首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Imphal valley is an intramontane basin confined within an anticlinorium of several anticlines and synclines in the Disang Group of rocks of Tertiary age. This valley of more than 2 million people is occupied by fluvio-lacustrine deposits of Quaternary age and is located in the central part of the Indo-Myanmar range of Northeast India. The hydrogeochemical parameters of temperature, pH, ORP, TDS, Na, Cl, Br, Ba, B, Sr, Li, δ18O, HCO3, K, Mg, Ca, NO3, PO4, SO4 in 173 samples using ion-chromatograph, ICP (AES), ICP (OES), ICP (MS) and 37 dugwells were studied to understand the occurrence and origin of salinization process for the first time. The order of abundance of ions is identified as HCO3 > Na > Cl > Ca > Mg > K > NO3 > PO4 > Sr > Br > B>Ba > Li > SO4. Five hydrochemical facies (Na–Cl, Ca–Mg–HCO3, Na–HCO3, Ca–Mg–HCO3–Cl and Ca–Mg–Cl) represent the types of waters. The saline-dominated water types (Na–Cl and Na–HCO3) represent piedmont and the rest of the facies represent alluvial plain and flood plain groundwaters. Durov’s diagram reveales initial and intermediate stages of groundwater evolution. Isotope δ18O, Gibbs diagram and ions scatter plots suggest evaporation and crystallization processes leading to halite encrustation in the Disang shales. Negative Eh, low NO3 and the absence of SO4 indicates reduced condition coupled with rich dissolve organic matters leading to elevation of salts in soils around piedmont where the rock type is exclusively of the Disang shales. Trilinear plot, correlation matrix and water table flow analysis suggest salinization of groundwater originates in piedmont groundwater and disseminates towards alluvial plain and flood plain along the flow path.  相似文献   

2.
Hydrogeochemical investigation of groundwater has been carried out in the coastal aquifers of southern Tamil Nadu, India. Seventy-nine dug well samples were collected and analyzed for various physicochemical parameters. The result of the geochemical analysis indicates the groundwater in the study area is slightly alkaline with moderate saline water. The cation and anion concentrations confirm most of the groundwater samples belong to the order of Na+ > Mg2+ > Ca2+ > K+ and Cl? > SO4 2? > HCO3 ?. Thereby three major hydrochemical facies (Ca–Cl, mixed Ca–Mg–Cl and Na–Cl) were identified. Based on the US Salinity diagram, majority of the samples fall under medium to very high salinity with low to high sodium hazard. The cross plot of Ca2+ + Mg2+ versus chloride shows 61 % of the samples fall under saline water category. Higher EC, TDS and Cl concentrations were observed from Tiruchendur to Koodankulam coastal zone. It indicates that these regions are significantly affected by saltwater contamination due to seawater intrusion, saltpan deposits, and beach placer mining activities.  相似文献   

3.
This paper focuses on the Qareh Sou Basin in Golestan Province, Iran. Golestan Province is the third largest cereal producer in Iran and water scarcity and salinity are major problems in this area. This study attempts to facilitate the comprehension of system behavior with respect to water quality issues and hydro-geochemical coefficients within the Qareh Sou Basin. This study was carried out during the year 2010. Various parameters, such as pH, EC, chloride, sulfate, bicarbonate, sodium, potassium, calcium and magnesium have been determined for evaluation purposes. Then, Ca/Mg, Na/Cl, Mg/(Ca + Mg), Ca/HCO3, (Ca + Mg)–(HCO3 + SO4), (Na + K)–Cl, (Ca + Mg + Na + K)–Cl, HCO3 + SO4, Ca + Mg and chloro-alkaline indices (CAI) were calculated. Results show that cation exchange probably is an important factor in the hydrochemistry and silicate mineral weathering. Also, CAI-1 plot against CAI-2 demonstrates that most of samples have positive values which suggest normal ion exchange in the system. The carbonic acid is the main agent of calcite, limestone and dolomite weathering which occurs in some stations. According to Chadha’s diagram, the type of water is determined as Ca–Mg–HCO3.  相似文献   

