首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Swartvlei estuary possesses a prolific growth of both intertidal and subtidal eelgrass,Zostera capensis. During 1984 less than 12% of the eelgrass beds were located in the upper half of the estuary, yet deposition ofZostera/macroalgal wrack in this region, when the estuary was linked to the sea (open phase), was similar to that in the lower half. Over a period of 20 semidiurnal tidal cycles there was a net gain of 2.5 tonnes dry mass of plant material into the upper reaches. Export of aquatic macrophytes and filamentous algae from the lower reaches toward the sea over 20 tidal cycles amounted to 1.6 tonnes dry mass. The amount of plant material transported during spring tides was 2 to 3 times greater than that carried during neap tides. Shallowing of the estuary mouth due to sand deposition resulted in a decline in the tidal prism and a decrease in macrodetrital flux. Total export ofZostera and associated algae amounted to 0.87 g ash-free dry mass m?2d?1 and represented a monthly export of 18% ofZostera bed biomass. Deposition of plant wrack during the 1984–1985 closed phase amounted to 63 g dry mass per meter of shore per day at the lower reaches site but only 10 g m?1d?1 was recorded at the upper reaches site. The relatively low latter value was attributed to the absence of tidal action which transports macrodetritus from the lower and middle reaches into the upper part of the system. During the 1984 open phase 70 g m?1d?1 was deposited at the lower reaches site and 68 g m?1d?1 at the upper reaches site. The role of tides in the redistribution of aquatic macrophyte primary production in the Swartvlei estuary was therefore clearly underscored.  相似文献   

2.
Oceanic upwelling results in the intermittent intrusion of cold ocean water enriched in nitrate, and to a lesser extent soluble reactive phosphorus (SRP), into the Kariega Estuary (South Africa). Laboratory measocosm experiments were conducted to determine the effects of such changes on fluxes of dissolved nutrients across the surface of a salt marsh within the estuary. When replicate mesocosms of the tidal creek and salt marsh were inundated with nonupwelled water (at 25°C and nitrate concentrations of 4.5 μmoll?1), nitrate fluxes in both regions were small, and the tidal creek exhibited net uptake (negative value) of nitrate from the water column (?85 μmol m?2 tide?1), and the marsh, net release (positive values; 113 μmol m?2 tide?1). When the mesocosms were inundated with upwelled water, at 16°C and with nitrate concentrations of 24.2 μmol l?1, both regions exhibited large net uptakes of nitrate (?514 μmol m?2 tide?1 and ?226 μmol m?2 tide?1 for the tidal creek and salt marsh, respectively). In contrast to nitrate, the fluxes of nitrite, ammonium, and SRP were not significantly different under upwelling and nonupwelling conditions, probably because initial concentrations in the two water types were similar. To determine the extent to which the nitrate uptakes were caused by decreased water temperatures or increased concentrations of nitrate, experiments were conducted in which mesocosms were inundated with water with a range of nitrate concentrations (1.8–25 μmol l?1), at two temperatures representative of summer upwelling (16°C) and nonupwelling conditions (25°C). In both regions, the net fluxes of nitrate were positively correlated with initial concentrations of nitrate in the water column. For any given concentration, the fluxes at 16°C fell within the range of values at 25°C, indicating that the shifts in fluxes caused by upwelling occurred in response to increased concentrations in the water column and not reduced temperatures.  相似文献   

