首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
J.M. Carvano  T. Mothé-Diniz 《Icarus》2003,161(2):356-382
We present an analysis of 460 featureless asteroid spectra in the range 0.5-0.92 μm obtained in the Small Solar System Objects Spectroscopic Survey. The spectra are described in terms of the continuum steepness (cSlope), its concavity (RRE), and the blue wing of drop in the UV reflectance (BD). Comparison with meteorite spectra confirms the link between CM meteorites and asteroids with asteroids with 0.7 μm band. Also, it is found that asteroids with extreme negative slope values may be related to CK chondrites and that asteroids with pronounced concave-down curvature are related to CO chondrites. An analysis of the distribution of the spectral parameters with semimajor axis, diameter, and albedo is performed.  相似文献   

2.
V. Carruba  J.A. Burns  W. Bottke 《Icarus》2003,162(2):308-327
Asteroid families are groupings of minor planets identified by clustering in their proper orbital elements; these objects have spectral signatures consistent with an origin in the break-up of a common parent body. From the current values of proper semimajor axes a of family members one might hope to estimate the ejection velocities with which the fragments left the putative break-up event (assuming that the pieces were ejected isotropically). However, the ejection velocities so inferred are consistently higher than N-body and hydro-code simulations, as well as laboratory experiments, suggest. To explain this discrepancy between today’s orbital distribution of asteroid family members and their supposed launch velocities, we study whether asteroid family members might have been ejected from the collision at low speeds and then slowly drifted to their current positions, via one or more dynamical processes. Studies show that the proper a of asteroid family members can be altered by two mechanisms: (i) close encounters with massive asteroids, and (ii) the Yarkovsky non-gravitational effect. Because the Yarkovsky effect for kilometer-sized bodies decreases with asteroid diameter D, it is unlikely to have appreciably moved large asteroids (say those with D > 15 km) over the typical family age (1-2 Gyr).For this reason, we numerically studied the mobility of family members produced by close encounters with main-belt, non-family asteroids that were thought massive enough to significantly change their orbits over long timescales. Our goal was to learn the degree to which perturbations might modify the proper a values of all family members, including those too large to be influenced by the Yarkovsky effect. Our initial simulations demonstrated immediately that very few asteroids were massive enough to significantly alter relative orbits among family members. Thus, to maximize gravitational perturbations in our 500-Myr integrations, we investigated the effect of close encounters on two families, Gefion and Adeona, that have high encounter probabilities with 1 Ceres, by far the largest asteroid in the main belt. Our results show that members of these families spreads in a of less than 5% since their formation. Thus gravitational interactions cannot account for the large inferred escape velocities.The effect of close encounters with massive asteroids is, however, not entirely negligible. For about 10% of the simulated bodies, close encounters increased the “inferred” ejection velocities from sub-100 m/s to values greater than 100 m/s, beyond what hydro-code and N-body simulations suggest are the maximum possible initial ejection velocity for members of Adeona and Gefion with D > 15 km. Thus this mechanism of mobility may be responsible for the unusually high inferred ejection speeds of a few of the largest members of these two families.To understand the orbital evolution of the entire family, including smaller members, we also performed simulations to account for the drift of smaller asteroids caused by the Yarkovsky effect. Our two sets of simulations suggest that the two families we investigated are relatively young compared to larger families like Koronis and Themis, which have estimated ages of about 2 Byr. The Adeona and Gefion families seems to be no more than 600 and 850 Myr old, respectively.  相似文献   

