首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 350-cm-long sediment core sequence from Dahu Swamp situated in the eastern Nanling Mountains was selected for high-resolution paleoclimatic reconstruction since the Late Glacial period. The multi-proxy records of this paper reveal several evidently dry and cold events that may coincide with the Oldest Dryas, the Older Dryas, the Younger Dryas in the late deglacial period. Two relatively wetter and warmer phases occurred in ca. 15,000–14,400 cal yr B.P. and 13,500–12,800 cal yr B.P. respectively may correspond to the Bølling and Allerød warming events. The Younger Dryas event (ca. 12,800–11,500 cal yr B.P.) revealed by multi-proxies was characterized by relatively colder and drier climate. A warmer and wetter climate, occurred in ca. 10,000–6000 cal yr B.P., was consistent with the Holocene Optimum, which coincided with the maximum Northern Hemisphere insolation. The “8.2kyr cool event” and even the “8.8kyr cool event” were indicated as well from our sediment core. A dry mid-Holocene period (ca. 6000–3000 cal yr B.P.) indicated by multi-proxies does not follow the traditional concept of the wet mid-Holocene conditions observed in other regions in China.  相似文献   

2.
本文应用统计方法分析陆雪和海冰与东亚夏季风的关系。分析结果表明:前期海冰和陆雪,对夏季风强度有影响,而与夏季风同时的海冰和陆雪的异常,却与夏季风相关甚小,这是由于大气状况的变化与下垫面的能量储放有关。本文初步探讨北极海冰对东亚夏季风影响的可能途径,认为海冰通过大西洋海温、大西洋副热带高压及青藏高压,由夏季对流层上层的东西热力环流圈和季风环流圈,对东亚夏季风起一定影响。  相似文献   

3.
本文应用1953~1984年的北极海冰资料,分析各区海冰的季节变化、年际变化、自相关特性及互相关特性。认为Ⅰ区海冰占有最大权重,又具有较大的方差,在全区海冰中起着重耍作用。冬季,各区海冰相互关联,其余季节,基本上相互独立。各区海冰均提供了气候“贮存”机制,一个季节的冰能影响下一个季节冰的特性;冬季的贮存能力大于夏季,春秋次之;Ⅱ区和Ⅳ区冰的持续性优于Ⅰ区 。  相似文献   

4.
Antarctic sea-ice oscillation index with a seesaw pattern is defined using NCEP/NCAR reanalysis girds data of monthly Antarctica sea-ice concentration from 1979 to 2002. The relationships between the index of winter and the summer precipitations in China as well as the onset date of the summer East Asia monsoon are presented. The study result shows that the grids of correlation coefficients passed 5% confidence level between Antarctic sea-ice oscillation index and Antarctic sea-ice concentration are more than 1/3 of all grids of Antarctica sea-ice, that means the index can represent 1/3 sea-ice area. The winter index has a significant correlation with abnormal summer (June-August) precipitation in China. The area of positive correlation lies in the Yangtze River basin and its south, and that of negative correlation lies mainly in the north of Yangtze River basin. While the winter index is positive (negative), the onset date of South China Sea monsoon is earlier (later), with a probability of 79% (80%). Consequently, a conceptual model is given in term of discussing the possible process between the winter Antarctic sea ice and the monsoon precipitation in China.  相似文献   

5.
In a study of surface monsoon winds over the China marginal seas, Sun et al. (2012) use singular value decomposition method to identify regional dominant modes and analyze their interdecadal variability. This paper continues to evaluate the interannual variability of each dominant mode and its relation to various atmospheric, oceanic and land factors. The findings include: 1) The intensity of the winter monsoon over the East China Sea is highly correlated with the Siberian High intensity and anti-correlated with the latitudinal position of the Aleutian Low as well as the rainfall in eastern China, Korean Peninsula and Japan; 2) The western Pacific subtropical high is significantly correlated with the summer monsoon intensity over the East China Sea and anti-correlated with the summer monsoon over the South China Sea; 3) The winter monsoon in a broad zonal belt through the Luzon Strait is dominated by the ENSO signal, strengthening in the La Ni a phase and weakening in the El Ni o phase. This inverse relation exhibits interdecadal shift with a period of weak correlation in the 1980s; 4) Analysis of tidal records validates the interdecadal weakening of the East Asian summer monsoon and reveals an atmospheric bridge that conveys the ENSO signal into the South China Sea via the winter monsoon.  相似文献   

6.
用大气热源表征的东亚夏季风指数的研究   总被引:1,自引:0,他引:1  
利用1965—2007年NCEP/NCAR再分析资料和同期的中国160站降水资料,在讨论大气热源的气候特征基础上,用整层积分的大气热源定义了一个东亚夏季风指数,并用该指数研究了东亚夏季风和中国气候的关系。研究表明:定义的大气热源季风指数能反映夏季风的异常变化,高(低)指数年对应的东亚夏季风偏强(弱);该指数与长江中下游降水存在高度的同期负相关,对长江中下游夏季降水有较强的分辨能力。  相似文献   

