首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 357 毫秒
1.
陈拉  黄敬峰  王秀珍 《遥感学报》2008,12(1):143-151
本研究利用水稻冠层高光谱数据,模拟NOAA-AVHRR,Terra-MODIS和Landsat-TM的可见光波段反射率数据,计算各传感器的多种植被指数(NDVI,RVI,EVI,GNDVI,GRVI和Red-edge RVI),比较植被指数模型对水稻LAI的估测精度,分析不同植被指数对LAI变化的敏感性.相对于红波段植被指数,红边比值植被指数(Red-edge RVI)和绿波段指数GRVI与LAI有更好的线性相关关系,而GNDVI和LAI呈现更好的对数相关关系.MODIS的Red-edge RVI指数不仅模型拟合的精度最高,还有独立数据验证的估测精度也最高,而且它的验证精度较拟合精度下降幅度最小;其次是绿波段构建的GNDVI和GRVI植被指数的估测精度,再次是NDVI和EVI的估测精度,而RVI的估测精度最差.敏感性分析发现,13个植被指数对水稻LAI的估测能力都随着LAI的增加而下降,但归一化类植被指数和比值类植被指数对LAI变化反应的差异明显,归一化类植被指数在LAI较低时(LAI<1.5)对LAI变化的反应开始非常敏感,但迅速下降,而比值类植被指数在LAI较低时,明显小于归一化类植被指数,之后随着LAI的增大(LAI>1.5)比值类植被指数对LAI的变化敏感性,则明显高于归一化类植被指数.Red-edge RVI和绿波段指数GRVI和LAI不仅表现了很好的线性相关关系,而且在LAI大于2.9左右保持较高的敏感性.  相似文献   

2.
Recent studies in Amazonian tropical evergreen forests using the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) have highlighted the importance of considering the view-illumination geometry in satellite data analysis. However, contrary to the observed for evergreen forests, bidirectional effects have not been evaluated in Brazilian subtropical deciduous forests. In this study, we used MISR data to characterize the reflectance and vegetation index anisotropies in subtropical deciduous forest from south Brazil under large seasonal solar zenith angle (SZA) variation and decreasing leaf area index (LAI) from the summer to winter. MODIS data were used to observe seasonal changes in the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Topographic effects on their determination were inspected by dividing data from the summer to winter and projecting results over a digital elevation model (DEM). By using the PROSAIL, we investigated the relative contribution of LAI and SZA to vegetation indices (VI) of deciduous forest. We also simulated and compared the MISR NDVI and EVI response of subtropical deciduous and tropical evergreen forests as a function of the large seasonal SZA amplitude of 33°. Results showed that the MODIS-MISR NDVI and EVI presented higher values in the summer and lower ones in the winter with decreasing LAI and increasing SZA or greater amounts of canopy shadows viewed by the sensors. In the winter, NDVI reduced local topographic effects due to the red-near infrared (NIR) band normalization. However, the contrary was observed for the three-band EVI that enhanced local variations in shaded and sunlit surfaces due to its strong dependence on the NIR band response. The reflectance anisotropy of the MISR bands increased from the summer to winter and was stronger in the backscattering direction at large view zenith angles (VZA). EVI was much more anisotropic than NDVI and the anisotropy increased from the summer to winter. It also increased from the forward scatter to the backscattering direction with the predominance of sunlit canopy components viewed by MISR, especially at large VZA. Modeling PROSAIL results confirmed the stronger anisotropy of EVI than NDVI for the subtropical deciduous and tropical evergreen forests. PROSAIL showed that LAI and SZA are coupled factors to decrease seasonally the VIs of deciduous forest with the first one having greater importance than the latter. However, PROSAIL seasonal variations in VIs were much smaller than those observed with MODIS data probably because the effects of shadows in heterogeneous canopy structures or/and cast by emergent trees and from local topography were not modeled.  相似文献   

3.
The retrieval of canopy biophysical variables is known to be affected by confounding factors such as plant type and background reflectance. The effects of soil type and plant architecture on the retrieval of vegetation leaf area index (LAI) from hyperspectral data were assessed in this study. In situ measurements of LAI were related to reflectances in the red and near-infrared and also to five widely used spectral vegetation indices (VIs). The study confirmed that the spectral contrast between leaves and soil background determines the strength of the LAI–reflectance relationship. It was shown that within a given vegetation species, the optimum spectral regions for LAI estimation were similar across the investigated VIs, indicating that the various VIs are basically summarizing the same spectral information for a given vegetation species. Cross-validated results revealed that, narrow-band PVI was less influenced by soil background effects (0.15 ≤ RMSEcv ≤ 0.56). The results suggest that, when using remote sensing VIs for LAI estimation, not only is the choice of VI of importance but also prior knowledge of plant architecture and soil background. Hence, some kind of landscape stratification is required before using hyperspectral imagery for large-scale mapping of vegetation biophysical variables.  相似文献   