3.
A recently published model of the Near Earth Object (NEO) orbital-magnitude distribution (Bottke et al., 2002, Icarus156, 399-433.) relies on five intermediate sources for the NEO population: the ν6 resonance, the 3:1 resonance, the outer portion of the main belt (i.e., 2.8-3.5 AU), the Mars-crossing population adjacent to the main belt, and the Jupiter family comet population. The model establishes the relative contribution of these sources to the NEO population. By computing the albedo distribution of the bodies in and/or near each of the five sources, we can deduce the albedo distribution of the NEO population as a function of semimajor axis, eccentricity, and inclination. A problem with this strategy, however, is that we do not know a priori the albedo distribution of main belt asteroids over the same size range as observed NEOs (diameter D<10 km). To overcome this problem, we determined the albedo distribution of large asteroids in and/or near each NEO source region and used these results to deduce the albedo distribution of smaller asteroids in the same regions. This method requires that we make some assumptions about the absolute magnitude distributions of both asteroid families and background asteroids. Our solution was to extrapolate the observed absolute magnitude distributions of the families up to some threshold value Hthr, beyond which we assumed that the families' absolute magnitude distributions were background-like.We found that Hthr=14.5 provides the best match to the color vs heliocentric distance distribution observed by the Sloan Digital Sky Survey. With this value of Hthr our model predicts that the debiased ratio between dark and bright (albedo smaller or larger than 0.089) objects in any absolute-magnitude-limited sample of the NEO population is 0.25±0.02. Once the observational biases are properly taken into account, this agrees very well with the observed C/S ratio (0.165 for H<20). The dark/bright ratio of NEOs increases to 0.87±0.05 if a size-limited sample is considered. We estimate that the total number of NEOs larger than a kilometer is 855±110, which, compared to the total number of NEOs with H<18 (963±120), shows that the usually assumed conversion H=18?D=1 km slightly overestimates the number of kilometer-size objects.Combining our orbital distribution model with the new albedo distribution model, and assuming that the density of bright and dark bodies is 2.7 and 1.3 g/cm3, respectively, we estimate that the Earth should undergo a 1000 megaton collision every 63,000±8000 years. On average, the bodies capable of producing 1000 megaton of impact energy are those with H<20.6. The NEOs discovered so far carry only 18±2% of this collision probability.  相似文献   

4.
The Karin cluster is one of the youngest known families of main-belt asteroids, dating back to a collisional event only 5.8±0.2 Myr ago. Using the Spitzer Space Telescope we have photometrically sampled the thermal continua (3.5-22 μm) of 17 Karin cluster asteroids of different sizes, down to the smallest members discovered so far, in order to make the first direct measurements of their sizes and albedos and study the physical properties of their surfaces. Our targets are also amongst the smallest main-belt asteroids observed to date in the mid-infrared. The derived diameters range from 17.3 km for 832 Karin to 1.5 km for 75176, with typical uncertainties of 10%. The mean albedo is pv=0.215±0.015, compared to 0.20±0.07 for 832 Karin itself (for H=11.2±0.3), consistent with the view that the Karin asteroids are closely related physically as well as dynamically. The albedo distribution (0.12?pv?0.32) is consistent with the range associated with S-type asteroids but the variation from one object to another appears to be significant. Contrary to the case for near-Earth asteroids, our data show no evidence of an albedo dependence on size. However, the mean albedo is lower than expected for young, fresh “S-type” surfaces, suggesting that space weathering can darken main-belt asteroid surfaces on very short timescales. Our data are also suggestive of a connection between surface roughness and albedo, which may reflect rejuvenation of weathered surfaces by impact gardening. While the available data allow only estimates of lower limits for thermal inertia, we find no evidence for the relatively high values of thermal inertia reported for some similarly sized near-Earth asteroids. Our results constitute the first observational confirmation of the legitimacy of assumptions made in recent modeling of the formation of the Karin cluster via a single catastrophic collision 5.8±0.2 Myr ago.  相似文献   

5.
Thermal inertia determines the temperature distribution over the surface of an asteroid and therefore governs the magnitude the Yarkovsky effect. The latter causes gradual drifting of the orbits of km-sized asteroids and plays an important role in the delivery of near-Earth asteroids (NEAs) from the main belt and in the dynamical spreading of asteroid families. At present, very little is known about the thermal inertia of asteroids in the km size range. Here we show that the average thermal inertia of a sample of NEAs in the km-size range is . Furthermore, we identify a trend of increasing thermal inertia with decreasing asteroid diameter, D. This indicates that the dependence of the drift rate of the orbital semimajor axis on the size of asteroids due to the Yarkovsky effect is a more complex function than the generally adopted D−1 dependence, and that the size distribution of objects injected by Yarkovsky-driven orbital mobility into the NEA source regions is less skewed to smaller sizes than generally assumed. We discuss how this fact may help to explain the small difference in the slope of the size distribution of km-sized NEAs and main-belt asteroids.  相似文献   

