首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Chiang Khong segment of the Chiang Khong–Lampang–Tak Volcanic Belt is composed of three broadly meridional sub‐belts of mafic to felsic volcanic, volcaniclastic, and associated intrusive rocks. Associated sedimentary rocks are largely non‐marine red beds and conglomerates. Three representative Chiang Khong lavas have Late Triassic (223–220 Ma) laser ablation inductively coupled mass‐spectroscopy U–Pb zircon ages. Felsic‐dominated sequences in the Chiang Khong Western and Central Sub‐belts are high‐K calc–alkaline rocks that range from basaltic to dominant felsic lavas with rare mafic dykes. The Western Sub‐belt lavas have slightly lower high field strength element contents at all fractionation levels than equivalent rocks from the Central Sub‐belt. In contrast, the Eastern Sub‐belt is dominated by mafic lavas and dykes with compositions transitional between E‐mid‐oceanic ridge basalt and back‐arc basin basalts. The Eastern Sub‐belt rocks have higher FeO* and TiO2 and less light rare earth element enrichment than basalts in the high‐K sequences. Basaltic and doleritic dykes in the Western and Central sub‐belts match the composition of the Eastern Sub‐belt lavas and dykes. A recent geochemical study of the Chiang Khong rocks concluded that they were erupted in a continental margin volcanic arc setting. However, based on the dominance of felsic lavas and the mainly non‐marine associated sediments, we propose an alternative origin, in a post‐collisional extensional setting. A major late Middle to early Late Triassic collisional orogenic event is well documented in northern Thailand and Yunnan. We believe that the paucity of radiometric dates for arc‐like lavas in the Chiang Khong–Lampang–Tak Volcanic Belt that precede this orogenic event, coupled with the geochemistry of the Chiang Khong rocks, and strong compositional analogies with other post‐collisional magmatic suites, are features that are more typical of volcanic belts formed in a rapidly evolving post‐collisional, basin‐and range‐type extensional setting.  相似文献   

2.
The orientations of dykes from many of the islands of the Lesser Antilles island arc have been mapped. Most of these dykes can be interpreted in terms of local or regional swarms derived from specific volcanoes of known age, with distinct preferred orientations. Dykes are known from all Cenozoic epochs except the Palaeocene, but are most common in Pliocene, Miocene and Oligocene rocks. A majority of the sampled dykes are basaltic, intrude volcaniclastic host rocks and show a preference for widths of 1–1.25 m. Locally, dyke swarms dilate their hosts by up to 9% over hundreds of metres and up to 2% over distances of kilometres. The azimuths of dykes of all ages show a general NE-SW preferred orientation with a second NW-SE mode particularly in the Miocene rocks of Martinique. The regional setting for these minor intrusions is a volcanic front above a subduction zone composed of three segments: Saba-Montserrat, Guadeloupe-Martinique, St. Lucia-Grenada. The spacing of volcanic centres along this front is interpreted in terms of rising plumes of basaltic magma spaced about 30 km apart. This magma is normally intercepted at crustal depths by dioritic plutons and andesitic/dacitic magma generated there. Plumes which intersect transverse fracture systems or which migrate along the front can avoid these crustal traps. Throughout its history the volcanic front as a whole has migrated, episodically, towards the backarc at an average velocity of about 1 km/Ma. The local direction of plate convergence is negatively correlated with the local preferred orientation of dykes. The dominant NE-SW azimuth mode corresponds closely to the direction of faulting in the sedimentary cover of the backarc and the inferred tectonic fabric of the oceanic crust on which the arc is founded. A generalised model of the regional stress field that controls dyke intrusion outside of the immediate vicinity of central volcanic vents is proposed, in which the maximum horizontal stress parallels the volcanic front except in the northern segment where subduction of the Barracuda Rise perturbs the stress field. There is also evidence of specific temporal changes in the stress field that are probably due to large scale plate kinematics.  相似文献   

