首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A detailed study of maceral composition and vitrinite reflectance of the coal deposits from Marki-Jhari-Jamni area, situated in the northwestern extremity of Wardha valley coalfield, Yeotmal district, Maharashtra has been carried out with special reference to their depositional set up. These coals have two distinct types of maceral organization, one having significantly high distribution of the vitrinite group of macerals (35–41%) and the other containing the dominance of inertinite (26–49%). Liptinite maceral group is recorded between 14 and 24%, barring a few coal bands having liptinite maceral group as high as 33–37%. The vitrinite reflectivity ranges from 0.38–0.43%. Thus, they have attained sub-bituminous C rank. Mineral matter in these coals varies between 15 and 22%. The present study suggests that the basin primarily experienced cold climate having intermittent brackish water influx with alternating dry oxidizing spells.  相似文献   

2.
The Tertiary North East Indian coals, classified as sub-bituminous rank, have found less industrial application owing to their physico-chemical attributes. These coals are characterized by low ash (<15%), high volatile matter (>35%) and high sulphur (2.9-4.46%). Majority of the sulphur occurs in organic form affixed to the coal matrix owing to marine influence, is difficult to remove. The coal maceral analysis shows the dominance of vitrinite (>75%) with lesser amounts of liptinite and inertinite. Reflectance measurements (Rmax) of these sub-bituminous coals fall in the range of 0.57 to 0.65. In this study, the petrographical (maceral), thermal and other physico-chemical analyses of some low rank Tertiary sub-bituminous coals from north-east India were carried out to assess their potential for combustion, liquefaction and coal bed methane formation. The petrofactor, conversion (%) and oil yield (%), combustion efficiency of the coal samples were determined. The respective linear correlations of conversion (%) of the coals with their vitrinite contents, petrofactor and oil yield values have been discussed. The relative combustion efficiency of the coals was measured from the thermo gravimetric analysis (TGA) of coals. The influence of maceral composition upon gas adsorption characteristics of these high volatile coals showed the increase in methane adsorption with vitrinite enrichment. Both the maceral and mineral matter contents were observed to have important influence on the gas adsorption characteristics.  相似文献   

3.
Trace-element data are presented for the first time for any coal seam in India, across a full working section, based on systematically collected channel samples of coal, together with their maceral composition. The trace-element variation curves along the seam profile are presented together with group maceral compositions of Kargali Bottom, Kargali Top, Kargali, Kathara, Uchitdih, Jarangdih Bottom, Jarangdih, and Jarangdih Top seams, East Bokaro coalfield. The Kathara and Uchitdih seams have also been sampled at two other localities and lateral variation in data in their trace-element and maceral compositions is also evaluated.The East Bokaro coals have: Ba and Sr > 1000 ppm; Mn < 450 ppm; Zr < 400 ppm; Ni and V < 250 ppm; Cr < 185 ppm; La < 165 ppm; Cu, Nb, and B < 125 ppm; Pb, Co and Y < 75 ppm; Ga, Sn, Mo, In and Yb < 15 ppm; Ag 2 ppm; and Ge 7 ppm. Petrographically, the coals are dominant in vitrinite (33–97%), rare in exinite (<15%), and semifusinite (0.8–49%) is the dominant inertinite maceral, with variable mineral and shaly matter (11–30%), graphic representation of trace elements versus vitrinite, inertinite, and coal ash indicates the affinity of (a) vitrinite with Cu, Ni, Co, V, Ga and B; (b) inertinite with Nb and B; and (c) coal ash (mineral matter) with Pb, Cu, Ni, La, Mn and Y; Ba, Cr, Sr, Zr, Cu and Ni are of organic as well as inorganic origins.The trend of the variation patterns and average compositions of the different seams are shown to be distinct and different. The variation along the same profile is inferred to be different for different seams of the coalfield.Trace-element data for certain coals of seams from different coalfields in the Gondwana basins of India are presented. There is a wide difference for each of these basins with respect to certain elements. This is suggestive of the proportions of Cu, Ni, V, Y, Ba, Sr, Cr, B, Zr and Ag, characterizing the different Gondwana Basins.  相似文献   