7.
利用1965—2007年NCEP/NCAR再分析资料和同期的中国160站降水资料,在讨论大气热源的气候特征基础上,用整层积分的大气热源定义了一个东亚夏季风指数,并用该指数研究了东亚夏季风和中国气候的关系。研究表明:定义的大气热源季风指数能反映夏季风的异常变化,高(低)指数年对应的东亚夏季风偏强(弱);该指数与长江中下游降水存在高度的同期负相关,对长江中下游夏季降水有较强的分辨能力。  相似文献   

8.
Traditionally, the mid-Holocene in most parts of China was thought to be warmer with higher precipitation, resulting from a strong Asian summer monsoon. However, some recent researches have proposed a mid-Holocene drought interval of millennial-scale in East Asian monsoon margin areas. Thus whether mid-Holocene was dry or humid remains an open issue. Here, Zhuyeze palaeolake, the terminal lake of the Shiyang River Drainage lying in Asian monsoon marginal areas, was selected for reconstructing the details of climate variations during the Holocene, especially mid-Holocene, on the basis of a sedimentological analysis. Qingtu Lake (QTL) section of 6.92m depth was taken from Zhuyeze palaeolake. Multi-proxy analysis of QTL section, including grain size, carbonate, TOC, C/N and δ13C of organic matter, was used to document regional climatic changes during 9-3 cal ka B.P. The record shows a major environmental change at 9.0-7.8 cal ka B.P., attributed to a climate trend towards warmth and humidity. This event was followed by a typical regional drought event which occurred during 7.8-7.5 cal ka B.P. And a warm and humid climate prevailed from 7.5 to 5.0 cal ka B.P., attributed to the warm/humid Holocene Optimum in this region. After that, the climate gradually became drier. Moreover, comparison of the climate record from this paper with the summer insolation at 30°N indicates that the climate pattern reflecting the Asian monsoon changes was caused by insolation change.  相似文献   

9.
近些年,对于东亚季风区石笋δ18O的气候环境指示意义的争论较多,主要在东亚季风区石笋δ18O代表夏季和风强度、夏季风降水还是水汽源变化。基于中国东部华北地区降水与长江中下游地区降水反相变化和长江中下游地区降水与菲律宾海降水反相变化(遥相关),从年际-年代际到千年-轨道尺度对石笋δ18O与夏季风降水、厄尔尼诺-南方涛动(ENSO)的相互关系进行了探讨分析。通过对比石笋δ18O记录与华北和梅雨区降水,发现石笋δ18O偏负对应华北降水增加,梅雨区降水减少;石笋δ18O偏正对应华北降水减少,梅雨区降水增加。这种对应关系不仅存在年际-年代际尺度,而且在千年-轨道尺度同样存在,石笋δ18O不仅反映夏季风强弱变化,同时与中国东部区域降水关系是明确对应的。通过降水的空间相互关系,发现ENSO活动主要通过影响中国东部降水的空间分布格局而作用于石笋δ18O。La Ni?a态导致南海及菲律宾海对流加强,西太副高位置偏北,长江中下游地区梅雨期缩短,华北夏季降水增加,东亚季风区石笋δ18O偏负。El Ni?o态,南海和菲律宾海对流受到抑制,西太副高位置南移,长江中下游地区梅雨期延长,华北夏季降水减少,东亚季风区石笋δ18O偏正。另外,水汽源分析发现,菲律宾海水汽输送对东亚季风区降水及降水δ18O贡献相对较小。因此,综合分析认为,东亚季风区石笋δ18O主要反映了亚洲夏季风的强弱变化。   相似文献   

10.
Remote sensing data from passive microwave and satellite-based altimeters, associated with the data measured underway, were used to characterize seasonal and spatial changes in sea ice conditions along...  相似文献   

11.
Sea surface temperature (SST) variation in the Subei coastal waters, East China, which is important for the ecological environment of the Yellow Sea where Enteromorphaprolifera blooms frequently, is affected by the East Asian winter monsoon (EAWM), El Nifio-Southem Oscillation (ENSO), and Pacific Decadal Oscillation (PDO). In this study, correlations between climatic events and SST anomalies (SSTA) around the Subei (North Jiangsu Province, East China) Coast from 1981-2012 are analyzed, using empirical orthogonal function (EOF) and correlation analyses. First, a key region was determined by EOF analysis to represent the Subei coastal waters. Then, coherency analyses were performed on this key region. According to the correlation analysis, the EAWM index has a positive correlation with the spring and summer SSTA of the key region. Furthermore, the Nifio3.4 index is negatively correlated with the spring and summer SSTA of the key region 1 year ahead, and the PDO has significant negative coherency with spring SSTA and negative coherency with summer SSTA in the key region 1 year ahead. Overall, PDO exhibits the most significant impact on SSTA of the key region. In the key region, all these factors are correlated more significantly with SSTA in spring than in summer. This suggests that outbreaks ofEnteromorpha prolifera in the Yellow Sea are affected by global climatic changes, especially the PDO.  相似文献   