3.
河北沽源—多伦地区中生代含铀火山岩地球化学   总被引:1,自引:0,他引:1  
沽源和多伦地区是燕辽多金属成矿带的重要组成部分,中生界主要发育上侏罗统白旗组、张家口组,下白垩统大北沟组和花吉营组。张家口组火山岩分布广、厚度大,是铀(钼)矿床的主要含矿主岩。中生代火山岩属于钙碱性系列,化学成分富硅、偏碱,δ值1.17-7.60。稀土元素特征反映火山岩有壳幔混合和壳源改造两种成因。火山岩形成于弱造山环境,其年龄与库拉—太平洋板块向亚洲板块俯冲的时间吻合。张家口组酸性火山岩具有我国相山产铀火山杂岩富硅、富钾,铕极亏损的地球化学特征。  相似文献   

4.
The Nyamaji volcano is a small eruptive complex of late Miocene age associated with the nearby Usaki ijolite and Sokolo carbonatite intrusion of Homa Bay in the Kavirondo Rift valley of Kenya. It is probably a satellite volcano to the major volcanic structure of Kisingiri - Rangwa which lies 25 km to the west. The Nyamaji volcanic complex is composed of agglomerates, breccias and tuffs erupted from a central vent, whilst at much the same time lavas were extruded from fissures which are now occupied by dykes. These two contemporaneous events gave rise to an interdigitated sequence of pyroclastic deposits and effusive lavas. The pyroclastic rocks of Vulcanian origin cover an area at least 30 km2 in extent, are poorly bedded, and usually are about 25 m (80ft.) thick though they often thin to zero over topographic highs in the pre-existing landscape. At Nyamaji itself, the Strombolian style pyroclastic pile exceeds 330 m (1100 ft.) in thickness over an area of 1 km2, and this marks the position of the original central vent. The fragmental material in the pyroclastic rocks includes ijolite, phonolite, nephelinite, trachyte, carbonatite, granite, and feldspathic and aegirine-bearing fenites; the matrix is sometimes calcareous, sometimes feldspathic. Nephelinitic lavas occur amongst the lowest lavas, but the lavas above are nearly all phonolitic. The oldest dykes are nephelinitic and are rare; the youngest dykes are phonolitic and are abundantly exposed. Both lavas and dykes contain xenoliths similar to those in the pyroclastic rocks. A series of volcanic plugs pierce the lavas. These plugs, mostly non-conduit type, average 200–500 m diameter, are mainly composed of glassy to very fine-grained phonolites, and show good flow structures. The plugs, especially those near the Ruri hills, tend to lie along N - S and E - W lines. The majority of the dykes also lie along these directions. The dominant structural directions within the nearby Usaki ijolite complex and the Wasaki carbonatite are also N - S and E - W, respectively. These directions are quite different from the axis of the Kavirondo rift valley which here is NE - SW, and from the strike of the Precambrian basement. The Nyamaji volcanic structure differs from nearly all the other East African volcanoes by its dominant phonolitic petrochemistry.  相似文献   

5.
Geochemical and mineralogical characteristics of the Eocene volcanic succession in Tafresh area of the Urumieh–Dokhtar Magmatic Assemblage (UDMA) are unique in the 2000‐km‐length assemblage. Demonstrating rather steep rare earth element (REE) patterns and the widespread presence of amphibole (+biotite) phenocrysts are two distinct characters that dominate the Eocene volcanic succession of mainly andesitic composition. Coincidence of the geochemical and mineralogical characteristics of the whole volcanic succession with adakites, rather amphibole‐ (+biotite) rich dacitic (with 61–64 wt% SiO2) stocks and dykes, is considered as the key in unraveling the role of ‘slab‐derived melt contribution’ in petrogenesis of the volcanic succession. Slab‐derived melting has been an ongoing process that metasomatized some parts of the mantle wedge from which hybrid rocks (andesites) are derived. Basalts with distinct signatures of slab melt metasomatism are yet another support for the occurrence of slab melting. Interlayering of normal, island‐arc‐type calc‐alkaline volcanic rocks with the slab‐melt metasomatized basalts and hybrid andesites suggests that the slab melting has been motivated by the subduction. Formation of the Tafresh Caldera, the likely consequence of an explosive eruption, is compatible with the volatile‐bearing nature of the adakitic volcanism in the study area. It is indicated by the ubiquitous presence of the hydrous minerals. Beneath the Tafresh area, in Eocene time, the subducting slab seems to have reached a critical high depth that is enough for the development of amphibolite–eclogite. The slab deformation, motivated by the geometry of subduction and/or the underlying mantle's steeper geotherms, is suggested to have resulted in the slab melting that helped develop a rock assemblage unique to the UDMA.  相似文献   