4.
Thermally metamorphosed Tertiary age coals from Tanjung Enim in South Sumatra Basin have been investigated by means of petrographic, mineralogical and chemical analyses. These coals were influenced by heat from an andesitic igneous intrusion. The original coal outside the metamorphosed zone is characterized by high moisture content (4.13–11.25 wt.%) and volatile matter content (> 40 wt.%, daf), as well as less than 80 wt.% (daf) carbon and low vitrinite reflectance (VRmax = 0.52–0.76%). Those coals are of subbituminous and high volatile bituminous rank. In contrast the thermally metamorphosed coals are of medium-volatile bituminous to meta-anthracite rank and characterized by low moisture content (only < 3 wt.%) and volatile matter content (< 24 wt.%, daf), as well as high carbon content (> 80 wt.%, daf) and vitrinite reflectance (VRmax = 1.87–6.20%). All the studied coals have a low mineral matter content, except for those which are highly metamorphosed, due to the formation of new minerals.The coalification path of each maceral shows that vitrinite, liptinite and inertinite reflectance converge in a transition zone at VRmax of around 1.5%. Significant decrease of volatile matter occurs in the zone between 0.5% and 2.0% VRmax. A sharp bend occurs at VRmax between 2.0% and 2.5%. Above 2.5%, the volatile matter decreases only very slightly. Between VRr = 0.5% and 2.0%, the carbon content of the coals is ascending drastically. Above 2.5% VRr, the carbon content becomes relatively stable (around 95 wt.%, daf).Vitrinite is the most abundant maceral in low rank coal (69.6–86.2 vol.%). Liptinite and inertinite are minor constituents. In the high rank coal, the thermally altered vitrinite composes 82.4–93.8 vol.%. Mosaic structures can be recognized as groundmasss and crack fillings. The most common minerals found are carbonates, pyrite or marcasite and clay minerals. The latter consist of kaolinite in low rank coal and illite and rectorite in high rank coal. Change of functional groups with rank increase is reflected most of all by the increase of the ratio of aromatic C–H to aliphatic C–H absorbances based on FTIR analysis. The Oxygen Index values of all studied coals are low (OI < 5 mg CO2/g TOC) and the high rank coals have a lower Hydrogen Index (< 130 mg HC/g TOC) than the low rank coals (about 300 mg HC/g TOC). Tmax increases with maturity (420–440 °C for low rank coals and 475–551 °C for high rank coals).Based on the above data, it was calculated that the temperature of contact metamorphism reached 700–750 °C in the most metamorphosed coal.  相似文献   

5.
The South Sumatra basin is among the most important coal producing basins in Indonesia. Results of an organic petrography study on coals from Tanjung Enim, South Sumatra Basin are reported. The studied low rank coals have a mean random huminite reflectance between 0.35% and 0.46% and are dominated by huminite (34.6–94.6 vol.%). Less abundant are liptinite (4.0–61.4 vol.%) and inertinite (0.2–43.9 vol.%). Minerals are found only in small amounts (0–2 vol.%); mostly as iron sulfide.Based on maceral assemblages, the coals can be grouped into five classes: (1) humotelinite-rich group, (2) humodetrinite-rich group, (3) humocollinite-rich group, (4) inertinite-rich group and (5) humodetrinite–liptinite-rich group. Comparing the distribution of maceral assemblages to the maceral or pre-maceral assemblages in modern tropical domed peat in Indonesia reveals many similarities. The basal section of the studied coal seams is represented typically by the humodetrinite–liptinite-rich group. This section might be derived from sapric or fine hemic peat often occurring at the base of modern peats. The middle section of the seams is characterized by humotelinite-rich and humocollinite-rich groups. The precursors of these groups were hemic and fine hemic peats. The top section of the coal seams is typically represented by the humodetrinite-rich or inertinite-rich group. These groups are the counterparts of fibric peat at the top of the modern peats. The sequence of maceral assemblages thus represents the change of topogenous to ombrogenous peat and the development of a raised peat bog.A comparison between the result of detailed maceral assemblage analysis and the paleodepositional environment as established from coal maceral ratio calculation indicates that the use of coal maceral ratio diagrams developed for other coal deposits fails to deduce paleo-peat development for these young tropical coals. In particular, mineral distribution and composition should not be neglected in coal facies interpretations.  相似文献   