12.
Seasonality and causes of the Yellow Sea Warm Current   总被引:1,自引:0,他引:1  
To study the seasonality and causes of the Yellow Sea Warm Current (YSWC) in detail, rotated empirical orthogonal function (REOF) and extended associate pattern analysis are adopted with daily sea surface salinity (SSS), sea surface temperature (SST) and sea surface height (SSH) datasets covering 1126 days from American Navy Experimental Real-Time East Asian Seas Ocean Nowcast System in the present paper. Results show that in the Yellow and East China Seas, the YSWC is a mean barotropic flow as compensation of winter-monsoon-driven surface currents, which has been directly observed. When East Asia winter monsoon weakens, so do the meridional pressure gradient of the surface seawater and the YSWC, while the transversal pressure gradient changes rather slowly that results in the YSWC left turning. In addition, there is southward mean flow compensation of summer-monsoon-driven surface currents, which actually was also directly ob-served.  相似文献   

13.
A 700-year record (1.0–1.5 a resolution) of the East Asian winter monsoon (EAWM), based on grain-size analysis and AMS14C dating of Core EC2005 from the inner-shelf mud wedge of the East China Sea (ECS), was compared with the Dongge stalagmite δ18O record during the mid-Holocene. The upper muddy section of Core EC2005 has been formed mainly by suspended sediments derived from the Changjiang (Yangtze) River mouth since 7.3 ka BP. High precipitation and a strengthened EAWM might have played key roles in the high sedimentation rate (1 324–1 986 cm/ka) between 5.9–5.2 ka BP. The EAWM strengthened when the Asian summer monsoon weakened, especially around 5 500 a BP, which corresponded to a worldwide cold event. The EAWM during the mid-Holocene shows statistically significant solar periodicities at 62 and 11 a. The 5 500 a BP cold event might be resulted from orbital forcing and changes in solar activity.  相似文献   

14.
Previous studies on the amplitude of East Asian summer monsoon (EASM) changes mainly focused on northern China (represented by the Loess Plateau).However,a rare...  相似文献   

15.
INTRODUCTIONXuetal.(1993)studiedthebasiccharacteristicsofthethermoclineinthecontinentalshelfandinthedeepsearegionoftheSouthChinaSea(SCS)andthedifferencesbetweenthembyanalyzing1907-1990historicaldataontheSCS.Hepointedoutthatthethermoclineinthedeepsearegionexis…  相似文献   

16.
Using interpolation and averaging methods, we analyzed the sea surface wind data obtained from December 1992 to November 2008 by the scatterometers ERS-1, ERS-2, and QuikSCAT in the area of 2°N–39 °N, 105°E–130°E, and we reported the monthly mean distributions of the sea surface wind field. A vector empirical orthogonal function (VEOF) method was employed to study the data and three temporal and spatial patterns were obtained. The first interannual VEOF accounts for 26% of the interannual variance and displays the interannual variability of the East Asian monsoon. The second interannual VEOF accounts for 21% of the variance and reflects the response of China sea winds to El Niño events. The temporal mode of VEOF-2 is in good agreement with the curve of the Niño 3.4 index with a four-month lag. The spatial mode of VEOF-2 indicates that four months after an El Niño event, the southwesterly anomalous winds over the northern South China Sea, the East China Sea, the Yellow Sea, and the Bohai Sea can weaken the prevailing winds in winter, and can strengthen the prevailing winds in summer. The third interannual VEOF accounts for 10% of the variance and also reflects the influence of the ENSO events to China Sea winds. The temporal mode of VEOF-3 is similar to the curve of the Southern Oscillation Index. The spatial mode of VEOF-3 shows that the northeasterly anomalous winds over the South China Sea and the southern part of the East China Sea can weaken the prevailing winds, and southwesterly anomalous winds over the northern part of the East China Sea, the Yellow Sea, and the Bohai Sea can strengthen the prevailing winds when El Niño occurs in winter. If El Niño happens in summer, the reverse is true.  相似文献   