3.
Seasonal responses in estuarine metabolism (primary production, respiration, and net metabolism) were examined using two complementary approaches. Total ecosystem metabolism rates were calculated from dissolved oxygen time series using Odum’s open water method. Water column rates were calculated from oxygen-based bottle experiments. The study was conducted over a spring-summer season in the Pensacola Bay estuary at a shallow seagrass-dominated site and a deeper bare-bottomed site. Water column integrated gross production rates more than doubled (58.7 to 130.9 mmol O2 m?2 day?1) from spring to summer, coinciding with a sharp increase in water column chlorophyll-a, and a decrease in surface salinity. As expected, ecosystem gross production rates were consistently higher than water column rates but showed a different spring-summer pattern, decreasing at the shoal site from 197 to 168 mmol O2 m?2 day?1 and sharply increasing at the channel site from 93.4 to 197.4 mmol O2 m?2 day?1. The consistency among approaches was evaluated by calculating residual metabolism rates (ecosystem ? water column). At the shoal site, residual gross production rates decreased from spring to summer from 176.8 to 99.1 mmol O2 m?2 day?1 but were generally consistent with expectations for seagrass environments, indicating that the open water method captured both water column and benthic processes. However, at the channel site, where benthic production was strongly light-limited, residual gross production varied from 15.7 mmol O2 m?2 day?1 in spring to 86.7 mmol O2 m?2 day?1 in summer. The summer rates were much higher than could be realistically attributed to benthic processes and likely reflected a violation of the open water method due to water column stratification. While the use of sensors for estimating complex ecosystem processes holds promise for coastal monitoring programs, careful attention to the sampling design, and to the underlying assumptions of the methods, is critical for correctly interpreting the results. This study demonstrated how using a combination of approaches yielded a fuller understanding of the ecosystem response to hydrologic and seasonal variability.  相似文献   

4.
Tidal freshwater sections of the Cooper River Estuary (South Carolina) include extensive wetlands, which were formerly impounded for rice culture during the 1,700s and 1,800s. Most of these former rice fields are now open to tidal exchange and have developed into productive wetlands that vary in bottom topography, tidal hydrography and vegetation dominants. The purpose of this project was to quantify nitrogen (N) transport via tidal exchange between the main estuarine channel and representative wetland types and to relate exchange patterns to the succession of vegetation dominants. We examined N concentration and mass exchange at the main tidal inlets for the three representative wetland types (submerged aquatic vegetation [SAV], floating leaf vegetation, and intertidal emergent marsh) over 18-21 tidal cycles (July 1998–August 2000). Nitrate + nitrite concentrations were significantly lower during ebb flow at all study sites, suggesting potential patterns of uptake by all wetland types. The magnitude of nitrate decline during ebb flow was negatively correlated with oxygen concentration, reflecting the potential importance of denitrification and nitrate reduction within hypoxic wetland waters and sediments. The net tidal exchange of nitrate + nitrite was particularly consistent for the intertidal emergent marsh, where flow-weighted ebb concentrations were usually 18–40% lower than during flood tides. Seasonal patterns for the emergent marsh indicated higher rates of nitrate + nitrite uptake during the spring and summer (> 400 μmol N m-2 tide-1) with an annual mean uptake of 248 ± 162 μmol m–2 tide–1. The emergent marsh also removed ammonium through most of the year (207 ± 109 μmol m–2 tide–1), and exported dissolved organic nitrogen (DON) in the fall (1,690 ± 793 μmol m–2 tide–1), suggesting an approximate annual balance between the dissolved inorganic N uptake and DON export. The other wetland types (SAV and floating leaf vegetation) were less consistent in magnitude and direction of N exchange. Since the emergent marsh site had the highest bottom elevation and the highest relative cover of intertidal habitat, these results suggest that the nature of N exchange between the estuarine waters and bordering wetlands is affected by wetland morphometry, tidal hydrography, and corresponding vegetation dominants. With the recent diversion of river discharge, water levels in the upper Cooper estuary have dropped more than 10 cm, leading to a succession of wetland communities from subtidal habitats toward more intertidal habitats. Results of this study suggest that current trends of wetland succession in the upper Cooper River may result in higher rates of system-wide inorganic N removal and DON inputs by the growing distributions of intertidal emergent marshes.  相似文献   

5.
Patterns of nekton occurrence on the salt marsh surface at high tide and in an adjacent intertidal creek pool at low tide were used to investigate movements of nekton in an intertidal basin. Paired collections were made in North Inlet estuary, SC on 67 dates over 9 years. Comparisons of high- and low-tide total abundance indicated that what remained in the creek pool at low tide was representative of the nekton on the flooded marsh. Of the 64 taxa collected, the same 8 species ranked in the top 10 in both the high- and low-tide collections. Abundances of most resident species were positively correlated with the area of marsh flooded, but mummichog (Fundulus heteroclitus), the most abundant resident, was not. Abundances of young-of-the-year transient species were not related to the extent of tidal flooding. Some transient species used the flooded marsh but did not occupy the pool at low tide, and others found in the pool did not use the marsh. Differences in abundance, biomass, and length between the marsh and pool collections indicated differences in the tendency of species and life stages to retreat downstream of the pool to the subtidal channel. Proportionately more of the nekton that were present on the flooded marsh left the intertidal basin when large changes in temperature and salinity occurred between high and low tides. More transients left the basin following higher tides, but more residents did not. The results demonstrate a wide range of taxonomic and ontogenetic patterns among nekton using intertidal salt marsh basins and the underappreciated importance of intertidal creek pools as alternative low-tide refuges.  相似文献   