6.
This paper presents geological settings, stratigraphy, coal quality, petrography, reserves and the tectonic history of the Mongolian coal-bearing basins. This is based on a synthesis of the data from nearly 50 coal deposits. The results of ultimate and proximate analyses, and calorific value, maceral composition and vitrinite reflectance data is given.The coal deposits of Mongolia tend to become younger from west to east and can be subdivided into two provinces, twelve basins, and three areas. Main controlling factor of coal rank is the age of the coal bearing sequences. Western Mongolian coal-bearing province contains mostly high rank bituminous coal in strata from Late Carboniferous. The basins in southern Mongolia and the western part of central Mongolia have low rank bituminous coal in strata from the Permian. The northern and central Mongolian basins contain mainly Jurassic subbituminous coal, whereas the Eastern Mongolian province has Lower Cretaceous lignite. The Carboniferous, Permian and Jurassic coal-bearing sequences were mainly deposited in foreland basins by compressional tectonic event, whereas Cretaceous coal measures were deposited in rift valleys caused by extensional tectonic event. Petrographically, Mongolian coals are classified as humic type. Vitrinite/huminite groups of Carboniferous, Permian, and Cretaceous coal range from 44.9% to 82.9%. Inertinite group varies between 15.0% and 53.3%, but liptinite group does not exceed more than 7%. Jurassic coals are characterized by high percentages of vitrinite (87.3% to 96.6%) and liptinite groups (up to 11.7%). This might be explained by paleoclimatic conditions. Mongolian coal reserves have been estimated to be 10.2 billion tons, of which a predominant portion is lignite in the Eastern Mongolian province and coking coal in the South Gobi basin.  相似文献   

7.
Coals from the D-2 and D-3 boreholes in the Grove Center 7 1/2 min quadrangle, Union County, KY, have been found to be highly brecciated and mineralized. The mineralization is dominated by a carbonate assemblage with minor sulfides and sulfates. Included among the secondary minerals is the lead selenide, clausthalite. Overall, the emplacement of secondary vein minerals was responsible for raising the rank of the coals from the 0.6–0.7% Rmax range found in the area to as high as 0.95–0.99% Rmax.A 1.3-m-thick coal found in one of the boreholes is unique among known Western Kentucky coals in having less than 50% vitrinite. Semifusinite and fusinite dominate the maceral assemblages. The coal is also low in sulfur coal, which is unusual for the Illinois Basin. It has an ash yield of less than 10%; much of it dominated by pervasive carbonate veining. The age of the thick coal in core D-2 is similar to that of the Elm Lick coal bed, found elsewhere in the Western Kentucky coalfield. The coals in D-3 are younger, having Stephanian palynomorph assemblages.  相似文献   