4.
Leaf area index (LAI) and biomass are important indicators of crop development and the availability of this information during the growing season can support farmer decision making processes. This study demonstrates the applicability of RapidEye multi-spectral data for estimation of LAI and biomass of two crop types (corn and soybean) with different canopy structure, leaf structure and photosynthetic pathways. The advantages of Rapid Eye in terms of increased temporal resolution (∼daily), high spatial resolution (∼5 m) and enhanced spectral information (includes red-edge band) are explored as an individual sensor and as part of a multi-sensor constellation. Seven vegetation indices based on combinations of reflectance in green, red, red-edge and near infrared bands were derived from RapidEye imagery between 2011 and 2013. LAI and biomass data were collected during the same period for calibration and validation of the relationships between vegetation indices and LAI and dry above-ground biomass. Most indices showed sensitivity to LAI from emergence to 8 m2/m2. The normalized difference vegetation index (NDVI), the red-edge NDVI and the green NDVI were insensitive to crop type and had coefficients of variations (CV) ranging between 19 and 27%; and coefficients of determination ranging between 86 and 88%. The NDVI performed best for the estimation of dry leaf biomass (CV = 27% and r2 = 090) and was also insensitive to crop type. The red-edge indices did not show any significant improvement in LAI and biomass estimation over traditional multispectral indices. Cumulative vegetation indices showed strong performance for estimation of total dry above-ground biomass, especially for corn (CV  20%). This study demonstrated that continuous crop LAI monitoring over time and space at the field level can be achieved using a combination of RapidEye, Landsat and SPOT data and sensor-dependant best-fit functions. This approach eliminates/reduces the need for reflectance resampling, VIs inter-calibration and spatial resampling.  相似文献   

5.
The common spectra wavebands and vegetation indices (VI) were identified for indicating leaf nitrogen accumulation (LNA), and the quantitative relationships of LNA to canopy reflectance spectra were determined in both wheat (Triticum aestivum L.) and rice (Oryza sativa L.). The 810 and 870 nm are two common spectral wavebands indicating LNA in both wheat and rice. Among all ratio vegetation indices (RVI), difference vegetation indices (DVI) and normalized difference vegetation indices (NDVI) of 16 wavebands from the MSR16 radiometer, RVI (870, 660) and RVI (810, 660) were most highly correlated to LNA in both wheat and rice. In addition, the relations between VIs and LNA gave better results than relations between single wavebands and LNA in both wheat and rice. Thus LNA in both wheat and rice could be indicated with common VIs, but separate regression equations are better for LNA monitoring.  相似文献   

6.
ABSTRACT

The temporal resolution of vegetation indices (VIs) determines the details of seasonal variation in vegetation dynamics observed by remote sensing, but little has been known about how the temporal resolution of VIs affects the retrieval of land surface phenology (LSP) of grasslands. This study evaluated the impact of temporal resolution of MODIS NDVI, EVI, and per-pixel green chromatic coordinate (GCCpp) on the quality and accuracy of the estimated LSP metrics of prairie grasslands. The near-surface PheonoCam phenology data for grasslands centered over Lethbridge PhenoCam grassland site were used as the validation datasets due to the lack of in situ observations for grasslands in the Prairie Ecozone. MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) data from 2001 to 2017 were used to compute the time series of daily reference and to simulate 2–32 day MODIS VIs. The daily reference and simulated multi-day time series were fitted with the double logistic model, and the LSP metrics were then retrieved from the modeled daily time series separately. Comparison within satellite-based estimates showed no significant difference in the phenological metrics derived from daily reference and multi-day VIs resampled at a time step less than 18 days. Moreover, a significant decline in the ability of multi-day VIs to predict detailed temporal dynamics of daily reference VIs was revealed as the temporal resolution increased. Besides, there were a variety of trends for the onset of phenological transitions as the temporal resolution of VIs changed from 1 to 32 days. Comparison with PhenoCam phenology data presented small and insignificant differences in the mean bias error (MBE) and the mean absolute error (MAE) of grassland phenological metrics derived from daily, 8-, 10-, 14-, and 16-day MODIS VIs. Overall, this study suggested that the MODIS VIs resampled at a time step less than 18 days are favorable for the detection of grassland phenological transitions and detailed seasonal dynamics in the Prairie Ecozone.  相似文献   

