首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Koyna earthquake of M 6.3 on December 10, 1967 is the largest artificial water reservoir triggered earthquake globally. It claimed ~ 200 human lives and devastated the Koyna township. Before the impoundment of the Shivaji Sagar Lake created by the Koyna Dam, there were no earthquakes reported from the region. Initially a few stations were operated in the region by the CentralWater and Power Research Station (CWPRS). The seismic station network grew with time and currently the National Geophysical Research Institute (NGRI), Hyderabad is operating 23 broadband seismographs and 6 bore hole seismic stations. Another reservoir, Warna, was created in 1985, which provided a further impetus to Reservoir Triggered Seismicity (RTS). Every year following the monsoon, water levels rise in the two reservoirs and there is an immediate increase in triggered earthquakes in the vicinity of Koyna-Warna reservoirs in the months of August–September. Peak RTS is observed in September and later during December.Another spurt in triggered earthquakes is observed during the draining of the reservoirs in the months of April- May. A comparative study of RTS earthquake sequences and the ones occurring in nearby regions made it possible to identify four common characteristics of RTS sequences that discriminate them from normal earthquake sequences. As the RTS events continue to occur at Koyna in a large number in a limited area of 20 km x 30 km, at shallow depths (mostly 2 to 9 km), the region being accessible for all possible observations and there being no other source of earthquakes within 100 km of Koyna Dam, it was suggested to be an ideal site for near field observations of earthquakes. This suggestion was discussed by the global community at an ICDP sponsored workshop held at Hyderabad and Koyna in 2011. There was an unanimous agreement about the suitability of the site for deep scientific drilling; however, a few additional observations/experiments were suggested. These were carried out in the following three years and another ICDP workshop was held in 2014, which totally supported setting up a borehole laboratory for near field investigations at Koyna. Location of a Pilot Bore-hole was decided on the basis of seismic activity and other logistics. The 3 km deep Pilot Borehole was spudded on December 20, 2016 and completed on June 11, 2017.  相似文献   

2.
The Japan Trench subduction zone, located east of NE Japan, has regional variation in seismicity. Many large earthquakes occurred in the northern part of Japan Trench, but few in the southern part. Off Miyagi region is in the middle of the Japan Trench, where the large earthquakes (M > 7) with thrust mechanisms have occurred at an interval of about 40 years in two parts: inner trench slope and near land. A seismic experiment using 36 ocean bottom seismographs (OBS) and a 12,000 cu. in. airgun array was conducted to determine a detailed, 2D velocity structure in the forearc region off Miyagi. The depth to the Moho is 21 km, at 115 km from the trench axis, and becomes progressively deeper landward. The P-wave velocity of the mantle wedge is 7.9–8.1 km/s, which is typical velocity for uppermost mantle without large serpentinization. The dip angle of oceanic crust is increased from 5–6° near the trench axis to 23° 150 km landward from the trench axis. The P-wave velocity of the oceanic uppermost mantle is as small as 7.7 km/s. This low-velocity oceanic mantle seems to be caused by not a lateral anisotropy but some subduction process. By comparison with the seismicity off Miyagi, the subduction zone can be divided into four parts: 1) Seaward of the trench axis, the seismicity is low and normal fault-type earthquakes occur associated with the destruction of oceanic lithosphere. 2) Beneath the deformed zone landward of the trench axis, the plate boundary is characterized as a stable sliding fault plain. In case of earthquakes, this zone may be tsunamigenic. 3) Below forearc crust where P-wave velocity is almost 6 km/s and larger: this zone is the seismogenic zone below inner trench slope, which is a plate boundary between the forearc and oceanic crusts. 4) Below mantle wedge: the rupture zones of thrust large earthquakes near land (e.g. 1978 off Miyagi earthquake) are located beneath the mantle wedge. The depth of the rupture zones is 30–50 km below sea level. From the comparison, the rupture zones of large earthquakes off Miyagi are limited in two parts: plate boundary between the forearc and oceanic crusts and below mantle wedge. This limitation is a rare case for subduction zone. Although the seismogenic process beneath the mantle wedge is not fully clarified, our observation suggests the two possibilities: earthquake generation at the plate boundary overridden by the mantle wedge without serpentinization or that in the subducting slab.  相似文献   