8.
The coal seams of Sawang Colliery, East Bokaro Coalfields are bituminous to sub-bituminous in nature and categorized as high gaseous seams (degree II to degree III level). These seams have the potential for coal bed methane (CBM) and their maturity increases with increasing depth, as a result of enhanced pressure-temperature conditions in the underground. The vitrinite maceral group composition of the investigated coal seams ranges from 62.50–83.15%, whereas the inertinite content varies from 14.93–36.81%. The liptinite content varies from 0.66% to 3.09%. The maximum micro-pores are confined within the vitrinite group of macerals. The coal seams exhibit vitrinite reflectance values (Ro% calculated) from 0.94% (sample CG-97) to 1.21% (sample CG-119). Proximate analyses of the investigated coal samples reveal that the moisture content (M%) ranges from 1.28% to 2.98%, whereas, volatile matter (VM%) content is placed in the range of 27.01% to 33.86%. The ash content (A%) ranges from 10.92% to 30.01%. Fixed carbon (FC%) content varies from 41.53% to 55.93%. Fuel ratio variation shows a restricted range from 1.53 to 1.97. All the coal samples were found to be strongly caking and forming coke buttons. The present study is based on the adsorption isotherm experiments carried out under controlled P-T conditions for determination of actual gas adsorption capacity of the coal seams. This analysis shows that the maximum methane gas adsorbed in the coal sample CG-81 is 17 m3/t (Std. daf), at maximum pressure of 5.92 MPa and experimental temperature of 30°C. The calculated Langmuir regression parameters PL and VL range from 2.49 to 3.75 MPa and 22.94 to 26.88 m3/t (Std. daf), respectively.  相似文献   

9.
This work presents the results from evaluating the gases sorbed by coal samples extracted from the Paleocene Guasare Coalfield (Marcelina Formation, northwestern Venezuela), as well as by their distinct maceral concentrates. The aim of this work has been to obtain an initial experimental main value of the gas content per unit weight of high volatile bituminous A coal samples from the open-pit Paso Diablo mine. An additional goal was to study differences in the CH4 storage ability of the distinct maceral groups forming part of the coal matrix. Both the coal samples and the maceral concentrates were studied by thermogravimetric analysis (TGA) in order to determine the temperature to be used in subsequent experiments. On-line analyses of hydrocarbons (C1, C2, C3) and CO2 yielded gas concentrations, plus δ13C values. Thermogenic gas is prevalent in the Guasare coals with vitrinite reflectance (%Ro) values from 0.65% to 0.88%. The amount of gas retained in the coals and maceral concentrates was measured with a special device that allows determination of the volume of gas sorbed by a solid sample subjected to controlled thermal treatment. The average coalbed gas concentration obtained was 0.51 cm3/g. The following list of maceral concentrates shows the relative capacity for the volume of sorbed gas per unit weight: inertinite > low-density vitrinite > liptinite ≈ high-density vitrinite. It is concluded that the gas volumes retained in the distinct maceral concentrates are not controlled by porosity but rather by their microscopic morphology.  相似文献   

10.
The quantitative maceral study of the Queen seam from Mailaram coalfield of Godavari valley has displayed alternate coal bands rich in vitrinite/liptinite or inertinite. The random vitrinite reflectance (Ro max. %) of these coals, from top part ranges from 0.50 to 0.64%. However, the bottom part of the seam has indicated lower reflectance, between 0.49 and 0.52%. Thus, the Queen seam, in general, has attained high volatile bituminous C rank. The study indicates that the depositional site has been a slowly sinking basin that witnessed alternate dry (oxidizing) and wet (reducing) spells. This subsequently caused fluctuation in water table of the basin and the formation of oxic and anaoxic moor condition, where accumulated vegetal resource transformed into mixed and fusic coal types in due course of time. Being high in liptinite and vitrinite contents and low mineral matter, the Queen seam of Mailaram coalfield has high economic potential.  相似文献   