7.
Forests play a vital role in biological cycles and environmental regulation. To understand the key processes of forest canopies (e.g., photosynthesis, respiration and transpiration), reliable and accurate information on spatial variability of Leaf Area Index (LAI), and its seasonal dynamics is essential. In the present study, we assessed the performance of biophysical parameter (LAI) retrieval methods viz. Look-Up Table (LUT)-inversion, MLRA-GPR (Machine Learning Regression Algorithm- Gaussian Processes Regression) and empirical models, for estimating the LAI of tropical deciduous plantation using ARTMO (Automated Radiative Transfer Models Operator) tool and Sentinel-2 satellite images. The study was conducted in Central Tarai Forest Division, Haldwani, located in the Uttarakhand state, India. A total of 49 ESUs (Elementary Sampling Unit) of 30 m × 30 m size were established based on variability in composition and age of plantation stands. In-situ LAI was recorded using plant canopy imager during the leaf growing, peak and senescence seasons. The PROSAIL model was calibrated with site-specific biophysical and biochemical parameters before used to the predicted LAI. The plantation LAI was also predicted by an empirical approach using optimally chosen Sentinel-2 vegetation indices. In addition, Sentinel-2 and MODIS LAI products were evaluated with respect to LAI measurements. MLRA-GPR offered best results for predicting LAI of leaf growing (R2 = 0.9, RMSE = 0.14), peak (R2 = 0.87, RMSE = 0.21) and senescence (R2 = 0.86, RMSE = 0.31) seasons while LUT inverted model outperformed VI’s based parametric regression model. Vegetation indices (VIs) derived from 740 nm, 783 nm and 2190 nm band combinations of Sentinel-2 offered the best prediction of LAI.  相似文献   

8.
There is growing evidence that imaging spectroscopy could improve the accuracy of satellite-based retrievals of vegetation attributes, such as leaf area index (LAI) and biomass. In this study, we evaluated narrowband vegetation indices (VIs) for estimating overstory effective LAI (LAIeff) in a southern boreal forest area for the period between the end of snowmelt and maximum LAI using three Hyperion images and concurrent field measurements. We compared the performance of narrowband VIs with two SPOT HRVIR images, which closely corresponded to the imaging dates of the Hyperion data, and with synthetic broadband VIs computed from Hyperion images. According to the results, narrowband VIs based on near infrared (NIR) bands, and NIR and shortwave infrared (SWIR) bands showed the strongest linear relationships with LAIeff over its typical range of variation and for the studied period of the snow-free season. The relationships were not dependent on dominant tree species (coniferous vs. broadleaved), which is an advantage in heterogeneous boreal forest landscapes. The best VIs, particularly those based on NIR spectral bands close to the 1200 nm liquid water absorption feature, provided a clear improvement over the best broadband VIs.  相似文献   

9.
徐雯靓  王少军 《遥感学报》2014,18(4):826-842
为了消除土壤背景信息对植被指数的影响,近几十年发展了土壤调节植被指数系列(SAVI family)。在不同环境条件下,不同指数抗土壤影响的能力不同。在总结了以消除土壤影响为目的的植被指数建立过程的基础上,利用PROSAIL辐射传输模型模拟的两组数据集,比较分析了NDVI、SAVI、TSAVI、MSAVI、OSAVI和GESAVI在不同叶面积指数(LAI)对应不同土壤背景的情况下抗土壤干扰、表达植被信息的能力,指出了不同植被指数应用的最适环境条件。结合植被指数—信噪比图,将这6种植被指数分成3类:在中低LAI值下,若植被覆盖度均匀,OSAVI和TSAVI有较强的消除土壤影响、表达植被信息的能力;当区域LAI分布不均、植被类型混杂时,MSAVI在表达植被信息时具有较好的稳定性。根据每类植被指数的特征,利用MODIS-VI和MODIS-LAI产品初步验证了上述结论的有效性。  相似文献   