6.
Ghodrat Torabi 《Island Arc》2010,19(2):277-291
The Jandaq lamprophyres occur as eight mostly parallel dykes, which cross‐cut Eocene volcanic and sedimentary rocks of the Pis‐Kuh Formation in dominant north to south direction. These lamprophyres are mainly composed of kaersutite, clinopyroxene, olivine, feldspar, ilmenite, and spinel as primary minerals. The rocks studied here are enriched in alkalis, TiO2, large ion lithophile elements, and light rare‐earth elements (LREE), with SiO2 content between 41.7 and 46.2 wt%, and are classified as camptonite and alkaline lamprophyre according to the mineralogical and chemical characteristics. These rocks exhibit positive Eu anomalies (Eu/Eu* = 1.08–1.39) and are characterized by strong enrichment in LREE relative to heavy REEs, and also by varied Zr/Hf ratios. The geochemical features of the rocks suggest that the lamprophyre magmas were derived from low‐degree melting of an amphibole garnet lherzolite that experienced strong metasomatism by carbonate‐rich fluids in response to dehydration melting from the subducted slab. The Jandaq lamprophyric magmatism has been attributed to the former subduction of the Central–East Iranian microcontinent confining oceanic crust from the Triassic to Eocene, and decompression melting induced by the extensional basin of the Jandaq area in the early Oligocene.  相似文献   

7.
The Rallier-du-Baty Peninsula forms the southwestern part of the Kerguelen Archipelago (Indian Ocean), whose magmatic activity is related to the long-lived 115-Ma Kerguelen plume. The peninsula is mostly made of alkaline rocks constituting two well-defined ring complexes. This paper focuses on the northern ring complex, which is not yet known. Recent field studies have revealed seven discrete syenitic ring dykes ranging in age from 6.2 to 4.9 Ma, and two later volcanic systems. 40Ar/39Ar dating of a trachytic ignimbrite linked to the Dôme Carva volcano complex yields an age of 26±3 Ka. This represents the last major eruptive event on the Kerguelen Archipelago. The volcanism is bimodal with trachybasalts and trachyandesites constituting the mafic lavas and trachytes and rhyolites constituting the felsic lavas. The volume of erupted felsic magma is by far the larger, and is represented by abundant pyroclastic deposits and lava flows. Boulders of plutonic rocks are found to the northwest of Dôme Carva, and represent intermediate rocks (i.e. monzogabbros and monzonites) that are not present at the surface. Basic rocks are mostly trachybasalts and trachyandesites, while true basalts are scarce. Their mineralogy consists chiefly of plagioclase, olivine, diopside and oxides. Sieve-textured plagioclase is common, as well as corroded olivine and diopside phenocrysts. Peralkaline commenditic trachytes are the most abundant type of acid volcanic rocks. They consist of abundant sanidine, augite and magnetite phenocrysts and interstitial quartz, aegerinic pyroxenes and Na-amphiboles. Ring dykes of quartz-poor alkali feldspar syenites display the same mineralogy, except hornblende is common and replaces diopside. Hornblende is particularly abundant in intermediate monzogabbros. Major and trace element variations of volcanic rocks emphasise the predominant role of fractional crystallisation with a general decrease of MgO, CaO, P2O5, TiO2, FeO, Ba, Sr and Ni from basic to felsic rocks. However, the scattering of the data from the basic rocks indicates that other processes have operated. The overall evolution from trachyte to rhyolite is in agreement with the fractionation of sanidine as the major control. An increase of incompatible elements from trachyte to rhyolite is observed. The felsic lavas display an increase of 87Sr/86Sr(i) without any significant variations in the Nd isotopic composition. The genesis of the basic rocks is complex and reflects concomitant processes of fractional crystallisation, mixing between different basic magmas and probable assimilation of Ba-rich oceanic crust. Major and trace element modelling confirms the possibility of producing the trachytes through continuous differentiation from a basaltic alkaline parent. Discrepancies observed for some trace elements can be explained by the crystallisation of amphibole at an intermediate stage of magma evolution. The overall evolution from trachyte to rhyolite is thought to be controlled by crystal fractionation. High 87Sr/86Sr(i) of the trachytes is interpreted to reflect interaction with an ocean-derived component, probably during assimilation of hydrothermally altered oceanic crust. Boulders of amphibole-bearing monzonites and monzogabbros found to the northwest of Dôme Carva are thought to represent intermediate magma composition that formed at depths but did not erupt.  相似文献   