11.
The coal deposits of Meghalaya occur in the Lakadong Sandstone (25–250 m thick) of Eocene age. The coal-bearing formations are understood to have been deposited over platform areas in estuarine and lagoonal environments and subjected to recurrent marine transgressions and regressions during the Eocene period. There are three major groups of coalfields in Meghalaya, viz. Garo Hills (West Daranggiri and Siju Coalfields), Khasi Hills (Langrin and Mawlong–Shella Coalfields) and minor coalfields (Laitryngew, Cherrapunji and Bapung Coalfields). Pillar coal samples have been collected from 10 seams at 15 locations and have been subjected to a detailed petrographic examination for their characterization. An effort has been made to trace the path of their evolution based on coal petrography-based models. The quantitative petrographic analysis shows that these coals are vitrinite rich (45.0–92.9%, mean 73.4% mmf basis) with low concentration of inertinite (0.0–13.8%, mean 3.0% mmf basis), whereas the liptinite occurs in appreciable concentration (5.5–53.1%, mean 22.5% mmf basis). Further, these coals are rich in vitrite (51.6–100%, mean 78.3% mmf basis). The volatile matter (from 38.5% to 70.0%, d.a.f.) and vitrinite reflectance (Rom from 0.37% to 0.68%) characterize these coals, as per German (DIN) and North American classification, approximately as sub-bituminous ‘C' to high volatile ‘C' bituminous. The occurrence of teleutospore (single, double and triple celled) suggests that these coals have originated from a characteristic Tertiary flora. The maceral and microlithotype composition in the coal petrography-based depositional models suggest that the coals of Garo Hills were formed in reed to open water swamps in telmatic to limnic conditions. The coals of Khasi Hills were dominated by forest swamps and telmatic to limno-telmatic conditions. In addition, the occurrence of large-size resins suggests prolific growth of conifers in the swamps.  相似文献   

12.
The oil-generating potential of coals and other organic-rich sediments from the Late Oligocene–Early Miocene Nyalau Formation, the offshore extension of which is believed to be a major source rock, is evaluated. Coals of the Nyalau Formation are typically dominated by vitrinite, with moderate and low amounts of exinite and inertinite, respectively. Significant amounts of clay minerals are present in these coals and those containing between 15 to 65% mineral matter by volume are termed carbargilite. The samples analysed range from sub-bituminous to high-volatile bituminous rank, possessing vitrinite reflectance in the range 0.42% to 0.72%. Tmax values range from 425°–450°C which is in good agreement with vitrinite reflectance data. Good oil-generating potential is anticipated from these coals and carbargilites with moderate to rich exinite content (15–35%). This is supported by their high hydrogen indices of up to 400 mgHC/gTOC, Py–GC (S2) pyrograms with n-alkane/alkene doublets extending beyond nC30, and their being in the early to mid-mature oil-window range. Petrographically, the most significant evidence of the oil-generating potential of these coals is the generation of petroleum-like materials (exsudatinite) visible under the microscope. Exsudatinite is a secondary maceral, commonly considered to represent the very beginning of oil generation in coal, which is shown here to also have an important role to play in hydrocarbon expulsion. The precursor of exsudatinite in these coals is the maceral bituminite which readily expels or mobilizes to hydrocarbon-like material in the form of oil smears and/or exsudatinite as observed under the microscope. The maceral bituminite is considered to play a major generative role via early exsudatinite generation, which is considered to facilitate the overall expulsion process in coaly source rocks.  相似文献   

13.
A large collection of well-characterized coals, documented in the Center for Applied Energy Research's (CAER) database, was used to estimate the CO2 content of maceral concentrates from Kentucky and Illinois high volatile bituminous coals. The data showed no correlation between CO2 versus coal ranks and between CO2 versus maceral content. Subsequently, eight sets of low-ash density-gradient centrifugation (DGC) maceral concentrates from five coal beds were examined, spanning in the high volatile rank range. Heating value was not determined on the concentrates, but instead was calculated using the Mott–Spooner formula. There was a good correlation between predicted CO2 and maceral content for the individual iso-rank (based on vitrinite reflectance, analyzed on whole (parent) coal) sets. In general, the predicted CO2 increases from liptinite-rich through vitrinite-rich to inertinite-rich concentrates (note: no “concentrates” are absolutely monomaceral).  相似文献   