6.
Tidal currents and the spatial variability of tidally-induced shear stress were studied during a tidal cycle on four intertidal mudflats from the fluvial to the marine part of the Seine estuary. Measurements were carried out during low water discharge (<400 m3 s−1) in neap and spring tide conditions. Turbulent kinetic energy, covariance, and logarithmic profile methods were used and compared for the determination of shear stress. The cTKE coefficient value of 0.19 cited in the literature was confirmed. Shear stress values were shown to decrease above mudflats from the mouth to the fluvial part of the estuary due to dissipation of the tidal energy, from 1 to 0.2 N m−2 for spring tides and 0.8 to 0.05 N m−2 for neap tides. Flood currents dominate tidally-induced shear stress in the marine and lower fluvial estuary during neap and spring tides and in the upper fluvial part during spring tides. Ebb currents control tidally-induced shear stress in the upper fluvial part of the estuary during neap tides. These results revealed a linear relationship between friction velocities and current velocities. Bed roughness length values were calculated from the empirical relationship given by Mitchener and Torfs (1996) for each site; these values are in agreement with the modes of the sediment particle-size distribution. The influence of tidal currents on the mudflat dynamics of the Seine estuary was examined by comparing the tidally-induced bed shear stress and the critical erosion shear stress estimated from bed sediment properties. Bed sediment resuspension induced by tidal currents was shown to occur only in the lower part of the estuary.  相似文献   

7.
The metabolic rate of individual habitats can differ significantly in their contribution to the total system productivity of estuaries. Changing environmental conditions such as those created by tidal exchange can frequently alter these rates. In an effort to quantify these rate responses, metabolic rates were measured for macroalgal and sediment habitats at different salinities. Microcosms representing the two habitats were incubated at three salinity ranges (high: 25 to 31‰; moderate: 12 to 18‰; and low: 0 to 4‰) and production and respiration rates were estimated. The production rates for both habitats were proportional to the salinity of the water in the incubation, with the lowest metabolic rates associated with the lowest salinity. Average macroalgal habitat net production rates were 879 mg O2 m?2 h?1, 609 mg O2 m?2 h?1, and 451 mg O2 m?2 h?1 at high, moderate, and low salinity treatments, respectively, and the dark respiration rates were ?401 mg O2 m?2 h?1, ?341 mg O2 m?2 h?1, and ?333 mg O2 m?2 h?1. Average sediment habitat net production rates were 60 mg O2 m?2 h?1, 13 mg O2 m?2 h?1 and 10 mg O2 m?2 h?1 and the respiration rates were ?114 mg O2 m?2 h?1, ?55 mg O2 m?2 h?1, and ?31 mg O2 m?2 h?1 at high, moderate, and low salinity treatments. The larger contribution of macroalgal habitats to system metabolism may account for observed diurnal changes in water column oxygen levels in some estuaries. Macroalgal production rates explained 83% of the increase in water column oxygen levels during daylight hours and macroalgal respiration rates explained 65% of the decline in oxygen levels during the night. The contribution of macroalgal metabolism to the system can be influenced by even short-term changes in water column salinity. Environmental processes that alter salinity levels on hourly time scales may moderate the effect of macroalgal metabolism on oxygen levels.  相似文献   