10.
We used RapidEye and Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra data to study terrain illumination effects on 3 vegetation indices (VIs) and 11 phenological metrics over seasonal deciduous forests in southern Brazil. We applied TIMESAT for the analysis of the Enhanced Vegetation Index (EVI) and the Normalized Difference Vegetation Index (NDVI) derived from the MOD13Q1 product to calculate phenological metrics. We related the VIs with the cosine of the incidence angle i (Cos i) and inspected percentage changes in VIs before and after topographic C-correction. The results showed that the EVI was more sensitive to seasonal changes in canopy biophysical attributes than the NDVI and Red-Edge NDVI, as indicated by analysis of non-topographically corrected RapidEye images from the summer and winter. On the other hand, the EVI was more sensitive to terrain illumination, presenting higher correlation coefficients with Cos i that decreased with reduction in the canopy background L factor. After C-correction, the RapidEye Red-Edge NDVI, NDVI, and EVI decreased 2%, 1%, and 13% over sunlit surfaces and increased up to 5%, 14%, and 89% over shaded surfaces, respectively. The EVI-related phenological metrics were also much more affected by topographic effects than the NDVI-derived metrics. From the set of 11 metrics, the 2 that described the period of lower photosynthetic activity and seasonal VI amplitude presented the largest correlation coefficients with Cos i. The results showed that terrain illumination is a factor of spectral variability in the seasonal analysis of phenological metrics, especially for VIs that are not spectrally normalized.  相似文献   

11.
Spectral invariants provide a novel approach for characterizing canopy structure in forest reflectance models and for mapping biophysical variables using satellite images. We applied a photon recollision probability (p) based forest reflectance model (PARAS) to retrieve leaf area index (LAI) from fine resolution SPOT HRVIR and Landsat ETM+ satellite data. First, PARAS was parameterized using an extensive database of LAI-2000 measurements from five conifer-dominated boreal forest sites in Finland, and mixtures of field-measured forest understory spectra. The selected vegetation indices (e.g. reduced simple ratio, RSR), neural networks and kNN method were used to retrieve effective LAI (Le) based on reflectance model simulations. For comparison, we established empirical vegetation index-LAI regression models for our study sites. The empirical RSR–Le regression performed best when applied to an independent test site in southern Finland [RMSE 0.57 (24.2%)]. However, the difference to the best reflectance model based retrievals produced by neural networks was only marginal [RMSE 0.59 (25.1%)]. According to this study, the PARAS model provides a simple and flexible modelling tool for calibrating algorithms for LAI retrieval in conifer-dominated boreal forests. The advantage of PARAS is that it directly uses field measurements to parameterize canopy structure (LAI-2000, hemispherical photographs) and optical properties of foliage and understory.  相似文献   

12.
Remote sensing images are widely used to map leaf area index (LAI) continuously over landscape. The objective of this study is to explore the ideal image features from Chinese HJ-1 A/B CCD images for estimating winter wheat LAI in Beijing. Image features were extracted from such images over four seasons of winter wheat growth, including five vegetation indices (VIs), principal components (PC), tasseled cap transformations (TCT) and texture parameters. The LAI was significantly correlated with the near-infrared reflectance band, five VIs [normalized difference vegetation index, enhanced vegetation index (EVI), modified nonlinear vegetation index (MNLI), optimization of soil-adjusted vegetation index, and ratio vegetation index], the first principal component (PC1) and the second TCT component (TCT2). However, these image features cannot significantly improve the estimation accuracy of winter wheat LAI in conjunction with eight texture measures. To determine the few ideal features with the best estimation accuracy, partial least squares regression (PLSR) and variable importance in projection (VIP) were applied to predict LAI values. Four remote sensing features (TCT2, PC1, MNLI and EVI) were chosen based on VIP values. The result of leave-one-out cross-validation demonstrated that the PLSR model based on these four features produced better result than the ten features’ model, throughout the whole growing season. The results of this study suggest that selecting a few ideal image features is sufficient for LAI estimation.  相似文献   