4.
This paper presents a study on the Wular Lake which is the largest fresh water tectonic lake of Kashmir Valley, India. One hundred and ninety-six (196) water samples and hundred (100) sediment samples (n = 296) have been collected to assess the weathering and Anthropogenic impact on water and sediment chemistry of the lake. The results showed a significant seasonal variability in average concentration of major ions being highest in summer and spring and lower in winter and autumn seasons. The study revealed that lake water is alkaline in nature characterised by medium total dissolved solids and electrical conductivity. The concentration of the major ion towards the lake central showed a decreasing trend from the shore line. The order of major cations and anions was Ca2+ > Mg2+ > Na+ > K+ and HCO3 ? > SO4 2? > Cl?, respectively. The geochemical processes suggested that the chemical composition lake water is mostly influenced by the lithology of the basin (carbonates, silicates and sulphates) which had played a significant role in modifying the hydrogeochemical facies in the form of Ca–HCO3, Mg–HCO3 and hybrid type. Chemical index of alteration values of Wular Lake sediments reflect moderate weathering of the catchment area. Compared to upper continental crust and the post-Archean Shale, the sediments have higher Si, Ti, Mg and Ca contents and lower Al, Fe, Na, K, P, Zn, Pb, Ni, Cu content. Geoaccumulation index (Igeo) and US Environmental Protection Agency sediment quality standards indicated that there is no pollution effect of heavy metals (Zn, Mn, Pb, Ni and Co).The study also suggested that Wular Lake is characterised by both natural and anthropogenic influences.  相似文献   

5.
The groundwater quality detoriation due to various geochemical processes like saline water intrusion, evaporation and interaction of groundwater with brines is a serious problem in coastal environments. Understanding the geochemical evolution is important for sustainable development of water resources. A detailed investigation was carried out to evaluate the geochemical processes regulating groundwater quality in Cuddalore district of Tamilnadu, India. The area is entirely underlined by sedimentary formations, which include sandstone, clay, alluvium, and small patches of laterite soils of tertiary and quaternary age. Groundwater samples were collected from the study area and analyzed for major ions. The electrical conductivity (EC) value ranged from 962 to 11,824 μS/cm, with a mean of 2802 μS/cm. The hydrogeochemical evolution of groundwater in the study area starts from Mg-HCO3 type to Na-Cl type indicating the cation exchange reaction along with seawater intrusion. The Br/Cl ratio indicates the evaporation source for the ion. The Na/Cl ratios indicate groundwater is probably controlled by water-rock interaction, most likely by derived from the weathering of calcium-magnesium silicates. The plot of (Ca+Mg) versus HCO3 suggests ions derived from sediment weathering. The plot of Na+K over Cl reflects silicate weathering along with precipitation. Gibbs plot indicates the dominant control of rock weathering. Factor analysis indicates dominance of salt water intrusion, cation-exchange and anthropogenic phenomenon in the study.  相似文献   

6.
A hydrogeochemical investigation was conducted in a coastal region of Cuddalore district to identify the influence of saltwater intrusion and suitability of groundwater for domestic and agricultural purposes. The geology of the study area comprises of sandstone, clay, alluvium, and laterite soils of Tertiary and Quaternary age. A total of 18 groundwater samples were analyzed for 14 different water quality parameters and the result indicates higher concentrations of ions like Cl (3,509 mg/l), Na (3,123 mg/l), and HCO3 (998 mg/l) when compared with WHO, BIS, and ISI standards. A positive correlation (r 2?=?0.82) was observed between Na and Cl, indicating its sources from salt water intrusion. Three factors were extracted with a total variance of 64% which indicates the sources of salinization, cation exchange, and anthropogenic impact to the groundwater. The Piper trilinear diagram indicates both Na–Cl and mixed Na–HCO3–Cl-type, indicating that groundwater was strongly affected by anthropogenic activities. The plot of (Ca?+?Mg)/(K?+?Na) indicates evidences of cation exchange and salt water intrusion. The (Ca–0.33*HCO3)/ SO4 plot indicates salt water intrusion for elevated SO4 levels rather than gypsum dissolution. The spatial distribution of total dissolved solid indicates the saline water encroachment along the SW part of the study area. As per sodium adsorption ratio (SAR), 50% of the samples with <10 SAR are suitable for irrigation and >10 SAR indicates that water is unsuitable for irrigation purposes. The residual sodium carbonate classification indicates that 50% of the samples fall in safe and 50% of the samples fall in bad zones and prolonged usage of this water will affect the crop yield. The Chloro Alkaline Index of water indicates disequilibrium due to a higher ratio of Cl?>?Na–K, indicating the influence of salt water intrusion. The Permeability Index of the groundwater indicates that the groundwater from the study area is moderate to good for irrigation purposes.  相似文献   