8.
Bertioga Channel is a partially mixed (type 2) tidal estuary on the coastal plain of São Paulo, Brazil. Hourly current and salinity measurements during neap and spring tides in July 1991 yielded information about the physical structure of the system. Peak along-channel velocities varied from 40 cm s?1 to 60 cm s?1 during flood tides and from 70 cm s?1 to 100 cm s?1 during ebb tides. Net vertical velocity profiles indicate that the net current reverses directions at a depth of 2.5–3.0 m in the halocline. Due to appreciable fortnightly tidal modulation, the estuary alternates from being highly stratified (type 2b) during neap tides, with advection and diffusion contributing equally to the net upstream salt flux, to being moderately stratified (type 2a) during spring tides, when 90% of the net upstream salt transport is the result of effective tidal diffusion. Decomposition of the salt flux indicates that the relative contribution to the upstream salt transport by gravitational circulation shear is greater than the oscillatory tidal flux by a factor of 2.6 during neap tides. The oscillatory tidal flux is generated by the correlation of the tidal components of the u-velocity and salinity and is responsible for approximately the same amount of upstream salt transport, during neap and spring tides. However, during spring tides, this oscillatory term is greater than the other salt flux terms by a factor of 1.4. The total salt transport, through a unit width of the section perpendicular to the flow, was within 2% of the sum of the seven major decomposed, advective and dispersive terms. On the assumption that the Bertioga Channel is laterally homogeneous, the results also indicate that the estuary is not in steady state with respect to salt flux.  相似文献   

9.
An experiment was conducted to study megaripple morpho dynamics on a sandy intertidal shoal in a mesotidal mangrove creek (Gordon Creek, Townsville, Australia). Tidal current velocity and depth were recorded with S4 current meters over a period of 35 tides. The tidal megaripples were 0.06–0.2 m in height and 1–2 m in wavelength, and their movement was monitored by (1) electromagnetic bed-elevation probes (which automatically recorded bed level every 2 min at three positions along the survey transect) and (2) daily surveying for 8 days around spring tidals. The tidal currents in Gordon Creek are ebb-dominated, with maximum depth-mean current velocities for the flood and ebb tides of 0.62 and 0.98 m s?1 respectively. Significant bedload transport occurs only during spring tides, and only on the larger of the unequal semi-diurnal tides. Bedload transport is overwhelmingly in the ebb direction. Megaripple migration rates reach 5.6 m per tide in the ebb direction and up to 0.1 m min?1 within individual tides. Within-tide ‘bedform transport rates’are up to 0.29 kg m?1 s?1. The results suggest that for reconstruction of palaeoflows from deposits of preserved fine- to medium-grained sandy tidal megaripples, it is valid to use a depth-averaged velocity of 0.5–0.6 m s?1 as the migration threshold. Velocity thresholds associated with partial or complete reversal of megaripple asymmetry are invalid.  相似文献   

10.
Net ecosystem metabolism (NEM) was measured in the Piauí River estuary, NE Brazil. A mass balance of C, N, and P was used to infer its sources and sinks. Dissolved inorganic carbon (DIC) concentrations and fluxes were measured over a year along this mangrove dominated estuary. DIC concentrations were high in all estuarine sections, particularly at the fluvial end member at the beginning of the rainy season. Carbon dioxide concentrations in the entire estuary were supersaturated throughout the year and highest in the upper estuarine compartment and freshwater, particularly at the rainy season, due to washout effects of carbonaceous soils and different organic anthropogenic effluents. The estuary served as a source of DIC to the atmosphere with an estimated flux of 13 mol CO2 m?2 year?1. Input from the river was 46 mol CO2 m?2 year?1. The metabolism of the system was heterotrophic, but short periods of autotrophy occurred in the lower more marine portions of the estuary. The pelagic system was more or less balanced between auto- and heterotrophy, whereas the benthic and intertidal mangrove region was heterotrophic. Estimated annual NEM yielded a total DIC production in the order of 18 mol CO2 m?2 year?1. The anthropogenic inputs of particulate C, N, and P, dissolved inorganic P (DIP), and DIC were significant. The fluvial loading of particulate organic carbon and dissolved inorganic nitrogen (DIN) was largely retained in two flow regulation and hydroelectric reservoirs, promoting a reduction of C:N and C:P particulate ratios in the estuary. The net nonconservative fluxes obtained by a mass balance approach revealed that the estuary acts as a source of DIP, DIN, and DIC, the latter one being almost equivalent to the losses to the atmosphere. Mangrove forests and tidal mudflats were responsible for most of NEM rates and are the main sites of organic decomposition to sustain net heterotrophy. The main sources for this organic matter are the fluvial and anthropogenic inputs. The mangrove areas are the highest estuarine sources of DIP, DIC, and DIN.  相似文献   