8.
The Western Volcanic Zone in Iceland (64.19° to 65.22° N) has the morphological characteristics of a distinct Mid-Atlantic ridge segment. This volcanic zone was mapped at a scale of 1:36.000, and 258 intraglacial monogenetic volcanoes from the Late Pleistocene (0.01–0.78?Ma) were identified and investigated. The zone is characterized by infrequent comparatively large volcanic eruptions and the overall volcanic activity appears to have been low throughout the Late Pleistocene. Tholeiitic basaltic rocks dominate in the Western Volcanic Zone with about 0.5?vol.?% of intermediate and silicic rocks. The basalts divide into picrites, olivine tholeiites, and tholeiites. Three main eruptive phases can be distinguished in the intraglacial volcanoes: an effusive deep-water lava phase producing basal pillow lavas, an explosive shallow-water phase producing hyaloclastites and an effusive subaerial capping lava phase. Three evolutionary stages therefore charcterize these volcanoes; late dykes and irregular minor intrusions could be added as the fourth main stage. These intrusions are potential heat sources for short-lived hydrothermal systems and may play an important role in the final shaping of the volcanoes. Substantial parts of the hyaloclastites of each unit are proximal sedimentary deposits. The intraglacial volcanoes divide into two main morphological groups, ridge-shaped volcanoes, i.e., tindars (including pillow lava ridges) and subrectangular volcanoes, i.e., tuyas and hyaloclastite or pillow lava mounds. The volume of the tuyas is generally much larger than that of the tindars. The largest tuya, Eiríksj?kull, is about 48?km3 and therefore the largest known monogenetic volcano in Iceland. Many of the large volcanoes, both tuyas and tindars, show a similar, systematic range in geochemistry. The most primitive compositions were erupted first and the magmas then changed to more differentiated compositions. The ridge-shaped tindars clearly erupted from volcanic fissures and the more equi-dimensional tuyas mainly from a single crater. It is suggested that the morphology and structure of the intraglacial volcanos mainly depends on two factors, (a) tectonic control and (b) availability of magma at the time of eruption.  相似文献   

9.
Petrographic, geochemical and geochronological data on the volcanic sequences of the Sadah region (Yemen Arabic Republic — Y.A.R.) are presented and discussed. Two main volcanic units have been recognized in this area. The older unit (Trap Series) is characterized by alkaline and transitional basalts with minor differentiates. K/Ar age determinations on these rocks give values ranging from 30 to 22 m.y.B.P. The dominance of poorly evolved rock types indicates a fairly rapid ascent of the magmas. The feeding fissures are thought to be NNW-SSE trending fractures. This is deduced by the occurrence of many dykes cutting through the underlying basament which are comparable in both chemical composition and age range to those of the Trap Series. The younger unit (Al Harf Series) is made up of alkaline basalts whose K/Ar ages are around 10 m.y.B.P. and outcrops in a tectonic depression defined by NNW-SSE trending normal faults. The volcanism in the northern Y.A.R. extends from late Oligocene to late Miocene, and follows regional structures parallel to the present-day spreading axis of the Red Sea.  相似文献   