7.
8.
The major ion and trace element chemistry of water samples, including springs, rivers and irrigation ditches, collected during a survey on August 2016 in the Upper Mustang region of the Mustang District of Dhawalagiri Zone (Nepal) has been investigated. The Upper Mustang region, a cold desert, represents a hot-spot for climate change: indeed, violent hailstorms and rainstorms have been recently observed, consequently exposing land to erosion. Results of this study indicate that waters in the region belong to the Ca–HCO3, Ca–Mg–Cl–SO4 and Na–K–Cl-types, reflecting different hydrochemical regimes. Uranium is widespread in waters, with concentrations up to 19 µg/L recorded in a potable water supply. Locally, anoxic conditions affect uranium mobility due to the low solubility of U(IV) minerals. Highly toxic thallium was detected in a thermal spring at an elevated concentration (45 µg/L Tl). The association of thallium with high concentrations of iron suggests that these elements are derived from pyrite oxidation. Detectable levels of thallium were also measured in the water of an irrigation ditch. Lithium concentrations ranged from 7 µg/L to 12 mg/L in the thermal water and showed a strong association with chloride ions. Arsenic concentrations up to 4.7 µg/L were measured in tributaries of the Kali Gandaki river. The data provide evidence that solutes in water have originated from an array of input sources, including carbonate dissolution, the dissolution of soluble salts, silicate weathering and localized sulfide oxidation. In particular, chemical weathering of granitic rocks is likely the primary source for metals and metalloids in waters. Since the erosion rate is a factor affecting lithological weathering, high-intensity rainfalls due to climate change are expected to influence the release and fate of potentially harmful elements in the in the Upper Mustang Valley.  相似文献   

9.
Assessment of chemistry of groundwater infiltrated by pit-toilet leachate and contaminant removal by vadose zone form the focus of this study. The study area is Mulbagal Town in Karnataka State, India. Groundwater level measurements and estimation of unsaturated permeability indicated that the leachate recharged the groundwater inside the town at the rate of 1 m/day. The average nitrate concentration of groundwater inside the town (148 mg/L) was three times larger than the permissible limit (45 mg/L), while the average nitrate concentration of groundwater outside the town (30 mg/L) was below the permissible limit. The groundwater inside the town exhibited E. coli contamination, while groundwater outside the town was free of pathogen contamination. Infiltration of alkalis (Na+, K+) and strong acids (Cl?, SO4 2?) caused the mixed Ca–Mg–Cl type (60 %) and Na–Cl type (28 %) facies to predominate groundwater inside the town, while, Ca–HCO3 (35 %), mixed Ca–Mg–Cl type (35 %) and mixed Ca–Na–HCO3 type (28 %) facies predominated groundwater outside/periphery of town. Reductions in E. coli and nitrate concentrations with vadose zone thickness indicated its participation in contaminant removal. A 4-m thickness of unsaturated sand + soft, disintegrated weathered rock deposit facilitates the removal of 1 log of E. coli pathogen. The anoxic conditions prevailing in the deeper layers of the vadose zone (>19 m thickness) favor denitrification resulting in lower nitrate concentrations (28–96 mg/L) in deeper water tables (located at depths of ?29 to ?39 m).  相似文献   