6.
Understanding the evolution of asteroid spin states is challenging work, in part because asteroids have a variety of orbits, shapes, spin states, and collisional histories but also because they are strongly influenced by gravitational and non-gravitational (YORP) torques. Using efficient numerical models designed to investigate asteroid orbit and spin dynamics, we study here how several individual asteroids have had their spin states modified over time in response to these torques (i.e., 951 Gaspra, 60 Echo, 32 Pomona, 230 Athamantis, 105 Artemis). These test cases which sample semimajor axis and inclination space in the inner main belt, were chosen as probes into the large parameter space described above. The ultimate goal is to use these data to statistically characterize how all asteroids in the main belt population have reached their present-day spin states. We found that the spin dynamics of prograde-rotating asteroids in the inner main belt is generally less regular than that of the retrograde-rotating ones because of numerous overlapping secular spin-orbit resonances. These resonances strongly affect the spin histories of all bodies, while those of small asteroids (?40 km) are additionally influenced by YORP torques. In most cases, gravitational and non-gravitational torques cause asteroid spin axis orientations to vary widely over short (?1 My) timescales. Our results show that (951) Gaspra has a highly chaotic rotation state induced by an overlap of the s and s6 spin-orbit resonances. This hinders our ability to investigate its past evolution and infer whether thermal torques have acted on Gaspra's spin axis since its origin.  相似文献   

7.
The main focus of this paper is calculation of the diameters of asteroids belonging to five families (Vesta, Eos, Eunomia, Koronis, and Themis). To do that, we used the HCM algorithm applied for a data set containing 292,003 numbered asteroids, and a numerical procedure for choosing the crucial parameter of the HCM, called “the cutting velocity” vcut. It was established with a precision as high as 1 m s?1. Thereafter, we used the WISE (Wide‐field Infrared Survey Explorer) catalog to set a range of albedo for the largest members of each family considered. The albedo data were supported by the data concerning color classification (SDSS MOC4). The asteroids with albedo out of this range were classified as interlopers and were therefore disqualified as family members. Sizes were calculated for the asteroids with albedo within the acceptable range. For the other asteroids (those chosen by means of the HCM, but with albedo not listed in the WISE), the value of albedo of the largest member of the family was adopted. Results are given in a set of figures showing the families on the planes (a, e), (a, i), (e, i). Diameters and volumes of the asteroids that are the individual members of a family were calculated on the basis of their known or assumed albedo and on their absolute magnitude. Volumes of the parent bodies of the families were found on the basis of the cumulative volume distribution of these families. We also studied the secular resonances of the family members. We have shown that the locations of members of the considered asteroid families are related to the lines of secular resonances z1, z2, and z3 with Saturn.  相似文献   

8.
We explore the correlation between an asteroid’s taxonomy and photometric phase curve using the H, G12 photometric phase function, with the shape of the phase function described by the single parameter G12. We explore the usability of G12 in taxonomic classification for individual objects, asteroid families, and dynamical groups. We conclude that the mean values of G12 for the considered taxonomic complexes are statistically different, and also discuss the overall shape of the G12 distribution for each taxonomic complex. Based on the values of G12 for about half a million asteroids, we compute the probabilities of C, S, and X complex membership for each asteroid. For an individual asteroid, these probabilities are rather evenly distributed over all of the complexes, thus preventing meaningful classification. We then present and discuss the G12 distributions for asteroid families, and predict the taxonomic complex preponderance for asteroid families given the distribution of G12 in each family. For certain asteroid families, the probabilistic prediction of taxonomic complex preponderance can clearly be made. In particular, the C complex preponderant families are the easiest to detect, the Dora and Themis families being prime examples of such families. We continue by presenting the G12-based distribution of taxonomic complexes throughout the main asteroid belt in the proper element phase space. The Nysa–Polana family shows two distinct regions in the proper element space with different G12 values dominating in each region. We conclude that the G12-based probabilistic distribution of taxonomic complexes through the main belt agrees with the general view of C complex asteroid proportion increasing towards the outer belt. We conclude that the G12 photometric parameter cannot be used in determining taxonomic complex for individual asteroids, but it can be utilized in the statistical treatment of asteroid families and different regions of the main asteroid belt.  相似文献   

