首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
罗荣  曾亚武 《岩土力学》2012,33(7):2221-2228
数值计算中利用随机分布对各单元赋予不同的物理力学参数来考虑岩石的非均质性,赋值过程是纯随机的,并没有考虑岩石矿物组成的结构特征。故提出一种新的岩石非均质参数赋值方法--岩石矿物细胞元随机性参数赋值方法,基于岩石矿物种类及其含量定义细胞元类别判定区间,利用Monte Carlo方法对各个细胞元进行矿物类别判定,并进行相应的参数赋值,通过各矿物细胞元的随机混合体来描述岩石的非均质性。该方法既考虑了组成岩石的矿物种类及其含量(结构特征),又考虑了组成矿物在岩石中的随机分布特征。针对矿物分布的随机特征,利用两矿物细胞元混合模型和三矿物细胞元混合模型进行数值试验,研究了矿物细胞元随机分布特征对岩石宏观力学参数的影响。研究结果表明,岩石矿物细胞元随机性参数赋值方法具有结构性和随机性的双重特性,其随机性不依赖于随机参数,岩石宏观力学参数受细胞元随机性特征的影响很小。  相似文献   

2.
Quantification of mass and heat transport in fractured porous rocks is important to areas such as contaminant transport, storage and release in fractured rock aquifers, the migration and sorption of radioactive nuclides from waste depositories, and the characterization of engineered heat exchangers in the context of enhanced geothermal systems. The large difference between flow and transport characteristics in fractures and in the surrounding matrix rock means models of such systems are forced to make a number of simplifications. Analytical approaches assume a homogeneous system, numerical approaches address the scale at which a process is operating, but may lose individual important processes due to averaging considerations. Numerical stability criteria limit the contrasts possible in defining material properties. Here, a hybrid analytical–numerical method for transport modeling in fractured media is presented. This method combines a numerical model for flow and transport in a heterogeneous fracture and an analytical solution for matrix diffusion. By linking the two types of model, the advantages of both methods can be combined. The methodology as well as the mathematical background are developed, verified for simple geometries, and applied to fractures representing experimental field conditions in the Grimsel rock laboratory.  相似文献   

3.
罗荣  曾亚武  曹源  黎玲 《岩土力学》2012,33(12):3788-3794
根据非均质岩石参数赋值方法具有随机性的特点,以随机参数的变异系数定义岩石非均质度,推导了Weibull分布参数赋值方法的非均质度计算方法,并与形状参数进行了对比分析;推导了基于矿物细胞元参数赋值方法的岩石非均质度的计算方法;利用上述2种赋值方法研究了岩石非均质度对其力学性能的影响。研究结果表明,利用变异系数定义岩石非均质度是合理的,可用于描述不同非均质岩石模型的非均质程度;非均质岩石的力学特性由细观单元力学特性和其非均质特性共同决定,岩石的非均质性对其极限强度具有弱化影响;对于不同的非均质岩石模型,可建立相同的线性函数关系表示非均质岩石极限强度受其非均质度的影响。  相似文献   

4.
The electrical conductivity of rock depends essentially on pore space geometry and connectivity of low resistive components. This paper presents a method to combine lattice conduction with models of pore space geometry in order to predict the conductivity of porous rock. Key parameter in this context is a quantity called connectivity which in practice can be determined from porosity and formation factor of natural rock if micro structural properties of the material are known. Simulation investigations have been performed to determine the connectivity of random lattices. An approximate equation has been developed empirically which fits the simulation data at conductivity ratios within in the range of 0.5 to 0.001. From comparison with laboratory data is concluded that the electrical conductivity of saturated porous rock can be described by means of random lattice conduction.  相似文献   