10.
Küçük Menderes River forms a rich coastal wetland inside in the Selçuk plain. Three saline/brackish lakes, one swamp and Küçük Menderes River are these wetlands’ components. Alkaline-slightly alkaline type lakes are recharged from precipitation and karstic springs that discharge from marble-schist and marble-alluvium contacts in the northern and southern parts of the study area. Water types of the wetland are Na–Cl and Na–Ca–Mg–HCO3–Cl in both rainy and dry seasons. Both seawater intrusion and evaporation, as being the sources of the ions, justify the presence of Na–Cl, Na–SO4 and Cl–SO4, in the wetland water. Environmental isotopes were used to identify the relationship between wetland and groundwater in the Selçuk plain. The δ18O and δD composition of wetland area samples have changed between ?6.42 to ?4.56‰, and ?36.40 to ?23.80‰, respectively. The lakes and rivers are plotted on the mixing line by slope of 5.2 and these data indicate that wetland is affected from seawater intrusion. The recharge area that was sampled in order to compare the wetland has Ca–HCO3 water type with a neutral-slightly alkaline pH values and the main hydrogeochemical process is weathering the different types of silicates. Iron, manganese and selenium are the dominant minor ions due to the high biological activities and organic matters in the lakes. There are two contamination risks for this wetland: (1) waste disposal site and (2) water treatment plant where the purified waters are released into the river. EC, Al, As, Cd, Cu, Fe and Zn values exceed those of aquatic life standards. In the near future these sites will pose a danger for wetland wild life and surrounding irrigation water suppliers.  相似文献   

11.
A total of 162 groundwater samples for three representative seasons were collected from Salem district of Tamilnadu, India to decipher hydrogeochemistry and groundwater quality for determining its suitability for drinking and agricultural proposes. The water is neutral to alkaline in nature with pH ranging from 6.6 to 8.6 with an average of 8.0. Higher electrical conductivity was observed during post-monsoon season. The abundance of major ions in the groundwater was in the order of $ {\text{Na} > \text{Ca} > \text{Mg} > \text{K} = \text{Cl} > \text{HC}}{{\text{O}}_3}\; > \;{\text{S}}{{\text{O}}_4}\; > \;{\text{N}}{{\text{O}}_3} $ . Piper plot reveals the dominance of geochemical facies as mixed Ca–Mg–Cl, Na–Cl, Ca–HCO3, Ca–Na–HCO3, and Ca–Cl type. NO3, Cl, SO4, and F exceed the permissible limit during summer and post-monsoon seasons. Sodium adsorption ratio was higher during post-monsoon and southwest monsoon season indicating high and low salinity, satisfactory for plants having moderate salt tolerance on soils. Permeability index of water irrespective of season falls in class I and class II indicating water is moderate to good for irrigation purposes. As per the classification of water for irrigation purpose, water is fit for domestic and agricultural purposes with minor exceptions irrespective of seasons.  相似文献   

12.
The alluvial aquifer of Upper Cheliff (northern Algeria) is known for its intensive agricultural activities, which is based especially on groundwater exploitation. This aquifer is now facing a dual problem of quantity and quality, with a decrease in the groundwater levels and an increase in mineralization. Twenty monitoring samples were collected and analyzed for major ion during the dry season 2014. In the present study, we try to characterize the hydrogeochemical processes and to assess the impact of natural and anthropogenic conditions on groundwater mineralization. The analytical results of the dry season 2014 show a groundwater quality slightly alkaline (pH > 7) and indicate that the majority of samples have a values exceeding the limits of potability fixed by WHO in 2008, due to the various sources of anthropogenic pollution. The Piper diagram shows the dominance of groundwater types: Ca–Cl, the mixed facies (Cl–SO4–Ca–Mg), and Ca–HCO3: The mineralization process in this aquifer is mainly controlled by the lithology of the aquifer (exchange water–rock and weathering of calcareous crust dissolution in the unsaturated zone), by anthropogenic factors (discharges of untreated urban sewage, intensive use of fertilizers in agriculture and the use of domestic septic tanks by rural inhabitants) and also by geoclimatic conditions (semiarid climate). Suitability of groundwater shows more than 80% of samples have very poor quality for drinking and more than 20% of samples indicate a quality unsuitable for irrigation.  相似文献   