3.
PRELIMINARY RESULTS OF EARTHQUAKE MOMENT TENSOR INVERSION IN WESTERN CHINA  相似文献   

4.
福建仙游位于福建省东南沿海中部,其周边地区历史地震活动较平静,属于弱震区。但自从该地区的金钟水库于2010年5月下闸蓄水后,库区附近的地震活动性随之增强。为深入了解该地区的地震活动性、地震分布特征以及寻找隐伏断层,利用中国地震局提供的地震初至震相数据,使用双差定位方法对仙游地区近10年发生的地震进行重定位,获得了更为精确的震源位置,并根据重定位结果模拟深部断裂,寻找隐伏断层。结果显示:(1)重定位后的震源位置更加集中,按照发震时间可分为4个活动区,主要沿沙县—南日岛的次级断裂石苍断裂两侧北西向线性分布。(2)重定位后仙游震群的震源深度主要为8~11 km。石苍断裂左侧地震条带震源深度为6~12 km;右侧地震条带呈现明显的分层现象,上层西北侧地震较为分散,东南侧地震分布较紧凑,震源深度同左侧一样为6~12 km,而下层地震较少,震源深度为14~23 km。(3)根据重定位后的震源位置,利用奇异值分解法拟合得到三个深部断层面,其倾向均为南西向,走向为北西向,与石苍断裂和潼关断裂的倾向和走向一致。结合前人研究成果和本研究结果,推测石苍断裂并不是主发震断层,而是其两侧存在的深部断裂(高倾角隐...  相似文献   

5.
Variations of seismic mode in the region of the Avachinsky Gulf (Kamchatka, Russia) are considered. Observed anomalies (seismic quiescence, the ring seismicity, reduction of the slope of the earthquake recurrence diagram) provide a basis to consider this region as a place of strong earthquake preparation. The Kamchatka regional catalogues of earthquakes between 1962–1995 were used in the analysis. A reduced seismicity rate is observed during 10 years in an area of 150 km × 60 km in size. During the last five years, in the vicinity of the area considered, earthquakes with M > 5 occurred three times more often than the average over thirty years. It is interpreted as ring seismicity. The block of 220 km × 220~km in size, including the quiescence zone, is characterized by a continuous decrease of the recurrence diagram slope, which has reached a minimum value for the last 33 years in this region.  相似文献   

6.
王兆国  刘财  冯晅  秦树洪 《世界地质》2009,28(4):513-519
中国东北地区在北东东向应力场控制下, 地震有其特殊性。地震空间分布和深度统计结果表明, 东北地区地震主要受岩石圈断裂(开原-赤峰断裂带) 控制, 以44°N为界, 南北具有明显差异。北部地震发生的数量少于南部, 震源深度主要集中在4~6 km和8~12 km两个深度范围内; 而南部主要集中在8~12 km和28~30 km两个深度范围内。发震深度分析显示, 开原-赤峰、郯庐断裂带、大兴安岭断裂带下可能存在地温较低的区域, 使地震可以在深部孕育。地震分布的Vp和Vs剖面资料的研究暗示, 断裂与速度变化带、断裂与断裂的相交区域是地震易发生区域。  相似文献   

7.
The Burmese Arc seismic activity is not uniform for its ∼ 1100 km length; only the Northern Burmese Arc (NBA) is intensely active. Six large earthquakes in the magnitude range 6.1–7.4 have originated from the NBA Benioff zone between 1954–2011, within an area of 200 × 300 km2 where the Indian plate subducts eastward to depths beyond 200 km below the Burma plate. An analysis on seismogenesis of this interplate region suggests that while the subducting lithosphere is characterized by profuse seismicity, seismicity in the overriding plate is rather few. Large earthquakes occurring in the overriding plate are associated with the backarc Shan-Sagaing Fault (SSF) further east. The forecasting performance of the Benioff zone earthquakes in NBA as forerunner is analysed here by: (i) spatial earthquake clustering, (ii) seismic cycles and their temporal quiescence and (iii) the characteristic temporal b-value changes. Three such clusters (C1–C3) are identified from NBA Benioff Zones I & II that are capable of generating earthquakes in the magnitude ranges of 7.38 to 7.93. Seismic cycles evidenced for the Zone I displayed distinct quiescence (Q1, Q2 and Q3) prior to the 6th August 1988 (M 6.6) earthquake. Similar cycles were used to forecast an earthquake (Dasgupta et al. 2010) to come from the Zone I (cluster C1); which, actually struck on 4 February 2011 (M 6.3). The preparatory activity for an event has already been set in the Zone II and we speculate its occurrence as a large event (M > 6.0) possibly within the year 2012, somewhere close to cluster C3. Temporal analysis of b-value indicates a rise before an ensuing large earthquake.  相似文献   