5.
用三维梁-颗粒模型BPM3D(beam-particlemodelinthreedimensions)对岩石类非均质脆性材料的力学性质和破坏过程进行了数值模拟。梁-颗粒模型是在离散单元法基础上,结合有限单元法中的网格模型提出的用于模拟岩石类材料损伤破坏过程的数值模型。在模型中,材料在细观层次上被离散为颗粒单元集合体,相邻颗粒单元由有限单元法中的弹脆性梁单元联结。梁单元的力学性质均按韦伯(Weibull)分布随机赋值,以模拟岩石类材料力学参数的空间变异性。材料内部裂纹通过断开梁单元来模拟。通过自动生成的非均质材料模型对岩石类材料的破坏机理进行研究。岩石类非均质脆性材料在单轴压缩状态下破坏过程细观数值模拟结果显示,岩石材料宏观破坏是由于其内部细观裂纹产生、扩展、贯通的结果。通过数值模拟结果之间的对比分析,揭示出岩石试样宏观破坏模式随细观层次上韦伯分布参数的变化而不同。与实际矿柱破坏形态的对比分析表明了模型的适用性。根据数值模拟结果对岩石类非均质材料的破坏机理进行了探讨。  相似文献   

6.
《地学前缘(英文版)》2018,9(6):1609-1618
Rock properties exhibit spatial variabilities due to complex geological processes such as sedimentation,metamorphism, weathering, and tectogenesis. Although recognized as an important factor controlling the safety of geotechnical structures in rock engineering, the spatial variability of rock properties is rarely quantified. Hence, this study characterizes the autocorrelation structures and scales of fluctuation of two important parameters of intact rocks, i.e. uniaxial compressive strength(UCS) and elastic modulus(EM).UCS and EM data for sedimentary and igneous rocks are collected. The autocorrelation structures are selected using a Bayesian model class selection approach and the scales of fluctuation for these two parameters are estimated using a Bayesian updating method. The results show that the autocorrelation structures for UCS and EM could be best described by a single exponential autocorrelation function. The scales of fluctuation for UCS and EM respectively range from 0.3 m to 8.0 m and from 0.3 m to 8.4 m.These results serve as guidelines for selecting proper autocorrelation functions and autocorrelation distances for rock properties in reliability analyses and could also be used as prior information for quantifying the spatial variability of rock properties in a Bayesian framework.  相似文献   

7.
Coupled hydro-mechanical (HM) processes are significant in geological engineering such as oil and gas extraction, geothermal energy, nuclear waste disposal and for the safety assessment of dam foundations and rock slopes, where the geological media usually consist of fractured rock masses. In this study, we developed a model for the analysis of coupled hydro-mechanical processes in porous rock containing dominant fractures, by using the numerical manifold method (NMM). In the current model, the fractures are regarded as different material domains from surrounding rock, i.e., finite-thickness fracture zones as porous media. Compared with the rock matrix, these fractured porous media are characterized with nonlinear behavior of hydraulic and mechanical properties, involving not only direct (poroelastic) coupling but also indirect (property change) coupling. By combining the potential energy associated with mechanical responses, fluid flow and solid–fluid interactions, a new formulation for direct HM coupling in porous media is established. For indirect coupling associated with fracture opening/closure, we developed a new approach implicitly considering the nonlinear properties by directly assembling the corresponding strain energy. Compared with traditional methods with approximation of the nonlinear constitutive equations, this new formulation achieves a more accurate representation of the nonlinear behavior. We implemented the new model for coupled HM analysis in NMM, which has fixed mathematical grid and accurate integration, and developed a new computer code. We tested the code for direct coupling on two classical poroelastic problems with coarse mesh and compared the results with the analytical solutions, achieving excellent agreement, respectively. Finally, we tested for indirect coupling on models with a single dominant fracture and obtained reasonable results. The current poroelastic NNM model with a continuous finite-thickness fracture zone will be further developed considering thin fractures in a discontinuous approach for a comprehensive model for HM analysis in fractured porous rock masses.  相似文献   