13.
Hydrogeochemical characteristics of groundwater and its suitability for domestic, irrigation, and industrial purposes were evaluated in Nanded Tehsil. A total of 50 representative groundwater samples were collected from dug/bore wells during post monsoon season 2012 and analyzed for major cations and anions. The order of dominance of cation and anions were Na > Ca > Mg > K and HCO3 > Cl > CO3 > SO4 > NO3, respectively. The rock weathering and evaporation processes are dominant in controlling the groundwater quality in the study area. Electrical conductivity (EC) and total dissolved solid (TDS) show high positive correlation with total Hardness (TH), Ca, Na, and Cl. As per the WHO and BIS standards for domestic water purposes, TDS, TH, Ca, Mg, Na, and Cl exceed the safe limits in 16, 22, 6, 18, 12, and 15 %, respectively; therefore, majority of samples show that the groundwater is suitable for drinking. The spatial distribution maps of physicochemical parameters were prepared in ArcGIS. The suitability of groundwater for agriculture purpose was evaluated from EC, TDS, sodium adsorption ratio (SAR), residual sodium carbonate (RSC), and %Na which ranges from excellent to unsuitable, so majority of the groundwater samples are suitable for irrigation. The U.S. Salinity Laboratory (USSL) diagram shows that most of the groundwater samples are characterized as in high salinity-low sodium hazard type water (C3-S1). All the groundwater samples are suitable for industrial use except sample numbers 44 and 48. Thus, most of the groundwater samples from this study confirm the beneficial use of aquifers in the area for domestic, agricultural, and irrigation purposes. However, sample numbers 44 and 48 identify the two aquifers in the study area which are problematic and need particular remedial measures if they are to have beneficial use.  相似文献   

14.
Groundwater in Farashband plain, Southern Iran, is the main source of water for domestic and agricultural uses. This study was carried out to assess the overall water quality and identify major variables affecting the groundwater quality in Farashband plain. The hydrochemical study was undertaken by randomly collecting 84 groundwater samples from observation wells located in 13 different stations covering the entire plain in order to assess the quality of the groundwater through analysis of major ions. The water samples were analyzed for various physicochemical attributes. Groundwater is slightly alkaline and largely varies in chemical composition; e.g., electrical conductivity (EC) ranges from 2314 to 12,678 μS/cm. All the samples have total dissolved solid values above the desirable limit and belong to a very hard type. The abundance of the major ions is as follows: Na+ > Ca2+ > Ma2+ > K+ and Cl? > SO4 2– > HCO3 ?. Interpretation of analytical data shows three major hydrochemical facies (Ca–Cl, Na–Cl, and mixed Ca–Mg–Cl) in the study area. Salinity, total dissolved solids, total hardness, and sodium percentage (Na%) indicate that most of the groundwater samples are not suitable for irrigation as well as for domestic purposes and far from drinking water standard. A comparison of groundwater quality in relation to drinking water standards showed that most of the water samples are not suitable for drinking purposes. Based on the US salinity diagram, most of samples belong to high salinity and low to very high sodium type.  相似文献   

15.
The present research aims to identify sources of ions and factors controlling the geochemical evolution of groundwater in an intermountain basin, comprising hill and valley fill region, of Outer Himalaya in Himachal Pradesh, India. The groundwater samples collected from 81 tubewells and handpumps are analyzed for major ions, trace metals and stable isotopes (δ18O and δD). Geochemically the dominant hydrochemical facies in the Una basin are Ca–HCO3, Ca–Mg–HCO3 and Na–Cl types at few locations. A relatively lower ionic concentration in the valley fills indicates dilution and low residence time of water to interact with the aquifer mass due to high porosity and permeability. The ionic ratios of 0.9, 0.8 and 3.8 to 5.7, respectively, for (Ca?+?Mg): HCO3, (Ca?+?Mg): (HCO3?+?SO4) and Na: Cl, suggests that ionic composition of groundwater is mainly controlled by rock weathering of, particularly by dissolution/precipitation of calcrete and calcite hosted in rock veins and Ca–Na feldspar hosted in conglomerate deposits derived from the Higher and Lesser Himalaya during the formation of Siwalik rocks. Although Na, K, NO3 and SO4 are introduced in the groundwater through agricultural practices, Na has also been introduced through ion exchange processes that have occurred during water–rock interaction, as indicated by negative CAI values. Factor analysis further suggests three major factors affecting the water chemistry of the area. The first two factors are associated with rock weathering while the third is anthropogenic processes associated with high nitrate and iron concentration. High concentrations of Fe and Mn ions that are exceeded that of WHO and BIS standards are also present at few locations. The recharge of groundwater in the Outer Himalaya is entirely through Indian Southwest Monsoon (ISM) and depleted ratios of δ18O/δD in valley region indicate infiltration from irrigation in recharging the groundwater and fractionation of isotopes of precipitation due to evaporation before infiltration. High d-excess values and inverse relation with δ18O are indicative of secondary evaporation of precipitation during recharge of groundwater.  相似文献   