8.
An analysis of the data in the catalogues of Italian earthquakes indicates that large earthquakes which occur in the area of radius of about 140 km centered in the Straits of Messina occur in sequences. Each sequence is generally formed by two events and covers an average time window of 10 years.The last four sequences occurred in the time windows 1783–1891, 1818–1823, 1865–1870, 1905–1908 and are separated by about 40 years indicating that in that area there is now a gap in the time domain.The analysis of the data in the Catalogue for the region between the latitudes 39°N and 41°50′N indicates that in that region the large earthquakes occurred in 13 sequences. Each sequence is formed by 3 events in average and covers an average time window of 7 years. This indicates that, after the earthquake of Nov. 1980, which occurred after a gap of 67 years, other moderately large earthquakes may be expected in that area in the next few years.  相似文献   

9.
Groundwater radon anomalies associated with earthquakes   总被引:6,自引:0,他引:6  
G. Igarashi  H. Wakita 《Tectonophysics》1990,180(2-4):237-254
Earthquake-related changes in groundwater radon have been detected at a sensitive observation site located right on a major active fault in Northeast Japan. A time-series analysis based on Bayesian statistics was successfully applied to remove background variations from the observed radon data, enabling us to examine the earthquake-related changes in detail.

We set a simple criterion of amplitude and duration for an anomaly observed in our radon data; we define an anomaly as a radon change that kept its level beyond 2σ (a standard deviation over the whole observation period) during a period longer than one day. We have observed 20 radon anomalies that satisfied this criterion from January 1984 to December 1988. Most of these anomalies have turned out to be related to large earthquakes that occurred in East Japan and its surrounding area; we have identified 12 post-seismic and 2-pre-seismic radon anomalies out of a total of 30 earthquakes with magnitude M 6.0 and hypocentral distance D 1000 km.

The typical pattern of the post-seismic anomalies is a radon decrease which started just after an earthquake, lasting for periods ranging from a few days to more than one week. The amplitude of the post-seismic anomalies depends on both magnitude and hypocentral distance, and can, in general, be expressed by a simple magnitude-distance relationships.

A possible pre-seismic anomaly was observed about one week before the largest earthquake that occurred in this region during the observation period (March 6, 1984; M = 7.9, D = 1000 km). Another possible pre-seismic anomaly was observed about three days before two nearby large earthquakes that occurred at almost the same place in a time interval of 53 min (February 6, 1987; M = 6.4 and M = 6.7, D = 130 km).  相似文献   


10.
Precise data obtained by a high-sensitivity micro-earthquake observatory network are used to determine simultaneously the crustal structure and the spatial distribution of small earthquakes in the Kii peninsula region, Japan. The spatial distribution of hypocenters thus determined clearly shows two distinct groups of earthquakes: (1) a group of shallow (H ? 10 km) earthquakes on the western coast of the Kii peninsula near Wakayama; (2) a group of mantle earthquakes, having a depth ranging from 30 to 70 km and trending NE-SW, in the central part of the Kii peninsula. Along the trend of the second group, a marked structural anomaly is found which suggests the presence of a high-velocity zone at depths below 20 km. A projection of the hypocenters of the earthquakes belonging to the second group onto a vertical plane strikingNW-SE shows a wedge-like distribution to a depth of 70 km. The spatial relation between this wedge-like distribution and the 1944 Tonankai earthquake (M = 8.0) suggests a common tectonic process which is now taking place in the Kii peninsula region. The activity of the earthquakes of the first group terminates abruptly to the north at the Median Tectonic Line. This activity is represented by numerous but relatively small events (M < 5) without any conspicuous major earthquakes in history. It is suggested that the strength of the crust in this region of shallow activity is too weak to sustain stresses large enough to be released in a major event; rather, the stresses which probably originate from the tectonic activity represented by the earthquakes of the second group are released by numerous minor fracturings of the low-strength crust. A possibility of using the weak crust for detecting a remote stress accumulation is suggested.  相似文献   