8.
岩石力学参数数据库系统的开发和研究   总被引:1,自引:0,他引:1  
徐高巍  白世伟  贺怀建 《岩土力学》2005,26(6):1005-1008
收集大量岩石力学参数数据,利用数据预处理、统计分析、灰色系统理论、人工神经网络、经验分析等多种数据处理方法, 并参照各行业规范对力学参数取值的方法和范围,建立起岩石力学参数数据库系统。该系统可以根据工程岩体的名称、风化程度和饱水状态等工程地质情况,对实际工程中工程岩体的力学参数作出查询、预测、判断和决策。文中介绍了该系统的功能、特点、数据收录范围、数据库结构以及系统的框架组成,并以一个工程实例描述了系统的使用方法。  相似文献   

9.
内容提要本文扼要介绍了沉积模拟的基本数学模型,其中包括十种随机模拟数学模型和十种确定模拟数学模型,阐明其简要原理和应用范围,并讨论它们在第四纪研究中的应用现状和前景。本文涉及的应用范围主要为:第四纪沉积环境、第四纪沉积物特征和成因类型。最后讨论了地质过程数学模拟的特点和意义、第四纪沉积过程数学模拟对提高第四纪地质学研究定量化水平的作用,以及进一步开展工作的方向。  相似文献   

10.
孙培德 《岩土力学》2005,26(Z2):222-226
根据地温场温度分布的数学模型,应用有限元法模拟了深井巷道围岩地温场中4种常见隧道断面的岩石温度分布特征规律,揭示出地温场内温度分布和地热学参数及时间、空间之间的本质关系,实现地温场内温度分布的二维动态等值线表征,直观地再现了地温场内温度分布非稳态变化的动态过程。  相似文献   

11.
贾善坡  吴渤  陈卫忠  伍国军  高敏  龚俊 《岩土力学》2014,35(8):2375-2384
以热力学和弹塑性力学理论为基础,分析岩石热-力完全耦合作用及其对力学参数和热特性参数的影响,建立了岩石热-力-损伤耦合模型及其参数演化方程,以ABAQUS软件为平台对其进行二次开发,并通过典型算例验证了岩石热-力完全耦合的重要性。然后以某深埋软岩隧洞为例,研究温度和开挖卸载共同作用下的隧洞围岩力学行为和损伤过程。计算结果表明:温度对岩石的力学性质和损伤演化过程影响显著,开挖损伤和热应力诱发的损伤对围岩热力学参数的影响不可忽略;所提出的力学模型可以有效反映围岩损伤演化、调热圈演化以及热力学参数演化,具有一定的借鉴作用。  相似文献   

12.
Particle-tracking simulation offers a fast and robust alternative to conventional numerical discretization techniques for modeling solute transport in subsurface formations. A common challenge is that the modeling scale is typically much larger than the volume scale over which measurements of rock properties are made, and the scale-up of measurements have to be made accounting for the pattern of spatial heterogeneity exhibited at different scales. In this paper, a statistical scale-up procedure developed in our previous work is adopted to estimate coarse-scale (effective) transition time functions for transport modeling, while two significant improvements are proposed: considering the effects of non-stationarity (trend), as well as unresolved (residual) heterogeneity below the fine-scale model. Rock property is modeled as a multivariate random function, which is decomposed into the sum of a trend (which is defined at the same resolution of the transport modeling scale) and a residual (representing all heterogeneities below the transport modeling scale). To construct realizations of a given rock property at the transport modeling scale, multiple realizations of the residual components are sampled. Next, a flow-based technique is adopted to compute the effective transport parameters: firstly, it is assumed that additional unresolved heterogeneities occurring below the fine scale can be described by a probabilistic transit time distribution; secondly, multiple realizations of the rock property, with the same physical size as the transport modeling scale, are generated; thirdly, each realization is subjected to particle-tracking simulation; finally, probability distributions of effective transition time function are estimated by matching the corresponding effluent history for each realization with an equivalent medium consisting of averaged homogeneous rock properties and aggregating results from all realizations. The proposed method is flexible that it does not invoke any explicit assumption regarding the multivariate distribution of the heterogeneity.  相似文献   