16.
The present study investigates the hydrogeochemistry and contamination of Varamin deep aquifer located in the southeast of Tehran province, Iran. The study also evaluates groundwater suitability for irrigation uses. The hydrogeochemical study was conducted by collecting and analyzing 154 groundwater samples seasonally during 2014. Based on evolutionary sequence of Chebotarev, the aquifer is in the stage of SO4 + HCO3 in the north half of the plain and it has evolved into SO4 + Cl in the south half. The unusual increase in TDS and Cl? toward the western boundaries of the aquifer indicates some anomalies. These anomalies have originated from discharge of untreated wastewater of Tehran city in these areas. The studied aquifer contains four dominant groundwater types including Na–Ca–SO4 (55%), Na–Ca–HCO3 (22%), Na–Cl (13%) and Ca–Cl (10%). The spatial distributions of Na–Cl and Ca–Cl water types coincide with observed anomalies. Ionic relationships of SO4 2? versus Cl? and Na+ versus Cl? confirm that water–rock interaction and anthropogenic contribution are main sources of these ions in the groundwater. The main processes governing the chemistry of the groundwater are the dissolution of calcite, dolomite and gypsum along the flow path, and direct ion exchange. Reverse ion exchange controls the groundwater chemistry in the areas contaminated with untreated wastewater. Based on Na% and SAR, 10.3 and 27% of water samples are unsuitable for irrigation purposes, respectively. Regarding residual sodium carbonate, there is no treat for crop yields. Only 6% of water samples represent magnesium adsorption ratios more than 50% which are harmful and unsuitable for irrigation.  相似文献   

17.
The Panama coastal aquifer system is an important water resource in the southeast coast of Sri Lanka that provides adequate supplies of water for agriculture and domestic uses. One of the biggest threats to these fragile aquifers is the sea water intrusion. In this study, recharging mechanism and geochemical evaluation of groundwater in the coastal sandy aquifer of Panama were evaluated using chemical and stable isotope techniques. Thirty groundwater samples were collected and analyzed for their major ion concentrations and stable isotope ratios of oxygen (18O/16O) and hydrogen (D/H). All studied samples showed a ranking of major anions in the order Cl> HCO 3 > SO 4 2?  > N-NO3 ? while cations showed a decreasing order of abundance with Na> Ca2+ > Mg2+ > K+. Dominant groundwater hydrogeochemical types were Na–Cl and mixed Ca–Mg–Cl. Results of saturation index calculations indicate that the investigated groundwater body was mostly saturated with respect to calcite, dolomite and gypsum. In addition, stable isotope and geochemical data suggest that fresh groundwater in the aquifer is recharged mainly by local precipitation with slight modification from evaporation and saline water intrusions. Isotope data suggest that mixing of salt water with freshwater occurs in aquifers which are located towards the lagoon. Since the communities in the study area depend entirely on groundwater, an understanding of the hydrogeochemical characteristics of the aquifer system is extremely important for the better water resource management in the region.  相似文献   

18.
The Kangan Aquifer (KA) is located below a gas reservoir in the crest of the Kangan Anticline, southwest of Iran. This aquifer is composed of Permo-Triassic limestone, dolomite, sandstone, anhydrite and shale. It is characterized by a total dissolved solid of about 332,000 mg/L and Na–Ca–Cl-type water. A previous study showed that the source of the KA waters is evaporated seawater. Chemical evolution of the KA is the main objective of this study. The major, minor and trace element concentrations of the KA waters were measured. The chemical evolution of KA waters occurred by three different processes: evaporation of seawater, water–rock and water–gas interactions. Due to the seawater evaporation process, the concentration of all ions in the KA waters increased up to saturation levels. In comparison to the evaporated seawater, the higher concentrations of Ca, Li, Sr, I, Mn and B and lower concentrations of Mg, SO4 and Na and no changes in concentrations of Cl and K ions are observed in the KA waters. Based on the chemical evolution after seawater evaporation, the KA waters are classified into four groups: (1) no evolution (Cl, K ions), (2) water–rock interaction (Na, Ca, Mg, Li and Sr ions), (3) water–gas interaction (SO4 and I ions) and (4) both water–rock and water–gas interactions (Mn and B ions). The chemical evolution processes of the KA waters include dolomitization, precipitation, ion exchange and recrystallization in water–rock interaction. Bacterial reduction and diagenesis of organic material in water–gas interaction also occur. A new type of chart, Caexcess versus Mgdeficit, is proposed to evaluate the dolomitization process.  相似文献   