13.
To study the anisotropy of vegetation indices (VIs) and explore its influence on the retrieval accuracy of canopy soil-plant analyzer development (SPAD) value, the bidirectional reflectance distribution function (BRDF) models of soybean and maize are calculated from the multi-angle hyperspectral images acquired by UAV, respectively. According to the reflectance extracted from the BRDF model, the dependences of 16 commonly-used VIs on observation angles are analyzed, and the SPAD values of maize and soybean canopy are predicted by using the 16 VI values at different observation angles and their combinations as input parameters. The results show that the 16 VIs have different sensitivity to angle in the principal plane: green ratio vegetation index (GRVI), ratio vegetation index (RVI), red edge chlorophyll index (CIRE), and modified chlorophyll absorption in reflectance index/optimized soil-adjusted vegetation index (MCARI/OSAVI) are very sensitive to angles, among which MCARI/OSAVI of maize fluctuated the most (138.83 %); in contrast, the green optimal soil adjusted vegetation index (GOSAVI), normalized difference vegetation index (NDVI), and green normalized difference vegetation index (GNDVI) hardly change with the observation angles. In terms of SPAD prediction, the accuracy of different VI is different, the mean absolute error (MAE) showed that MCARI1 provided the highest accuracy of retrieval for soybean (MAE=1.617), while for maize it was MCARI/OSAVI (MAE=2.422). However, when using the same VI, there was no significant difference in the accuracy of the predicted results, whether the VI from different angles was used or the combination of multi-angles was used. The present results provide guiding significance and practical value for the retrieval of SPAD value in vegetation canopies and in-depth applications of multi-angular remote sensing.  相似文献   

14.
A time series of leaf area index (LAI) has been developed based on 16-day normalized difference vegetation index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 250 m resolution (MOD250_LAI). The MOD250_LAI product uses a physical radiative transfer model which establishes a relationship between LAI, fraction of vegetation cover (FVC) and given patterns of surface reflectance, view-illumination conditions and optical properties of vegetation. In situ measurements of LAI and FVC made at 166 plots using hemispherical photography served for calibration of model parameters and validation of modelling results. Optical properties of vegetation cover, summarized by the light extinction coefficient, were computed at the local (pixel) level based on empirical models between ground-measured tree crown architecture at 85 sampling plots and spectral values in Landsat ETM+ bands. Influence of view-illumination conditions on optical properties of canopy was simulated by a view angle geometry model incorporating the solar zenith angle and the sensor viewing angle. The results revealed high compatibility of the produced MOD250_LAI data set with ground truth information and the 30 m resolution Landsat ETM+ LAI estimated using the similar algorithm. The produced MOD250_LAI was also compared with the global MODIS 1000-m LAI product (MOD15A2 LAI). Results show good consistency of the spatial distribution and temporal dynamics between the two LAI products. However, the results also showed that the annual LAI amplitude by the MOD15A2 product is significantly higher than by the MOD250_LAI. This higher amplitude is caused by a considerable underestimation of the tropical rainforest LAI by the MOD15A2 during the seasonal phases of low leaf production.  相似文献   

15.
Vegetation图像植被指数与实测水稻叶面积指数的关系   总被引:9,自引:1,他引:9  
水稻的叶面积指数 (LAI)是水稻生长的一项重要参数 ,与水稻的生物量与产量直接相关。利用 1999年在江苏省江宁县实测的水稻叶面积指数与同期Vegetation/SPOT的植被指数作了对比分析 ,结果发现同期的LAI与植被指数表现相近的变化特征 ,两者具有良好的相关关系。  相似文献   

16.
锡林浩特草原区域MODIS LAI产品真实性检验与误差分析   总被引:2,自引:0,他引:2  
本文研究了LAI产品真实性检验的指标和方法,建立了LAI产品真实性检验的流程,将遥感产品真实性检验误差分解为模型误差、数据定量化差异和尺度效应3个方面。以内蒙古锡林浩特草原为研究区,结合实测数据和Landsat TM数据建立NDVI-LAI模型,得到LAI验证参考"真值",据此"真值"按照本文的流程对MODIS LAI产品进行验证,分析了研究区MODIS LAI产品真实性检验的误差来源。研究表明,该研究区的MODIS LAI(MOD15A2)产品相对高估约25%。各个误差因素中,LAI遥感模型差异对于结果影响最大,MODIS LAI模型高估了该区域草地LAI(高估约44.2%);数据定量差异的影响也比较大,MODIS地表反射率数据与Landsat TM地表反射率数据的差异造成了约16.2%的低估;尺度效应的影响较小,造成约3.1%的低估,其中NDVI-LAI模型的尺度效应带来2.4%的低估,NDVI数据的尺度效应造成约0.7%的低估。  相似文献   