11.
Koyna-Warna Region (KWR) is one of the known sites for reservoir triggered seismicity. The continued triggered seismicity over the five decades is restricted to a region of about 600–700 sq. km, which provides a unique opportunity to monitor geophysical anomalies likely to be associated with seismicity of the region. Present study confers temporal gravity changes recorded by gPhone and GRACE satellite and interprets observed changes in conjunction with seismological, geodetic (cGPS) observations and groundwater level measurements. GRACE data suggest that seasonal vertical deformation due to hydrological loading is ~ 2 cm, which corroborates with continuous GPS observations. Seasonal hydrological loading of the region, which is in a phase of reservoir loading, might be influencing the critically stressed KWR leading to the seasonal seismicity of the region. The gPhone gravity data distinctly show co-seismic gravity signals for eight earthquakes of Mw > 2 and gravity anomalies show positive correlation on a logarithmic scale with earthquake released energy. To investigate the cause of gravity changes, an estimate is made for 14th April 2012 earthquake for Mw 4.8 using fault dislocation model. The recorded gravity changes of 189 μGal by gPhone located at a distance of 28 km from the hypocentre is much more than the estimate of ~0.1 μGal calculated for Mw 4.8 Koyna earthquake. Therefore, it is inferred that co-seismic gravity signals for eight earthquakes are primarily caused due to redistribution of mass at shallow depth.  相似文献   

12.
In estimating the likelihood of an earthquake hazard for a seismically active region, information on the geometry of the potential source is important in quantifying the seismic hazard. The damage from an earthquake varies spatially and is governed by the fault geometry and lithology. As earthquake damage is amplified by guided seismic waves along fault zones, it is important to delineate the disposition of the fault zones by precisely determined hypocentral parameters. We used the double difference (DD) algorithm to relocate earthquakes in the Koyna-Warna seismic zone (KWSZ) region, with the P- and S-wave catalog data from relative arrival time pairs constituting the input. A significant improvement in the hypocentral estimates was achieved, with the epicentral errors <30 m and focal depth errors <75 m i.e. errors have been significantly reduced by an order of magnitude from the parameters determined by HYPO71. The earthquake activity defines three different fault segments. The seismogenic volume is shallower in the south by 3 km, with seismicity in the north extending to a depth of 11 km while in the south the deepest seismicity observed is at a depth of 8 km. By resolving the structure of seismicity in greater detail, we address the salient issues related to the seismotectonics of this region.  相似文献   

13.
The Pacific plate and the Philippine Sea plate overlap and subduct underneath the Kanto region, central Japan, causing complex seismic activities in the upper mantle. In this research, we used a map selection tool with a graphic display to create a data set for earthquakes caused by the subducting motion of the Philippine Sea plate that are easily determined. As a result, we determined that there are at least four earthquake groups present in the upper mantle above the Pacific plate. Major seismic activity (Group 1) has been observed throughout the Kanto region and is considered to originate in the uppermost part of mantle in the subducted Philippine Sea plate, judging from the formation of the focal region and comparison with the 3D structure of seismic velocity. The focal mechanism of these earthquakes is characterized by the down-dip compression. A second earthquake layer characterized by down-dip extension (Group 2), below the earthquakes in this group, is also noted. The focal region for those earthquakes is considered to be located at the lower part of the slab mantle, and the Pacific plate located directly below is considered to influence the activity. Earthquakes located at the shallowest part (Group 3) form a few clusters distributed directly above the Group 1 focal region. Judging from the characteristics of later phases in these earthquakes and comparing against the 3D structure of seismic velocity, the focal regions for the earthquakes are considered to be located near the upper surface of the slab. Another earthquake group (Group 4) originates further below Group 2; it is difficult to consider these earthquakes within a single slab. The seismic activities representing the upper area of the Philippine Sea plate are Group 3. This paper proposes a slab geometry model that is substantially different from conventional models by strictly differentiating the groups.  相似文献   