13.
Today multiphysics problems applied to various fields of engineering have become increasingly important. Among these, in the areas of civil, environmental and nuclear engineering, the problems related to the behaviour of porous media under extreme conditions in terms of temperature and/or pressure are particularly relevant. The mathematical models used to solve these problems have an increasing complexity leading to increase of computing times. This problem can be solved by using more effective numerical algorithms, or by trying to reduce the complexity of these models. This can be achieved by using a sensitivity analysis to determine the influence of model parameters on the solution. In this paper, the sensitivity analysis of a mathematical/numerical model for the analysis of concrete as multiphase porous medium exposed to high temperatures is presented. This may lead to a reduction of the number of the model parameters, indicating what parameters should be determined in an accurate way and what can be neglected or found directly from the literature. Moreover, the identification parameters influence may allow to proceeding to a simplification of the mathematical model (i.e. model reduction). The technique adopted in this paper to performing the sensitivity analysis is based on the automatic differentiation (AD), which allowed to develop an efficient tool for the computation of the sensitivity coefficients. The results of the application of AD technique have been compared with the results of the more standard finite difference method, showing the superiority of the AD in terms of numerical accuracy and execution times. From the results of the sensitivity analysis, it follows that a drastic simplification of the model for thermo‐chemo‐hygro‐mechanical behaviour of concrete at high temperature, is not possible. Therefore, it is necessary to use different model reduction techniques in order to obtain a simplified version of the model that can be used at industrial level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Micromechanical Model for Simulating the Fracture Process of Rock   总被引:25,自引:3,他引:25  
Summary A micromechanical model is proposed to study the deformation and failure process of rock based on knowledge of heterogeneity of rock at the mesoscopic level. In this numerical model, the heterogeneity of rock at the mesoscopic level is considered by assuming the material properties in rock conform to the Weibull distribution. Elastic damage mechanics is used to describe the constitutive law of meso-level elements, the finite element method is employed as the basic stress analysis tool and the maximum tensile strain criterion as well as the Mohr-Coulomb criterion is utilized as the damage threshold. A simple method, similar to a smeared crack model, is used for tracing the crack propagation process and interaction of multiple cracks. Based on this model, a numerical simulation program named Rock Failure Process Analysis Code (RFPA) is developed. The influence of parameters that include the Weibull distribution parameters, constitutive parameters of meso-level elements and number of elements in the numerical model, are discussed in detail. It is shown that the homogeneity index is the most important factor to simulate material failure with this model. This model is able to capture the complete mechanical responses of rock, which includes the crack patterns associated with different loading stages and loading conditions, localization of deformation, stress redistribution and failure process. The numerical simulation of rock specimens under a variety of static loading conditions is presented, and the results compare well with experimental results.  相似文献   

15.
A single intrinsic stationary random field may not account for transitional heterogeneity and abrupt dissimilarity of geological properties across boundaries between rock type regions. This paper proposes the stepwise construction of transitive covariance models for modeling continuous properties correlated across boundaries of multiple disjoint physical domains such as rock type bodies. Modeling in geology is usually simplified by splitting the geological space into rock type geo-domains (e.g., strata, sedimentary facies, soil series, diagenetic regions and alteration zones). Due to the limitations of simultaneous solutions, a simplification is to model each domain independently at the cost of losing the conditioning of properties across domains. This paper proposes to organize the modeling process in a triangular array which follows events in the geological time domain; for example, the younger formations are at the top of the pyramid and the older formation at the base. The estimation may go from top to base by assuming that younger events have perturbed older formations. Geology shows the scars of events that cumulate in rock formations before they are finally eroded. In some cases, older formations may be parent material for younger formations. The continuous property within each geo-domain has a conditional covariance in the main diagonal of the array which may belong to a specific event in the geological time. This sequence leads to transitive estimation and simulations in the physical space. If a simultaneous solution is sought (i.e., the future and past are correlated both ways), the complex covariance functions can be constructed stepwise from conditional spectra.  相似文献   