11.
Much uncertainty exists in spatial and temporal variations of nitrous oxide (N2O) emissions from coastal marshes in temperate regions. To investigate the spatial and temporal variations of N2O fluxes and determine the environmental factors influencing N2O fluxes across the coastal marsh dominated by Suaeda salsa in the Yellow River estuary, China, in situ measurements were conducted in high marsh (HM), middle marsh (MM), low marsh (LM), and mudflat (MF) in autumn and winter during 2011–2012. Results showed that mean N2O fluxes and cumulative N2O emission indicated intertidal zone of the examined marshes as N2O sources over all sampling seasons with range of 0.0051 to 0.0152 mg N2O m?2 h?1 and 7.58 to 22.02 mg N2O m?2, respectively. During all times of day and the seasons measured, N2O fluxes from the intertidal zone ranged from ?0.0004 to 0.0644 mg N2O m?2 h?1. The freeze/thaw cycles in sediments during early winter (frequent short-term cycle) and midwinter (long-term cycle) were one of main factors affecting the temporal variations of N2O emission. The spatial variations of N2O fluxes in autumn were mainly dependent on tidal fluctuation and plant composition. The ammonia-nitrogen (NH4 +–N) in sediments of MF significantly affected N2O emissions (p < 0.05), and the high concentrations of Fe in sediments might affect the spatial variation of N2O fluxes. This study highlighted the large spatial variation of N2O fluxes across the coastal marsh (coefficient of variation (CV) = 127.86 %) and the temporal variation of N2O fluxes during 2011–2012 (CV = 137.29 %). Presently, the exogenous C and N loadings of the Yellow River estuary are increasing due to human activities; thus, the potential effects of exogenous C and N loadings on N2O emissions during early winter should be paid more attention as the N2O inventory is assessed precisely.  相似文献   

12.
The flooding-drying process over the intertidal zone of the Satilla River estuary of Georgia was examined using a three-dimensional (3-D) primitive equations numerical model with Mellor and Yamada's (1982) level 2.5 turbulent closure scheme. The model was forced by the semi-diurnal M2, S2, and N2 tides and freshwater discharge at the upstream end of the estuary. The intertidal salt marsh was treated using a 3-D wet-dry point treatment technique that was developed for the σ-coordinate transformation estuary model. Good agreement was found between model-data comparison at anchor monitoring sites and also along the estuary that suggested that the model provided a reasonable simulation of the temporal and spatial distribution of the 3-D tidal current and salinity in the Satilla River estuary. Numerical experiments have shown that the flooding-drying process plays a key role in the simulation of tidal currents in the main river channel and in water transport over the estuarine-salt marsh complex. Ignoring this process could lead to a 50% under-estimation of the amplitude of tidal currents. The model results also revealed a complex spatial structure of the residual flow in the main channel of the river, with characteristics of multiple eddy-like cell circulations. These complicated residual currents are formed due to tidal rectification over variable topography with superimposition of inertial effects, asymmetry of tidal currents, and baroclinic pressure gradients. Water exchanges over the estuary-intertidal salt marsh complex are asymmetric across the estuary, and tend to vary periodically on the northern side while quickly washing out of the marsh zone on the southern side. Strong Stokes’ drifting velocity was predicted in the estuary, so that the Lagrangian trajectories of particles were characterized by strong nonlinear processes that differ significantly from those estimated by the Eulerian residual currents.  相似文献   