14.
由于受到台站分布不理想、速度结构研究不准确以及震相拾取误差等因素的影响,常规地震定位结果精度较低。因此,研究收集了辽宁省地震台网的地震目录及震相数据,采用双差地震定位方法,对海城及其附近地区(39°N-43°N,120°E-126°E)20 a的1 400多次地震进行重新定位。与原始定位结果相比,双差定位结果表明:1)震中更加呈条带状集中,尤其在40.5°N-41.0°N,122.0°E-123.0°E区间,与该地区的海城河-大洋河断裂带走向相一致;2)该地区地震多发生于地下5~20 km,与该区中地壳存在的低速高导层相对应;3)深度剖面图显示,大部分地震沿垂直向下柱状分布,原因是该处有粉碎性破裂带,从地下25 km处延伸到近地表。双差定位算法使得定位后均方根残差的平均值由0.74 s下降到0.26 s。辽宁地区的地震震级与发生地震数量有关,地震数量陡然增多,大地震发生概率增大。  相似文献   

15.
The preparation process of an impending earthquake may leave fingerprints on the earth??s surface. Elastic strain in rocks, formation of micro-cracks, gas releases and other chemical or physical activities in the earth??s crust before and during earthquakes has been reported to cause rises in temperature, surface latent heat flux (SLHF), upwelling index and chlorophyll-a (Chl-a) concentration on the ground or sea surface. Changes in surface temperature can be monitored with thermal infrared sensors such as NOAA-AVHRR and microwave radiometers like AMSR-E/Aqua. SLHF data and upwelling indices are provided by National Centers for Environmental Prediction (NCEP) Reanalysis Project and Pacific Fisheries Environmental Laboratory, respectively. This study examines behaviors of the above four factors prior to the past three oceanic and coastal earthquakes occurred at the Pacific Ocean (Northern California of June 15, 2005, Central California of September 28, 2004, and December 22, 2003). We were successful in detecting pre-earthquake anomalies prior to all three earthquakes. Our detailed analysis revealed 1?C5?°C rises in surface temperature in epicentral areas. Considerable anomalies in Chl-a concentration, 1?C2?weeks before the day of the main earthquakes, were spotted, which are attributed to the rise in upwelling index. Time series of SLHF showed meaningful rises from 1?month to a fortnight before the earthquake events. One problem in our research was the low resolution of the data which makes the graphs that are generated from NCEP database affected by all sources of anomalies, other than seismic activities, within an about 1.8°?C2.5° (200?km) area.  相似文献   

16.
We analyze previously published geodetic data and intensity values for the M s = 8.1 Shillong (1897), M s = 7.8 Kangra (1905), and M s = 8.2 Nepal/Bihar (1934) earthquakes to investigate the rupture zones of these earthquakes as well as the amplification of ground motions throughout the Punjab, Ganges and Brahmaputra valleys. For each earthquake we subtract the observed MSK intensities from a synthetic intensity derived from an inferred planar rupture model of the earthquake, combined with an attenuation function derived from instrumentally recorded earthquakes. The resulting residuals are contoured to identify regions of anomalous intensity caused primarily by local site effects. Observations indicative of liquefaction are treated separately from other indications of shaking severity lest they inflate inferred residual shaking estimates. Despite this precaution we find that intensites are 1–3 units higher near the major rivers, as well as at the edges of the Ganges basin. We find evidence for a post-critical Moho reflection from the 1897 and 1905 earthquakes that raises intensities 1–2 units at distances of the order of 150 km from the rupture zone, and we find that the 1905 earthquake triggered a substantial subsequent earthquake at Dehra Dun, at a distance of approximately 150 km. Four or more M = 8 earthquakes are apparently overdue in the region based on seismic moment summation in the past 500 years. Results from the current study permit anticipated intensities in these future earthquakes to be refined to incorporate site effects derived from dense macroseismic data.  相似文献   