17.
基于主成分分析的植被指数与叶面积指数相关性研究   总被引:1,自引:0,他引:1  
综合分析了玉米叶面积指数与几种常见光谱植被指数相关性,确定主成分分析方法在反演叶面积指数中的作用。首先,借助MATLAB编程软件,以植被指数与玉米叶面积指数相关性最高为原则,选出遥感影像上各种植被指数,其波段组合为NDVI(752.4/701.5),RVI(752.4/701.5),MSR(752.4/701.5),SAVI(823.7/701.5),MSAVI(823.7/701.5),然后,对这5种植被指数进行主成分分析,建立LAI-VI多元逐步回归模型,并对模型精度进行验证,总体估测精度为96.237%。经实验验证,利用主成分分析方法在反演植被叶面积指数时能够起到较好的效果,具有广泛的应用前景。  相似文献   

18.
Leaf area index (LAI) is a critical parameter for urban forest monitoring. The goal of this study in Terre Haute, Indiana, USA was to develop algorithms to model gap-fraction LAI measured on sample plots as a function of radiometric response measured by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Two neural networks facilitated the modeling. The first was trained to detect sites dominated by bare ground using ASTER visible, infrared, and thermal channels. The second estimated LAI as a function of vegetation indices. When the field sample sites were resubmitted to the two networks, the resulting systemwide standard error of the estimate was 1.25 LAI units.  相似文献   

19.
The vegetation index is derived using many remote sensing sensors. Vegetation Index is extensively used and remote sensing has become the primary data source. Number of vegetation indices (VIs) have been developed during the past decades in order to assess the state of vegetation qualitatively and quantitatively. Analysis of vegetation indices has been carried out by many investigators scaling from regional level to global level using the remote sensing data of varying spatial, temporal and radiometric resolutions. There are as many as 14 VIs in use. Globally operational algorithms for generation of NDVI have utilized digital counts, at sensor radiances, ‘normalized’ reflectance (top of the atmosphere), and more recently, partially atmospheric corrected (ozone absorption and molecular scattering) reflectance. Presently NDVI and EVI are standard MODIS data products which are widely used by the scientific community for environmental studies. The OCM sensor in Oceansat 2 is designed for ocean colour studies. The OCM sensor has been used for studying ocean phytoplankton, suspended sediments and aerosol optical depth by many investigators. In addition to its capability of studying the ocean surface, OCM sensor has also the potential to study the land surface features. In a past EVI has been retrieved using OCM sensor of Oceansat 1. However, there is slight change in the band width of Oceansat 2—OCM sensor compared with OCM of Oceansat 1 sensor. In the present paper an attempt has been made to derive EVI using Oceansat 2 OCM sensor and the results have been compared with MODIS data. The enhanced vegetation index (EVI) is calculated using the reflectance values obtained after removing molecular scattering and ozone absorption component from the total radiance detected by the sensor. The band-2, Band-3, band-6 and band-8 corresponding to Blue, Red and Infrared part of the visible spectrum have been used to determine EVI. The result shows that Oceansat 2 derived EVI and MODIS derived EVI are well correlated.  相似文献   

20.
In this study we combined selected vegetation indices (VIs) and plant height information to estimate biomass in a summer barley experiment. The VIs were calculated from ground-based hyperspectral data and unmanned aerial vehicle (UAV)-based red green blue (RGB) imaging. In addition, the plant height information was obtained from UAV-based multi-temporal crop surface models (CSMs). The test site is a summer barley experiment comprising 18 cultivars and two nitrogen treatments located in Western Germany. We calculated five VIs from hyperspectral data. The normalised ratio index (NRI)-based index GnyLi (Gnyp et al., 2014) showed the highest correlation (R2 = 0.83) with dry biomass. In addition, we calculated three visible band VIs: the green red vegetation index (GRVI), the modified GRVI (MGRVI) and the red green blue VI (RGBVI), where the MGRVI and the RGBVI are newly developed VI. We found that the visible band VIs have potential for biomass prediction prior to heading stage. A robust estimate for biomass was obtained from the plant height models (R2 = 0.80–0.82). In a cross validation test, we compared plant height, selected VIs and their combination with plant height information. Combining VIs and plant height information by using multiple linear regression or multiple non-linear regression models performed better than the VIs alone. The visible band GRVI and the newly developed RGBVI are promising but need further investigation. However, the relationship between plant height and biomass produced the most robust results. In summary, the results indicate that plant height is competitive with VIs for biomass estimation in summer barley. Moreover, visible band VIs might be a useful addition to biomass estimation. The main limitation is that the visible band VIs work for early growing stages only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号