10.
In the Bijar region (Western Iran) two distinct volcanic cycles have been recognized. The first, of Upper Miocene age, consists of high-K cale-alkaline volcanic rocks interpreted as final products of the cale-alkaline Tertiary phase of central Iran. The second volcanic cycle, mostly of Pleistocene age (0.5–1.3 m.v.) consists of undersaturated, mainly potassic, alkaline products. As the lavas of this last phase are slightly fractionated, the chemical differences shown by these rocks have been interpreted as primitive features related to the physical conditions governing the partial melting in the mantle and/or the mantle heterogeneity. In a volcanic center (Sarajukh volcano) contemporaneous basic and acid magmas have been found, and interpreted as derived from two different and independent sources. The alkaline basic volcanism is considered as an expression of disjunctive processes that have affected the western margin of the Iranian plate after the Pliocene.  相似文献   

11.
The Yampa and Elkhead Mountains volcanic fields were erupted into sediment-filled fault basins during Miocene crustal extension in NW Colorado. Post-Miocene uplift and erosion has exposed alkali basalt lavas, pyroclastic deposits, volcanic necks and dykes which record hydrovolcanic and strombolian phenomena at different erosion depths. The occurrence of these different phenomena was related to the degree of lithification of the rocks through which the magmas rose. Hydrovolcanic interactions only occurred where rising basaltic magma encountered wet, porous, non-lithified sediments of the 600 m thick Miocene Brown's Park Formation. The interactions were fuelled by groundwater in these sediments: there was probably no standing surface water. Dykes intruded into the sediments have pillowed sides, and local swirled inclusions of sediment that were injected while fluidized in steam from heated pore water. Volcanic necks in the sediments consist of basaltic tuff, sediment blocks and separated grains derived from the sediments, lithic blocks (mostly derived from a conglomerate forming the local base of the Brown's Park Formation), and dykes composed of disaggregated sediment. The necks are cut by contemporaneous basalt dykes. Hydrovolcanic pyroclastic deposits formed tuff cones up to 100 m thick consisting of bedded air-fall, pyroclastic surge, and massive, poorly sorted deposits (MPSDs). All these contain sub-equal volumes of basaltic tuff and disaggregated sediment grains from the Brown's Park Formation. Possible explosive and effusive modes of formation for the MPSDs are discussed. Contemporaneous strombolian scoria deposits overlie lithified Cretaceous sedimentary rocks or thick basalt lavas. Volcanic necks intruded into the Cretaceous rocks consist of basalt clasts (some with spindle-shape), lithic clasts, and megacrysts derived from the magma, and are cut by basalt dykes. Rarely, strombolian deposits are interbedded with hydrovolcanic pyroclastic deposits, recording changes in eruption behaviour during one eruption. The hydrovolcanic eruptions occurred by interaction of magma with groundwater in the Brown's Park sediments. The explosive interactions disaggregated the sediment. Such direct digestion of sediment by the magma in the vents would probably not have released enough water to maintain a water/magma mass ratio sufficient for hydrovolcanic explosions to produce the tuff cones. Probably, additional water (perhaps 76% of the total) was derived by flow through the permeable sediments (especially the basal conglomerate to the formation), and into the vents.  相似文献   