19.
Hydrogeochemistry of groundwater is important for sustainable development and effective management of the groundwater resource. Fifty-six groundwater samples were collected from shallow tube wells of the intensively cultivated southern part of district Bathinda of Punjab, India, during pre- and post-monsoon seasons. Conventional graphical plots were used to define the geochemical evaluation of aquifer system based on the ionic constituents, water types, hydrochemical facies and factors controlling groundwater quality. Negative values of chloroalkaline indices suggest the prevalence of reverse ion exchange process irrespective of the seasons. A significant effect of monsoon is observed in terms chemical facies as a considerable amount of area with temporary hardness of Ca2+–Mg2+–HCO3 ? type in the pre-monsoon switched to Ca2+–Mg2+–Cl? type (18%) followed by Na+–HCO3 ? type (14%) in the post-monsoon. Evaporation is the major geochemical process controlling the chemistry of groundwater process in pre-monsoon; however, in post-monsoon ion exchange reaction dominates over evaporation. Carbonate weathering is the major hydrogeochemical process operating in this part of the district, irrespective of the season. The abundance of Ca2+ + Mg2+ in groundwater of Bathinda can be attributed mainly to gypsum and carbonate weathering. Silicate weathering also occurs in a few samples in the post-monsoon in addition to the carbonate dissolution. Water chemistry is deteriorated by land-use activities, especially irrigation return flow and synthetic fertilisers (urea, gypsum, etc.) as indicted by concentrations of nitrate, sulphate and chlorides. Overall, results indicate that different natural hydrogeochemical processes such as simple dissolution, mixing, weathering of carbonate minerals locally known as ‘‘kankar’’ and silicate weathering are the key factors in both seasons.  相似文献   

20.
Insufficient knowledge of the hydrogeochemistry of aquifers in the Central Region of Ghana has necessitated a preliminary water quality assessment in some parts of the region. Major and minor ions, and trace metal compositions of groundwater have been studied with the aim of evaluating hydrogeochemical processes that are likely to impair the quality of water in the study area. The results show that groundwater in the area is weakly acidic with mean acidity being 5.83 pH units. The dominant cation in the area is Na, followed by K, Ca, and Mg, and the dominant anion is Cl?, followed by HCO3 ? and SO4 2?. Two major hydrochemical facies have been identified as Na–Cl and Na–HCO3, water types. Multivariate statistical techniques such as cluster analysis (CA) and factor analysis/principal component analysis (PCA), in R mode, were employed to examine the chemical compositions of groundwater and to identify factors that influenced each. Q-mode CA analysis resulted in two distinct water types as established by the hydrochemical facies. Cluster 1 waters contain predominantly Na–Cl. Cluster 2 waters contain Na–HCO3 and Na–Cl. Cluster 2 waters are fresher and of good quality than cluster 1. Factor analysis yielded five significant factors, explaining 86.56% of the total variance. PC1 explains 41.95% of the variance and is contributed by temperature, electrical conductivity, TDS, turbidity, SO4 2?, Cl?, Na, K, Ca, Mg, and Mn and influenced by geochemical processes such as weathering, mineral dissolution, cation exchange, and oxidation–reduction reactions. PC2 explains 16.43% of the total variance and is characterized by high positive loadings of pH and HCO3 ?. This results from biogenic activities taking place to generate gaseous carbon dioxide that reacts with infiltrating water to generate HCO3 ?, which intend affect the pH. PC3 explains 11.17% of the total variance and is negatively loaded on PO4 3? and NO3 ? indicating anthropogenic influence. The R-mode PCA, supported by R-mode CA, have revealed hydrogeochemical processes as the major sources of ions in the groundwater. Factor score plot revealed a possible flow direction from the northern sections of the study area, marked by higher topography, to the south. Compositional relations confirmed the predominant geochemical process responsible for the various ions in the groundwater as mineral dissolution and thus agree with the multivariate analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号