9.
The surface compositions of 110 asteroids are analyzed from statistically representative data sets of polarimetry as a function of phase angle, broad-band radiometry near 10 and 20 μm, and visible and near-infrared spectrophotometry. A comparison of albedos and diameters determined by polarimetry and radiometry shows that a modest upward revision of the radiometric albedo scale is needed and that a single law relating the slope of the polarization-phase curve to geometric albedo may not hold for very dark asteroids. We present reliable adopted albedos and diameters for 56 objects. Roughdi ameters for 52 additional objects are obtained from spectrophotometry using a correlation between albedo and color. Corrections for sampling bias permit investigation of asteroid compositions as a function of diameter, orbit, and other parameters.More than 90% of the minor planets fall into two broad compositional groups, defined by several optical parameters, designated by the symbols C and S. Comparisons with meteorite spectral albedo curves suggest that the two groups are compositionally similar to carbonaceous and stony-metallic meteorites, respectively. C-type asteroids predominate in the belt, especially in the outer half. An unusual distribution of compositions is found between 2.77 and 3.0 AU. Many S-type objects have diameters of 100–200 km; C-type objects are much more common at both larger and smaller sizes. Vesta is unique, being apparently the only differentiated asteroid remaining intact in the belt. The largest C-type objects are compositionally distinct from smaller ones and possibly are metamorphosed. We sketch some implications for meteoritics and for the early history of the solar system and point to the need for further systematic sampling of smaller and fainter objects by these three observational techniques.  相似文献   

10.
At present, approximately 1500 asteroids are known to evolve inside or sticked to the exterior 1:2 resonance with Mars at a ? 2.418 AU, being (142) Polana the largest member of this group. The effect of the forced secular modes superposed to the resonance gives rise to a complex dynamical evolution. Chaotic diffusion, collisions, close encounters with massive asteroids and mainly orbital migration due to the Yarkovsky effect generate continuous captures to and losses from the resonance, with a fraction of asteroids remaining captured over long time scales and generating a concentration in the semimajor axis distribution that exceeds by 20% the population of background asteroids. The Yarkovsky effect induces different dynamics according to the asteroid size, producing an excess of small asteroids inside the resonance. The evolution in the resonance generates a signature on the orbits, mainly in eccentricity, that depends on the time the asteroid remains captured inside the resonance and on the magnitude of the Yarkovsky effect. The greater the asteroids, the larger the time they remain captured in the resonance, allowing greater diffusion in eccentricity and inclination. The resonance generates a discontinuity and mixing in the space of proper elements producing misidentification of dynamical family members, mainly for Vesta and Nysa-Polana families. The half-life of resonant asteroids large enough for not being affected by the Yarkovsky effect is about 1 Gyr. From the point of view of taxonomic classes, the resonant population does not differ from the background population and the excess of small asteroids is confirmed.  相似文献   

11.
The Agnia asteroid family, a cluster of asteroids located near semimajor axis a=2.79 AU, has experienced significant dynamical evolution over its lifetime. The family, which was likely created by the breakup of a diameter D∼50 km parent body, is almost entirely contained within the high-order secular resonance z1. This means that unlike other families, Agnia's full extent in proper eccentricity and inclination is a byproduct of the large-amplitude resonant oscillations produced by this resonance. Using numerical integration methods, we found that the spread in orbital angles observed among Agnia family members would have taken at least 40 Myr to create; this sets a lower limit on the family's age. To determine the upper bound on Agnia's age, we used a Monte Carlo model to track how the small members in the family evolve in semimajor axis by Yarkovsky thermal forces. Our results indicate the family is no more than 140 Myr old, with a best-fit age of 100+30−20 Myr. Using two independent methods, we also determined that the D∼5 km fragments were ejected from the family-forming event at a velocity near 15 m/s. This velocity is consistent with results from numerical hydrocode simulations of asteroid impacts and observations of other similarly sized asteroid families. Finally, we found that 57% of known Agnia fragments were initially prograde rotators. The reason for this limited asymmetry is unknown, though we suspect it is a fluke produced by the stochastic nature of asteroid disruption events.  相似文献   