12.
The 2730-Ma-old Hunter Mine Group (HMG), a dominantly felsic subaqueous volcanic sequence, was formed during early arc construction in the Abitibi greenstone belt (Quebec, Canada). The western part of the HMG contains a felsic dyke swarm up to 1.5 km wide and traceable up-section for 2.5 km. Five distinct generations were identified: (1) aphanitic to feldspar-phyric dykes; (2) quartz-feldspar-phyric dykes with < 5% quartz phenocrysts; (3) quartz-feldspar-phyric dykes with 10–25% quartz phenocrysts; (4) dacitic feldspar-phyric dykes; and (5) mafic dykes. The felsic dykes collectively constitute more than 90% of the dyke swarm. Geochemically, they resemble modern calc-alkaline dacites and rhyolites. Their mantle-normalized incompatible trace-element patterns display a moderate enrichment of Th and light REE relative to HFSE and heavy REE as well as negative Nb, Ta, Eu and Ti anomalies. Most of the major- and trace-element abundance variations in these rocks can be explained by crystallization of feldspars. Geochemical data including depleted mantle-like Nd values suggest that an older sialic substrate was not involved in their genesis. We infer that the felsic rocks were generated by melting of mafic oceanic crust. The swarm was emplaced during nascent oceanic island-arc development and was related to rifting of the arc. The conformably overlying MORB-like basalts and basaltic komatiites of the Stoughton-Roquemaure Group used the same conduits and further indicate splitting of the arc. HMG and associated parts of the Abitibi greenstone belts bear a strong resemblance to modern rifted intraoceanic arcs of the western Pacific.  相似文献   

13.
14.
Diamantiferous diatremes usually occur in the old platforms and shields where deep fractures are «blind»,i.e., these fractures do not come out to the earth surface. Alkaline-ultrabasic magma ascending along these fractures and encountering an impervious cap of sedimentary and/or volcanic rocks had formed, between the cap and the basemnet rocks, intermediate chambers in which the crystallization of diamonds took place. Under the influence of the increasing pressures in these chambers, the roofs were destroyed and diamantiferous diatremes, dykes and veins of kimberlite have been formed. These diatremes are filled with a typical eruptive breccia in which the fragmental material, formed by the destructive explosion of the magma chamber roof, is cemented by a porphyritic, alkaline-ultrabasic rock known under the name of kimberlite.  相似文献   

15.
Subduction‐related volcanic rocks are widespread in the Central Pontides of Turkey, and represented by the Hamsaros volcanic succession in the Sinop area to the north. The volcanic rocks display high‐K calc‐alkaline, shoshonitic and ultra‐K affinities. 40Ar/39Ar age data indicate that the rocks occurred during the Late Cretaceous (ca 82 Ma), and the volcanic suites were coeval. Primitive mantle‐normalized trace element patterns of all the lavas are characterized by strong enrichments in large ion lithophile elements (LILE) (Rb, Ba, K, and Sr), Th, U, Pb, and light rare earth elements (LREE; La, Ce) and prominent negative Nb, Ta, and Ti anomalies, all typical of subduction‐related lavas. There is a systematic increase in the enrichment of incompatible trace elements from the high‐K calc‐alkaline lavas through the shoshonitic to the ultra‐K lavas. In addition, the shoshonitic and ultra‐K lavas have significantly higher 87Sr/86Sr (0.70666–0.70834) and lower 143Nd/144Nd (0.51227–0.51236) initial ratios than coexisting high‐K calc‐alkaline lavas (87Sr/86Sr 0.70576–0.70613, 143Nd/144Nd 0.51245–0.51253). Geochemical and isotopic data show that the shoshonitic and ultra‐K rocks cannot be derived from the high‐K calc‐alkaline suite by any shallow level differentiation process, and point to a derivation from distinct mantle sources. The shoshonitic and ultra‐K rocks were derived from metasomatic veins related to melting of recycled subducted sediments, but the high‐K calc‐alkaline rocks from a lithospheric source metasomatized by fluids from subduction zone.  相似文献   

16.
There are two rifts zones in the Republic of Djibuti: the active Asal rift (birthplace of the Ardoukôba basaltic volcano in 1978) and the poorly known Manda-Inakir rift described here. The most recent volcanic event in the Manda-Inakir rift was the formation of the Kammourta basaltic cone, probably in 1928, accompanied by strong seismic activity. This historic eruption and related tectonic features show that the Manda-Inakir rift, like Asal, is presently active. The Kammourta basalt, of transitional alkaline type, belongs to the Manda-Inakir differentiated series, which ranges from basalt to rhyolite. In contrast, volcanic rocks of the Asal rift are entirely transitional tholeiitic basalt. The differences in magmatic affinity and tectonics between these two rift zones reflect the more advanced evolution of rifting in the Asal zone than in Manda-Inakir.  相似文献   