13.
Hypoxia is emerging as a major threat to marine coastal biota. Predicting its occurrence and elucidating the driving factors are essential to set successful management targets to avoid its occurrence. This study aims to elucidate the effects of warming on the likelihood of hypoxia. High-frequency dissolved oxygen measurements have been used to estimate gross primary production (GPP), net ecosystem production (NEP) and community respiration (CR) in a shallow macroalgae (Caulerpa prolifera) ecosystem in a highly human-influenced closed Mediterranean bay. Daily averaged GPP and CR ranged from 0 to 1,240.9 and 51.4 to 1,297.3?mmol?O2?m?2?day?1, respectively. The higher GPP and CR were calculated for the same day, when daily averaged water temperature was 28.3?°C, and resulted in a negative NEP of ?56.4?mmol?O2?m?2?day?1. The ecosystem was net heterotrophic during the studied period, probably subsidized by allochthonous organic inputs from ground waters and from the surrounding town and boating activity. Oxygen dynamics and metabolic rates strongly depend on water temperature, with lower oxygen content at higher temperatures. The probability of hypoxic conditions increased at a rate of 0.39?% °C?1 (±0.14?% °C?1). Global warming will increase the likelihood of hypoxia in the bay studied, as well as in other semi-enclosed bays.  相似文献   

14.
Benthic oxygen, dinitrogen, and nutrient fluxes (NH4+, NO3, and PO43−) were measured monthly during a 1-year period at two locations in Weeks Bay, a shallow (1.4 m) and eutrophic estuary in Alabama. Gross primary productivity (GPP), ecosystem respiration (R), and net ecosystem metabolism were determined from high-frequency dissolved oxygen measurements. Peak water column NO3 (55 μM) and chlorophyll a (138 μg/l) concentrations were measured during spring and fall, respectively. Sediments were a net source of NH4+ (102 μmol m−2 h−1) and PO43− (0.9 μmol m−2 h−1) but a sink for NO3 (−30 μmol m−2 h−1). Benthic N2 fluxes indicated net N fixation (12 μmol N m−2 h−1). Sediment oxygen demand (0.55 g O2 m−2 day−1) accounted for <10% of R (7.3 g O2 m−2 day−1). Despite high GPP rates (4.7 g O2 m−2 day−1), the estuary was net heterotrophic. Benthic regeneration supplied, on average, 7.5% and 4% of primary productivity N and P demands, respectively. These results contrast with the conventional view that benthic regeneration accounts for a large fraction of phytoplankton nutrient demand in shallow estuaries.  相似文献   

15.
Forty-eight core and grab samples were taken from two impoundments and an adjacent tidal creek and salt marsh during each of six sampling periods (January, June and November 1983; and January, April and July 1984). Habitats sampled within the impoundments included the perimeter ditch and shallow vegeted areas dominated byRuppia maritima, Spartina alterniflora, andScirpus robustus. The adjacent tidal creek bottom and low marsh ofS. alterniflora were sampled for comparison with the impoundment sites. Major differences in faunal composition and density of macrobenthic invertebrates were observed between habitats in this study. Macrobenthic density was highest (475 individuals 0.05 m?2) at the impoundment site dominated byScripus robustus, where oligochaetes were abundant. The open marsh site had a density of 254 individuals 0.05 m?2. Among unvegetated sites, density for all sampling periods was higher in Chainey Creek than in the perimeter ditches of the impoundments. The total number of taxa was highest for the open marsh and tidal creek sites. The impoundments contained vegetated sites which were inhabited by fewer species than nonimpounded sites, while the perimeter ditch sites were comparatively depauperate. Cluster and nodal analyses identified four broad assemblages based on habitat: 1) an open marsh assemblage, 2) a creek assemblage, 3) a eurytopic assemblage, and 4) an impoundment assemblage. The separation of faunal assemblages by sampling site rather than sampling period suggests that physical differences between habitats were important factors determining distribution patterns.  相似文献   

16.
A one-dimensional, hydrodynamical model of the Tamar Estuary shows good agreement with measured tidal elevations and currents. Computed currents are used to drive a one-dimensional moving-element model of the salt balance. The moving-element model overcomes the numerical difficulties associated with strong tidal advection. Axial distributions of salinity at high water, computed using the moving-element model, compare well with measurements. The modelled and observed high water salinity distributions in this macrotidal estuary show little dependence on tidal range. The major variability in salinity is due to runoff. This strong and rapid dependence on runoff is a consequence of short residence (or flushing) times. Typically, residence times are less than one day throughout the year in the upper 10 km of estuary. The residence times maximize in summer, reaching 14 d for the whole estuary. During high runoff winter periods residence times are less than 5 d. Mixing coefficients for the moving-element salinity model are deduced from salinity measurements. Dispersion coefficients at fixed locations along the estuary are deduced from solutions of the salinity model. The spatially-averaged coefficients at mean spring and neap tides are 180 and 240 m2 s?1, respectively, for average runoff. Therefore, spring-neap variations in dispersion are fairly small and show a negative correlation with tidal range. The spatially-averaged dispersion coefficients at mean tides vary from 150 to 300 m2 s?1 for typical summer and winter runoff, respectively. The increase in dispersion with runoff and the decrease with tidal range implies that buoyancy-driven currents generate an important component of the shear dispersion in this estuary.  相似文献   