16.
张社荣  严磊  王超  孙博  撒文奇 《岩土力学》2012,33(2):597-603
依托溶蚀地基上建坝的典型工程问题,在研究坝基溶蚀空间展布特征的基础上,建立溶蚀带力学参数随机场模型,采用随机有限元方法研究坝体工作性态的统计特性,评价了溶蚀坝基建坝适应性。采用溶蚀带力学参数随机场模型,等效模拟了空间内溶蚀体的无序分布系统,排除地质统计中线溶蚀率的人为假定,避免了以往确定性分析模型中溶蚀体缺失现象。研究方法和成果亦可以为其他相似复杂地基工程的数值分析提供新的思路和参考。  相似文献   

17.
In this work, we present a numerical procedure for determining the nature stress state in the rock mass around a tunnel. A finite element method is applied for analyzing the direct problems of tunneling during the back analysis of parameter estimation, in which a no‐tension elastic–plastic model is used to simulate the elastic–tensile and elastic–plastic‐tensile failure states which often occur in the cases of underground excavation in heavily jointed rock masses. By considering the natural stress state as random parameters of the tunneling system, the Kalman filter method is employed for feedback analysis to modify the parameter values in a statistical context, which uses the prior information in the process of estimation and employs a set of displacements obtained from field measurements. To verify the effectiveness of the proposed method of inverse analysis, the developed numerical procedure is applied to a synthetic example of deep tunnels in yielding rock masses. The relative importance of the a priori and updating information is investigated, as is the importance of their uncertainty. The results show great potential of the proposed approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Displacement is vital in the evaluations of tunnel excavation processes,as well as in determining the postexcavation stability of surrounding rock masses.The prediction of tunnel displacement is a complex problem because of the uncertainties of rock mass properties.Meanwhile,the variation and the correlation relationship of geotechnical material properties have been gradually recognized by researchers in recent years.In this paper,a novel probabilistic method is proposed to estimate the uncertainties of rock mass properties and tunnel displacement,which integrated multivariate distribution function and a relevance vector machine(RVM).The multivariate distribution function is used to establish the probability model of related random variables.RVM is coupled with the numerical simulation methods to construct the nonlinear relationship between tunnel displacements and rock mass parameters,which avoided a large number of numerical simulations.Also,the residual rock mass parameters are taken into account to reflect the brittleness of deeply buried rock mass.Then,based on the proposed method,the uncertainty of displacement in a deep tunnel of CJPL-II laboratory are analyzed and compared with the in-situ measurements.It is found that the predicted tunnel displacements by the RVM model closely match with the measured ones.The correlations of parameters have significant impacts on the uncertainty results.The uncertainty of tunnel displacement decreases while the reliability of the tunnel increases with the increases of the negative correlations among rock mass parameters.When compared to the deterministic method,the proposed approach is more rational and scientific,and also conformed to rock engineering practices.  相似文献   

19.
克里金参数估值法及其在参数估计分析中的应用   总被引:2,自引:0,他引:2  
孙强  薛雷  王媛媛 《岩土力学》2009,30(Z2):371-373
为考虑岩土介质参数的空间分布的结构性和随机性等不确定因素,引入了克里金参数估值法。采用变异函数描述参数在空间结构上的变化,建立其空间变异规律的数学模型,从而实现对岩土参数的估值。通过实例分析揭示了克里金估值法具有反映“过滤效应”和“集团效应”的优点,对不同位置的数据赋予不同的权重系数,能够有效地反映参数空间变异结构,有利于对参数的合理化分析  相似文献   

20.
A general analysis of electroosmotic phenomena is given for random porous media through which an electrolyte flows. A dimensional analysis demonstrates the crucial importance of the dimensionless coupling parameter a, which is usually very small when compared to 1; this suggests an expansion in terms of a and a numerical scheme that avoids the instabilities occurring in the direct solution. For media whose properties such as permeability are lognormally distributed, an analytical expression of the macroscopic coupling coefficients can be obtained when the fluctuations are small. Various results are provided for laminated media, correlated media, and stratified or fractured media. The influence of some macroscopic geometrical parameters is illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号