17.
Western Anatolia, largely affected by extensional tectonics, witnessed widespread volcanic activity since the Early Miocene. The volcanic vents of the region are represented by epicontinental calderas, stratovolcanoes and monogenetic vents which are associated with small-scale intrusions as sills and dykes. The volcanic activity began with an explosive character producing a large ignimbritic plateau all over the region, indicating the initiation of the crustal extension event. These rhyolitic magmas are nearly contemporaneous with granitic intrusions in western Anatolia. The ignimbrites, emplaced approximately contemporaneous with alluvial fan and braided river deposits, flowed over the basement rocks prior to extensional basin formation. The lacustrine deposits overlie the ignimbrites. The potassic and ultrapotassic lavas with lamprophyric affinities were emplaced during the Late Miocene–Pliocene. The volcanic activities have continued with alkali basalts during the Quaternary.  相似文献   

18.
19.
The Salal Creek area, at the north end of the main group of vents for the Quaternary Garibaldi (Cascade) Volcanic Belt, southwestern British Columbia, was the site of several small eruptions of mafic lava during the past 1 Ma. In contrast to the calc-alkaline character of all other parts of the Garibaldi Belt and the geographically nearly coincident Miocene and older Pemberton Volcanic Belt, the Salal Creek area Quaternary lavas are predominantly alkaline basalt and hawaiite with typical alkaline volcanic petrography, chemistry, and fractionation trends. Trace elements Ti-Zr-Y show within-plate character for the suite. As for other Garibaldi Belt volcanic rocks, Rb is low, Rb/Sr very low, and 87Sr/86Sr ratio is low, averaging 0.7032. The oxygen isotopic composition average, 18O = 5.9, is normal for mantle-derived volcanic rocks.This distinct change in magma type at the end of a volcanic are may be the consequence of a smaller degree of melting, melting at a slightly greater depth than calc-alkaline magma production, or a descending-plate edge effect.Ponded flows and pillow-palagonite accumulations indicate that several Salal Creek area eruptions occurred in proximity to ice which filled major valleys during pre-Wisconsin glacial periods.  相似文献   

20.
A brief account is presented for the Lebombo volcanic succession which crops out in Natal, South Africa. The volcanic belt is of late Karoo age and is composed of a thick sequence of basaltic lavas (Sabie River Formation) overlain by an equally voluminous succession of acid-flows (Jozini Formation) erupted over a period of about 70 m.y. Field relationships indicate that the Lebombo basalt pile consists of simple and compound flow units. The rhyolite succession consists of thick (80–284 m) flows units characterised by features found in both ignimbrites and rhyolitic lavas respectively. It is postulated that they were extruded as high temperature, low volatile pyroclastic flows. The Bumbeni volcanic complex which crops out near the southern termination of the Lebombo mountains, disconformably overlies the Jozini Formation and is characterised by a suite of rocks that includes rhyolite lavas, air-fall and ash-flow tuffs, syenite intrusions and basic-intermediate lavas. Dolerite dykes are ubiquitous throughout the succession and an extremely dense concentration of basic intrusions located along the western margin of the belt gives rise to the Rooi Rand dyke swarm. Rare sill-forms are found associated with the mafic volcanies. Acid intrusives are represented by simple and composite quartz-porphyry intrusions and rhyolite dykes. The structure of the Lebombo is that of a faulted monocline, tilted to the east, developed prior to the fragmentation of eastern Gondwanaland. The volcanic belt is located at the tectonic contact between two major Precambrian elements, the 3,000 m.y. Kaapvaal craton to the west and the southerly extension of the 550 m.y. Mozambique belt to the east. It is bounded to the south by the 1,000 m.y. old Natal-Namaqua mobile belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号