17.
We estimated CO2 and CH4 emissions from mangrove-associated waters of the Andaman Islands by sampling hourly over 24 h in two tidal mangrove creeks (Wright Myo; Kalighat) and during transects in contiguous shallow inshore waters, immediately following the northeast monsoons (dry season) and during the peak of the southwest monsoons (wet season) of 2005 and 2006. Tidal height correlated positively with dissolved O2 and negatively with pCO2, CH4, total alkalinity (TAlk) and dissolved inorganic carbon (DIC), and pCO2 and CH4 were always highly supersaturated (330–1,627 % CO2; 339–26,930 % CH4). These data are consistent with a tidal pumping response to hydrostatic pressure change. There were no seasonal trends in dissolved CH4 but pCO2 was around twice as high during the 2005 wet season than at other times, in both the tidal surveys and the inshore transects. Fourfold higher turbidity during the wet season is consistent with elevated net benthic and/or water column heterotrophy via enhanced organic matter inputs from adjacent mangrove forest and/or the flushing of CO2-enriched soil waters, which may explain these CO2 data. TAlk/DIC relationships in the tidally pumped waters were most consistent with a diagenetic origin of CO2 primarily via sulphate reduction, with additional inputs via aerobic respiration. A decrease with salinity for pCO2, CH4, TAlk and DIC during the inshore transects reflected offshore transport of tidally pumped waters. Estimated mean tidal creek emissions were ~23–173 mmol m?2 day?1 CO2 and ~0.11–0.47 mmol m?2 day?1 CH4. The CO2 emissions are typical of mangrove-associated waters globally, while the CH4 emissions fall at the low end of the published range. Scaling to the creek open water area (2,700 km2) gave total annual creek water emissions ~3.6–9.2?×?1010 mol CO2 and 3.7–34?×?107 mol CH4. We estimated emissions from contiguous inshore waters at ~1.5?×?1011 mol CO2?year?1 and 2.6?×?108 mol CH4?year?1, giving total emissions of ~1.9?×?1011 mol CO2?year?1 and ~3.0?×?108 mol CH4?year?1 from a total area of mangrove-influenced water of ~3?×?104 km2. Evaluating such emissions in a range of mangrove environments is important to resolving the greenhouse gas balance of mangrove ecosystems globally. Future such studies should be integral to wider quantitative process studies of the mangrove carbon balance.  相似文献   

18.
Measurements of primary production and respiration provide fundamental information about the trophic status of aquatic ecosystems, yet such measurements are logistically difficult and expensive to sustain as part of long-term monitoring programs. However, ecosystem metabolism parameters can be inferred from high frequency water quality data collections using autonomous logging instruments. For this study, we analyzed such time series datasets from three Gulf of Mexico estuaries: Grand Bay, MS; Weeks Bay, AL; and Apalachicola Bay, FL. Data were acquired from NOAA's National Estuarine Research Reserve System Wide Monitoring Program and used to calculate gross primary production (GPP), ecosystem respiration (ER), and net ecosystem metabolism (NEM) using Odum's open water method. The three systems represent a diversity of estuaries typical of the Gulf of Mexico region, varying by as much as two orders of magnitude in key physical characteristics, such as estuarine area, watershed area, freshwater flow, and nutrient loading. In all three systems, GPP and ER displayed strong seasonality, peaking in summer and being lowest during winter. Peak rates of GPP and ER exceeded 200 mmol O2?m?2 day?1 in all three estuaries. To our knowledge, this is the first study examining long-term trends in rates of GPP, ER, and NEM in estuaries. Variability in metabolism tended to be small among sites within each estuary. Nitrogen loading was highest in Weeks Bay, almost two times greater than that in Apalachicola Bay and 35 times greater than to Grand Bay. These differences in nitrogen loading were reflected in average annual GPP rates, which ranged from 825 g C m?2 year?1 in Weeks Bay to 401 g C m?2 year?1 for Apalachicola Bay and 377 g C m?2 year?1 in Grand Bay. Despite the strong inter-annual patterns in freshwater flow and salinity, variability in metabolic rates was low, perhaps reflecting shifts in the relative importance of benthic and phytoplankton productivity, during different flow regimes. The advantage of the open water method is that it uses readily available and cost-effective sonde monitoring technology to estimate these fundamental estuarine processes, thus providing a potential means for examining long-term trends in net carbon balance. It also provides a historical benchmark for comparison to ongoing and future monitoring focused on documenting the effect of human activities on the coastal zone.  相似文献   

