rates were high. Although DSi concentrations tended to be lower during years of high phytoplankton (mainly diatom) biomass, the relation with flushing rate was not significant.  相似文献   

20.
Extracellular enzyme activities were compared among surface water, bottom water, and sediments of the Delaware Estuary using six fluorescently labeled, structurally distinct polysaccharides to determine the effects of suspended sediment transport on water column hydrolytic activities. Potential hydrolysis rates in surface waters were also measured for the nearby shelf. Samples were taken in December 2006, 6 months after a major flood event in the Delaware Basin that was followed by high freshwater run-off throughout the fall of 2006. All substrates were hydrolyzed in sediments and in the water column, including two (pullulan and fucoidan) that previously were not hydrolyzed in surface waters of the Delaware estuary. At the time of sampling, total particulate matter (TPM) in surface waters at the lower bay, bay mouth, and shelf ranged between 31 mg l−1 and 48 mg l−1 and were 2 to 20 times higher than previously reported. The presence of easily resuspended sediments at the lower bay and bay mouth indicated enhanced suspended sediment transport in the estuary prior to our sampling. Bottom water hydrolysis rates at the two sites affected by sediment resuspension were generally higher than those in surface waters from the same site. Most notably, fucoidan and pullulan hydrolysis rates in bay mouth bottom waters were 22.6 and 6.2 nM monomer h−1, respectively, and thus three and five times higher than surface water rates. Our data suggest that enhanced mixing processes between the sediment and the overlying water broadened the spectrum of water column hydrolases activity, improving the efficiency of enzymatic degradation of high molecular weight organic matter in the water with consequences for organic matter cycling in the Delaware estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号