14.
The aim of the present study is the petrographic and chemical characterization of the coal at the Figueira Power Plant, Paraná, Brazil, prior and after the beneficiation process and the chemical characterization of fly and bottom ashes generated in the combustion process.Petrographic characterization was carried out through maceral analysis and vitrinite reflectance measurements. Chemical characterization included proximate analysis, determination of calorific value and sulphur content, ultimate analysis, X-ray diffraction, X-ray fluorescence, Inductively Coupled Plasma — Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma — Atomic Emission Spectrometry (ICP-AES) analysis, and determination of Total Organic Carbon (TOC) content.Vitrinite reflectance analyses indicate a high volatile B/C bituminous coal (0.61 to 0.73% Rrandom). Maceral analyses show predominance of the vitrinite maceral group (51.6 to 70.9 vol.%, m.m.f). Except of the Run of mine (ROM) coal sample, the average calorific value of the coals is 5205 kcal/kg and ash yields range from 21.4 to 38.1 wt.%. The mineralogical composition (X-ray diffraction) of coals includes kaolinite, quartz, plagioclase and pyrite, whereas fly and bottom ashes are composed by mullite, ettringite, quartz, magnetite, and hematite. Analyses of major elements from coal, fly and bottom ashes indicate a high SiO2, Al2O3, and Fe2O3 content. Trace elements analysis of in-situ and ROM coals by ICP-MS and ICP-AES show highest concentration in Zn and As. Most of the toxic elements such as As, Cd, Cr, Mo, Ni, Pb, and Zn are significantly reduced by coal beneficiation. Considering the spatial distribution of trace elements in the beneficiated coal samples, which were collected over a period of three months, there appears to be little variation in Cd and Zn concentrations, whereas trace elements such as As, Mo, and Pb show a larger variation.In the fly and bottom ashes, the highest concentrations of trace elements were determined for Zn and As. When compared with trace element concentrations in the feed coal, fly ashes show a significant enrichment in most trace elements (As, B, Be, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sb, Tl, and Zn), suggesting a predominantly volatile nature for these elements. In contrast, Sn is distributed evenly within the different ash types, whereas U shows depleted concentration in both bottom and fly ash samples.According to the International Classification of in-seam coals the Cambuí coals are of para/ortho bituminous rank of low grade (except for the ROM sample), and are characterized by the predominance of vitrinite macerals.  相似文献   

15.
The study of coal succession from bore hole No. Q-448 of Yellendu area of the Godavari valley coalfield, Andhra Pradesh reveals that the coals of Queen seam are high volatile bituminous C in rank and have vitrinite reflectance (Ro max %) varying between of 0.52 and 0.62%. The petrographic constitution however, suggests that the depositional site appears to be a slowly sinking and tectonically controlled basin, having received continuous supply of vegetal matter rich resource at regular intervals. The formation of inertinite rich coal suggests, oxidising enviornment of deposition. The dominence of vitrinite and liptinite constituents in these coals postulates the existence of alternating cold and humid spells. The present study indicates that these coals originated under an alternate oxic and anoxic moor condition.  相似文献   

16.
This paper discusses the result of the detailed investigations carried out on the coal characteristics, including coal petrography and its geochemistry of the Pabedana region. A total of 16 samples were collected from four coal seams d2, d4, d5, and d6 of the Pabedana underground mine which is located in the central part of the Central-East Iranian Microcontinent. These samples were reduced to four samples through composite sampling of each seam and were analyzed for their petrographic, mineralogical, and geochemical compositions. Proximate analysis data of the Pabedana coals indicate no major variations in the moisture, ash, volatile matter, and fixed carbon contents in the coals of different seams. Based on sulfur content, the Pabedana coals may be classified as low-sulfur coals. The low-sulfur contents in the Pabedana coal and relatively low proportion of pyritic sulfur suggest a possible fresh water environment during the deposition of the peat of the Pabedana coal. X-ray diffraction and petrographic analyses indicate the presence of pyrite in coal samples. The Pabedana coals have been classified as a high volatile, bituminous coal in accordance with the vitrinite reflectance values (58.75–74.32 %) and other rank parameters (carbon, calorific value, and volatile matter content). The maceral analysis and reflectance study suggest that the coals in all the four seams are of good quality with low maceral matter association. Mineralogical investigations indicate that the inorganic fraction in the Pabedana coal samples is dominated by carbonates; thus, constituting the major inorganic fraction of the coal samples. Illite, kaolinite, muscovite, quartz, feldspar, apatite, and hematite occur as minor or trace phases. The variation in major elements content is relatively narrow between different coal seams. Elements Sc,, Zr, Ga, Ge, La, As, W, Ce, Sb, Nb, Th, Pb, Se, Tl, Bi, Hg, Re, Li, Zn, Mo, and Ba show varying negative correlation with ash yield. These elements possibly have an organic affinity and may be present as primary biological concentrations either with tissues in living condition and/or through sorption and formation of organometallic compounds.  相似文献   