19.
Groundwater may be highly enriched in dissolved carbon species, but its role as a source of carbon to coastal waters is still poorly constrained. Exports of deep and shallow groundwater-derived dissolved carbon species from a small subtropical estuary (Korogoro Creek, Australia, latitude ?31.0478°, longitude 153.0649°) were quantified using a radium isotope mass balance model (233Ra and 224Ra, natural groundwater tracers) under two hydrological conditions. In addition, air-water exchange of carbon dioxide and methane in the estuary was estimated. The highest carbon inputs to the estuary were from deep fresh groundwater in the wet season. Most of the dissolved carbon delivered by groundwater and exported from the estuary to the coastal ocean was in the form of dissolved inorganic carbon (DIC; 687 mmol m?2 estuary day?1; 20 mmol m?2 catchment day?1, respectively), with a large export of alkalinity (23 mmol m?2 catchment day?1). Average water to air flux of CO2 (869 mmol m?2 day?1) and CH4 (26 mmol m?2 day?1) were 5- and 43-fold higher, respectively, than the average global evasion in estuaries due to the large input of CO2- and CH4-enriched groundwater. The groundwater discharge contribution to carbon exports from the estuary for DIC, dissolved organic carbon (DOC), alkalinity, CO2, and CH4 was 22, 41, 3, 75, and 100 %, respectively. The results show that CO2 and CH4 evasion rates from small subtropical estuaries surrounded by wetlands can be extremely high and that groundwater discharge had a major role in carbon export and evasion from the estuary and therefore should be accounted for in coastal carbon budgets.  相似文献   

20.
Biogeochemical cycles in estuaries are regulated by a diverse set of physical and biological variables that operate over a variety of time scales. Using in situ optical sensors, we conducted a high-frequency time-series study of several biogeochemical parameters at a mooring in central Long Island Sound from May to August 2010. During this period, we documented well-defined diel cycles in nitrate concentration that were correlated to dissolved oxygen, wind stress, tidal mixing, and irradiance. By filtering the data to separate the nitrate time series into various signal components, we estimated the amount of variation that could be ascribed to each process. Primary production and surface wind stress explained 59 and 19 %, respectively, of the variation in nitrate concentrations. Less frequent physical forcings, including large-magnitude wind events and spring tides, served to decouple the relationship between oxygen, nitrate, and sunlight on about one quarter of study days. Daytime nitrate minima and dissolved oxygen maxima occurred nearly simultaneously on the majority (>80 %) of days during the study period; both were strongly correlated with the daily peak in irradiance. Nighttime nitrate maxima reflected a pattern in which surface-layer stocks were depleted each afternoon and recharged the following night. Changes in nitrate concentrations were used to generate daily estimates of new primary production (182?±?37 mg?C?m?2?day?1) and the f ratio (0.25), i.e., the ratio of production based on nitrate to total production. These estimates, the first of their kind in Long Island Sound, were compared to values of community respiration, primary productivity, and net ecosystem metabolism, which were derived from in situ measurements of oxygen concentration. Daily averages of the three metabolic parameters were 1,660?±?431, 2,080?±?419, and 429?±?203 mg?C?m?2?day?1, respectively. While the system remained weakly autotrophic over the duration of the study period, we observed very large day-to-day differences in the f ratio and in the various metabolic parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号