12.
Tabaré Gallardo 《Icarus》2007,190(1):280-282
An excess of around 400 asteroids in the distribution of the semimajor axes of the asteroids is identified by means of numerical integrations as generated by a population of approximately 1000 asteroids evolving inside the exterior resonance 1:2 with Mars. Approximately 200 asteroids are librating around the asymmetric libration centers and their evolution in a time-scale of 1 million years appears stable but with a strong influence of Mars' eccentricity. The biggest Mars 1:2 resonant asteroid is (142) Polana.  相似文献   

13.
The evolution of orbits of asteroids found in the IRAS and WISE albedo databases was calculated numerically from 2005 to 2016. It follows from the analysis of the obtained results that a certain nongravitational effect (NGE) currently affects the motion of a considerable fraction of main-belt asteroids with diameters up to 40 km. This conclusion agrees with the available data regarding the axial rotation of asteroids. The NGE manifests itself in an increase in the semimajor axes of orbits of low-albedo asteroids relative to the semimajor axes of orbits of high-albedo bodies. The NGE-induced rate of elongation of semimajor axes of asteroids with albedos рv < 0.1 may be as high as (2–8) × 10–8 AU/year. Errors in orbital elements of asteroids (unrelated to the accuracy of observational data used to determine these orbital elements) were found in one of the MPC catalogues for 2003 in the process of estimation of the accuracy of calculations.  相似文献   

14.
Six different calibrations of the polarimetric albedo scale of asteroids have been published so far. Each of them contains its particular random and systematic errors and yields its values of geometric albedo. On the one hand, this complicates their analysis and comparison; on the other hand, it becomes more and more difficult to decide which of the proposed calibrations should be used. Moreover, in recent years, new databases on the albedo of asteroids obtained from the radiometric surveys of the sky with the orbital space facilities (the InfraRed Astronomical Satellite (IRAS), the Japanese astronomical satellite AKARI (which means “light”), the Wide-field Infrared Survey Explorer (WISE), and the Near-Earth Object Wide-field Survey Explorer (NEOWISE)) have appeared; and the database on the diameters and albedos of asteroids obtained from their occultations of stars has substantially increased. Here, we critically review the currently available calibrations and propose a new generalized calibration derived from the interrelations between the slope h and the albedo and between Pmin and the albedo. This calibration is based on all of the available series of the asteroid albedos and the most complete data on the polarization parameters of asteroids. The generalized calibration yields the values of the polarimetric albedo of asteroids in the system unified with the radiometric albedos and the albedos obtained from occultations of stars by asteroids. This, in turn, removes the difficulties in their comparison, joint analysis, etc.  相似文献   

15.
The observed albedo distributions in asteroid families as well as numberical calculations suggest that the spatial separation of bright and dark asteroids can be caused by some nongravitational mechanism acting in the solar system. For main-belt asteroids of size 10–50 km, the separation rate can be roughly estimated at 1 AU per 108 yr. The physical mechanism of this effect requires further investigation.  相似文献   

16.
W.-H. Ip 《Icarus》1977,32(3):378-381
Collision of asteroids with the main-belt asteroid population is considered with the effect of the impact kinetic energy taken into account. It is found that objects in eccentric orbits have a larger probability of destructive collision as compared to objects in orbits with mean values of eccentricity (e = 0.15) and inclination (i = 10°); also orbits with small semimajor axes (a ≈ 2.3 AU) are found to have peak values of the probability of destructive collision.  相似文献   