17.
The Jurassic coals of the Junggar and Turpan-Hami basins, Xinjiang, China, are characterized by abundant vitrinite. Microscopic analysis of Junggar coal samples indicates that they contain desmocollinite and hydrogen-rich vitrinite with a low reflectivity. The hydrocarbon-generating potential of various macerais follows the decreasing order of exinite > vitrinite > inertinite. However, desmocollinite is a principal maceral for hydrocarbon generation in this area because the content of vitrinite is higher than that of exinite. Data from simulating experiments and infrared spectra show that the hydrocarbon-generating process occurred primarily at the lower-mature stage in the Middle-Lower Jurassic coal measures. Generally, crude oil from the Qigu oilfield has a close similarity in hopanoid distribution to the vitrinite and exinite from the Jurassic strata with C23-C32 pentacyclic triterpanes and γ-lupane being present. The distribution of steranes is also similar. C29-sitostane is dominant and Q27 ergostane is subordinate. Only a trace amount of cholestane is present. All this suggests that the crude oil from the Qigu oilfield was derived from Jurassic coal measures.  相似文献   

18.
鄂尔多斯盆地延安组煤有机岩石学研究   总被引:9,自引:1,他引:8  
鄂尔多斯盆地侏罗纪延安组煤系地层可否成为该盆地另一套油源岩的问题,历来存有争议。系统的煤岩和有机岩石学分析表明:煤中倾油性的壳质组分含量低,基质镜质体的类型也不利于生油,因此,延安组煤系有机质不大可能形成具有工业价值的煤成油藏  相似文献   

19.
A detailed macro- and micro-petrological investigation of 8 coal seam profiles of Eocene age from the sub-Himalayan zone of Jammu was undertaken in order to characterize them petrographically and to focus on their evolution. The quantitative data suggest that these coals are vitrinite rich, with low concentrations of inertinite and rare occurrences of liptinite. According to microlithotype concentration these coals may be characterized as vitrinite rich, with minor amounts of clarite, vitrinertite and trimacerite. The dominant minerals are clays, siderite and pyrite (occurring mostly as disseminations, cavity filling and in framboidal state). These coals are vitric in type, low volatile bituminous in rank and ashy in grade.The petrographic character and the presence of teleutospores suggest that, similar to other Tertiary coal deposits in the world, the angiosperm flora contributed chiefly to the development of coal facies in the area. The maceral and microlithotype composition shows that these coals originated from the low forest and undisturbed (in situ) peat in foreland basins under limno-telmatic depositional conditions. The water was brackish with regular influxes of fresh water.  相似文献   

20.
Upper Triassic to Middle Jurassic coals from the Alborz region of northern Iran were analyzed by reflected light-fluorescence microscopy and Rock Eval 6® pyrolysis to evaluate their regional rank variation, degree of hydrothermal alteration, and petroleum generative potential. The coal ranks in the region range from a low of 0.69%RoR in the Glanddeh-Rud area to a high of 1.02%RoR in the Gajereh area. Tmax (°C) values (Rock Eval 6 pyrolysis) also increase progressively with increasing vitrinite %Ro values, however Tmax is suppressed lower than would be expected for each rank ranging from 428 °C for the Glandeeh coal to 438 °C for the Gajereh coal. Tmax suppression may be caused by maceral composition and soluble organics within the coal. Moderately high hydrogen indices, persistent and oily exudations from the coals during UV exposure, and traces of hydrocarbon fluid inclusions suggest that liquid petroleum was likely generated within some of the coals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号