17.
利用CryoSat-2卫星测高数据反演波弗特海的海冰厚度,并利用2010~2013年10月份仰视声呐(ULS)和2011年冰桥计划(IceBridge)数据对结果进行精度评估。结果表明,测高反演的海冰吃水深度与ULS吃水深度差值的最大值和标准差分别为14 cm和4 cm;测高反演的海冰厚度与冰桥计划海冰厚度差值的平均值和标准差分别为2.7 cm和65.7 cm,优于Laxon(2013)研究结果(分别优化2.1 cm和6.6 cm)。在此基础上,研究2011~2017年波弗特海夏冬两季的海冰厚度变化,发现二者具有类似的分布特征,且冬季3月海冰覆盖范围更广,厚度更大;进一步分析2011~2017年3月份冬季海冰厚度年际变化,发现其呈整体下降趋势,且2012年最小,2014年最大。  相似文献   

18.
The sensitivity of the global atmospheric and oceanic response to sea surface temperature anomaly (SSTA) throughout the South China Sea (SCS) is investigated using the Fast Ocean-Atmosphere Model (FOAM). Forced by a warming SST, the experiment explicitly demonstrates that the responses of surface air temperature (SAT) and SST exhibit positive anomalous center over SCS and negative anomalous center over the Northern Pacific Ocean (NPO). The atmospheric response to the warm SST anomalies is characterized by a barotropical anomaly in middle-latitude, leading to a weak subtropical high in summer and a weak Aleutian low in winter. Accordingly, Indian monsoon and eastern Asian monsoon strengthen in summer but weaken in winter as a result of wind convergence owing to the warm SST. It is worth noting that the abnormal signals propagate poleward and eastward away in the form of Rossby Waves from the forcing region, which induces high pressure anomaly. Owing to action of the wind-driven circulation, an anomalous anti-cyclonic circulation is induced with a primary southward current in the upper ocean. An obvious cooling appears over the North Pacific, which can be explained by anomalous meridional cold advection and mixing as shown in the analysises of heat budget and other factors that affect SST.  相似文献   

19.
北极海冰范围时空变化及其与海温气温间的数值分析   总被引:1,自引:0,他引:1  
本文利用美国国家冰雪中心提供的1989-2014年海冰范围资料,分析了北极海冰范围的年际变化和季节变化规律。分析发现,北极海冰范围呈减少趋势,每年减小5.91×104 km2,夏季减少趋势显著,冬季减少趋势弱。北极海冰范围显现相对稳定的季节变化规律,海冰的结冰和融化主要发生在各个边缘海,夏季期间的海冰具有融化快、冻结快的特征。结合海温、气温数据,进行北极海冰范围与海温、气温间的数值分析,结果表明北极海冰范围变化通过影响北极海温变化进而影响北极气温变化。海冰范围的季节变化滞后于海温和气温的季节变化。基于北极考察走航海温气温数据,进行楚科奇海海冰范围线与海温气温间的数值分析,发现楚科奇海海冰范围线所在区域的海温、气温与纬度高低、离陆地远近有关。  相似文献   

20.
Bi  Haibo  Liang  Yu  Wang  Yunhe  Liang  Xi  Zhang  Zehua  Du  Tingqin  Yu  Qinglong  Huang  Jue  Kong  Mei  Huang  Haijun 《中国海洋湖沼学报》2020,38(4):962-984
In comparison with seasonal sea ice(first-year ice,FY ice),multiyear(MY) sea ice is thicker and has more opportunity to survive through the summer melting seasons.Therefore,the variability of wintertime MY ice plays a vital role in modulating the variations in the Arctic sea ice minimum extent during the following summer.As a response,the ice-ocean-atmosphere interactions may be significantly affected by the variations in the MY ice cover.Satellite observations are characterized by their capability to capture the spatiotemporal changes of Arctic sea ice.During the recent decades,many active and passive sensors onboard a variety of satellites(QuikSCAT,ASCAT,SSMIS,ICESat,CryoSat-2,etc.) have been used to monitor the dramatic loss of Arctic MY ice.The main objective of this study is to outline the advances and remaining challenges in monitoring the MY ice changes through the utilization of multiple satellite observations.We summarize the primary satellite data sources that are used to identify MY ice.The methodology to classify MY ice and derive MY ice concentration is reviewed.The interannual variability and trends in the MY ice time series in terms of coverage,thickness,volume,and age composition are evaluated.The potential causes associated with the observed Arctic MY ice loss are outlined,which are primarily related to the export and melting mechanisms.In addition,the causes to the MY ice depletion from the perspective of the oceanic water inflow from Pacific and Atlantic Oceans and the water vapor intrusion,as well as the roles of synoptic weather,are analyzed.The remaining challenges and possible upcoming research subjects in detecting the rapidly changing Arctic MY ice using the combined application of multisource remote sensing techniques are discussed.Moreover,some suggestions for the future application of satellite observations on the investigations of MY ice cover changes are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号