17.
Worldwide analysis of the clustering of earthquakes has lead to the hypothesis that the occurrence of abnormally large clusters indicates an increase in probability of a strong earthquake in the next 3–4 years within the same region. Three long-term premonitory seismicity patterns, which correspond to different non-contradictory definitions of abnormally large clusters, were tested retrospectively in 15 regions. The results of the tests suggest that about 80% of the strongest earthquakes can be predicted by monitoring these patterns.Most of results concern pattern B (“burst of aftershocks”) i.e. an earthquake of medium magnitude with an abnormally large number of aftershocks during the first few days. Two other patterns, S and Σ often complement pattern B and can replace it in some regions where the catalogs show very few aftershocks.The practical application of these patterns is strongly limited by the fact that neither the location of the coming earthquake within the region nor its time of occurrence within 3–4 years is indicated. However, these patterns present the possibility of increasing the reliability of medium and short-term precursors; also, they allow activation of some important early preparatory measures.The results impose the following empirical constraint on the theory of the generation of a strong earthquake: it is preceded by abnormal clustering of weaker earthquakes in the space-time-energy domain; corresponding clusters are few but may occur in a wide region around the location of the coming strong earthquake; the distances are of the same order as for the other reported precursors.  相似文献   

18.
1976-07-28唐山地区发生了震惊中外的7.8级大地震。为什么在华北古老克拉通内部的唐山地区能够发生如此的大地震一直是一个令人费解的问题。是否会在唐山地区再次出现同样的破坏性地震值得认真研究。利用流动地震观测台阵数据和接收函数反演方法,我们研究了唐山地区60 km深度范围内的三维地壳上地幔速度结构。结果表明:(1)由活动断裂切割的唐山断块与周围介质存在明显差异,围限唐山断块的断裂均为超壳的活动断裂;(2)唐山大震区中上地壳具有明显的非均匀壳内低速体;(3)该地区壳幔界面表现为明显的断块式隆升,与两侧相比,唐山菱形地块下方的上地幔顶部异常隆起的高度达到10 km左右,下伏的上地幔具有异常的非均匀结构;(4)唐山大震区可能有幔源物质较大规模的侵入,形成了中、上地壳内的低速体。由于较已往的研究结果有更高的空间分辨率,我们得到了一些以往尚未发现的有关唐山地区深部结构的异常特征;(5)首都圈地区内破坏性地震发生的地点绝非偶然,它们均与其相应的深部构造背景密切有关,这为强震发生地点的预测提供了可能。根据本文结果,我们认为,1976年唐山大地震的主因源于上地幔的垂向运动变形及壳幔之间物质及能量的交换,区域水平向应力场为次要作用。这有助于解释为什么能够在我国华北古老克拉通地区发生7级以上强震,在唐山地区再次发生7级以上大地震的可能性值得给予进一步的研究和关注。  相似文献   

19.
This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M w ) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01° and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.  相似文献   

20.
Earthquakes cause static stress perturbations in the nearby crust and mantle. Obeying rheological laws, this stress relaxes in a time frame of months to years with the spatial extent of few km to hundreds of km. While postseismic relaxation associated with major inter-plate earthquakes is well established, there have been few opportunities to explore its occurrence following intraplate earthquakes. The M w 7.6 Bhuj earthquake on January 26, 2001 in western India is considered to be an intraplate event and provided a unique opportunity to examine post-earthquake relaxation processes sufficiently away from plate boundaries. To study the characteristics of transient postseismic deformation, six Global Positioning System campaigns were made at 14 sites. The postseismic transients were delineated after removing plate motions from the position time series. Postseismic deformation has been observed at all the sites in the study area. During 2001?C2007, the site closest to the epicenter exhibited postseismic deformation of about 30 and 25?mm in the north and east components, respectively. Time series of the NS and EW components of the postseismic transients can be fitted to both logarithmic and exponential functions. Close to the epicenter, the logarithmic function fits well to the initial transient, and an exponential function fits well to the later phases. The remaining sites (located east and west of the epicentral region) exhibited significantly diminished north?Csouth relaxation. Rapidly decaying afterslip and poroelastic mechanisms seem to be responsible for postseismic relaxation in the vicinity of epicenter during the initial period subsequent to the Bhuj earthquake. Postseismic relaxation by viscoelastic flow below the seismogenic zone seems to affect displacements across the entire Bhuj region. This paper presents the characteristics of postseismic transients and deformation processes in the scenario of the highly heterogeneous crust in the Bhuj region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号