17.
The dependence of the cumulative number of numbered asteroids (up to 3720) on their absolute magnitude is investigated. The differential mass index k is derived from these relations for fainter asteroids. A steeper slope (2.2 < k < 2.4) is found in the four most populous asteroid familes (Flora, Koronis, Eos and Themis) and a flatter slope (1.3 < k < 1.6) for non-family asteroids. This indicates that there are two different asteroid populations in the asteorid belt. Total masses of the asteroid families may be greater than it is commonly accepted.  相似文献   

18.
Asteroids in general display only small or negligible variations in spectrum or albedo during a rotational cycle. Color variations with rotation are described in the literature but are usually comparable to the noise in the measurements. Twenty-four asteroids have been systematically monitored for such color changes. Only 3 Juno, 4 Vesta, 6 Hebe, 71 Niobe, 349 Dembowska, and 944 Hidalgo display color variations larger than 0.03 mag. In each of these cases the asteroid appears redder near maximum brightness. Of seven asteroids monitored polarimetrically, only 4 Vesta shows a convincing variation, attributed to an albedo change with rotation. The lightcurve can be explained by albedo differences alone; Vesta apparently has a nearly spheroidal shape. Notwithstanding the above results, the degree of uniformity of most asteroid surfaces is remarkable. If asteroids exist with large discrete domains of ferrosilicate, metallic, and/or carbonaceous material together on their surfaces, they have not yet been identified.  相似文献   

19.
We identified the family of the binary asteroid 423 Diotima consisting of 411 members in the phase space of orbital elements—semimajor axes a (or mean motions n), eccentricities e, and inclinations i—by using an electronic version of the ephemerides of minor planets EMP-2003 containing osculating orbital elements for 34992 asteroids of the main belt. The 9/4 resonance with Jupiter clearly separates the family of 423 Diotima from the family of Eos, which, according to EMP for 2003, contains 1204 asteroids.  相似文献   

20.
Hidden Mass in the Asteroid Belt   总被引:1,自引:0,他引:1  
The total mass of the asteroid belt is estimated from an analysis of the motions of the major planets by processing high precision measurements of ranging to the landers Viking-1, Viking-2, and Pathfinder (1976-1997). Modeling of the perturbing accelerations of the major planets accounts for individual contributions of 300 minor planets; the total contribution of all remaining small asteroids is modeled as an acceleration caused by a solid ring in the ecliptic plane. Mass Mring of the ring and its radius R are considered as solve-for parameters. Masses of the 300 perturbing asteroids have been derived from their published radii based mainly on measured fluxes of radiation, making use of the corresponding densities. This set of asteroids is grouped into three classes in accordance with physical properties and then corrections to the mean density for each class are estimated in the process of treating the observations. In this way an improved system of masses of the perturbing asteroids has been derived.The estimate Mring≈(5±1)×10−10M is obtained (M is the solar mass) whose value is about one mass of Ceres. For the mean radius of the ring we have R≈2.80 AU with 3% uncertainty. Then the total mass Mbelt of the main asteroid belt (including the 300 asteroids mentioned above) may be derived: Mbelt≈(18±2)×10−10M. The value Mbelt includes masses of the asteroids which are already discovered, and the total mass of a large number of small asteroids—most of which cannot be observed from the Earth. The second component Mring is the hidden mass in the asteroid belt as evaluated from its dynamical impact onto the motion of the major planets.Two parameters of a theoretical distribution of the number of asteroids over their masses are evaluated by fitting to the improved set of masses of the 300 asteroids (assuming that there is no observational selection effect in this set). This distribution is extrapolated to the whole interval of asteroid masses and as a result the independent estimate Mbelt≈18×10−10M is obtained which is in excellent agreement with the dynamical finding given above.These results make it possible to predict the total number of minor planets in any unit interval of absolute magnitude H. Such predictions are compared with the observed distribution; the comparison shows that at present only about 10% of the asteroids with absolute magnitude H<14 have been discovered (according to the derived distribution, about 130,000 such asteroids are expected to exist).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号