首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. Stiefenhofer  D.J. Farrow   《Lithos》2004,76(1-4):139-160
The Mwadui pipe represents the largest diamondiferous kimberlite ever mined and is an almost perfectly preserved example of a kimberlitic crater in-fill, albeit without the tuff ring.

The geology of Mwadui can be subdivided into five geological units, viz. the primary pyroclastic kimberlite (PK), re-sedimented volcaniclastic kimberlite deposits (RVK), granite breccias (subdivided into two units), the turbidite deposits, and the yellow shales listed in approximate order of formation. The PK can be further subdivided into two units—lithic-rich ash and lapilli tuffs which dominate the succession, and lithic-poor juvenile-rich ash and lapilli tuffs. The lower crater is well bedded down to at least 684 m from present surface (extent of current drill data). The bedding is defined by the presence of juvenile-rich lapilli tuffs vs. lithic-rich lapilli tuffs, and the systematic variation in granite content and clast size within much of the lithic-rich lapilli tuffs. Four distinct types of bedding have been identified in the pyroclastic deposits. Diffuse zones characterised by increased granite abundance and size, and upward-fining units, represent the dominant types throughout the deposit.

Lateral heterogeneity was observed, in addition to the vertical changes, suggesting that the eruption was quite heterogeneous, or that more than one vent may have been present. The continuous nature of the bedding in the pyroclastic material and the lack of ash-partings suggest deposition from a high concentration (ejecta), sustained eruption column at times, e.g. the massive, very diffusely stratified deposits. The paucity of tractional bed forms suggest near vertical particle trajectories, i.e. a clear air-fall component, but the poorly sorted, matrix-supported nature of the deposits suggest that pyroclastic flow and/or surge processes may also have been active during the eruption.

Available diamond sampling data were examined and correlated with the geology. Data derive from the old 120 (37 m), 200 (61 m), 300 (92 m) and 1200 ft (366 m) levels, pits sunk during historical mining operations, drill logs, as well as more recent bench mapping. Correlating macro-diamond sample data and geology shows a clear relationship between diamond grade and lithology. Localised enrichment and dilution of the primary diamond grade has taken place in the upper reworked volcaniclastic deposits due to post-eruptive sedimentary in-fill processes. Clear distinction can be drawn between upper (re-sedimented) and lower (pyroclastic) crater deposits at Mwadui, both from a geological and diamond grade perspective.

Finally, an emplacement model for the Mwadui kimberlite is proposed. Geological evidence suggests that little or no sedimentary cover existed at the time of emplacement. The nature of the bedding within the pyroclastic deposits and the continuity of the bedding in the vertical dimension suggest that the eruption was continuous, but that the eruption column may have been heterogeneous, both petrologically as well as geometrically. Volcanic activity appears to have ceased thereafter and the crater was gradually filled with granite debris from the unstable crater walls and re-sedimented volcaniclastic material derived from the tuff ring.

The Mwadui kimberlite exhibits marked similarities compared to the Orapa kimberlite in Botswana.  相似文献   


2.
The Puy de Dôme volcano is a trachytic lava dome, about 11,000 y old. New pyroclastic layers originating from the volcano itself were discovered covering the summit and the flanks of the volcano. These pyroclastic layers do not fit with the previous interpretation, assuming a non-explosive dome-forming eruption. The tephra display pyroclastic surge features and exhibit fresh trachytic lapilli, basement lithics, allogeneous basaltic lava and clinker fragments requiring an open vent eruption. This ultimate eruption occurred after a period of rest, long enough for vegetation to develop on the volcano, as evidenced by carbonized plant fragments. Radiocarbon dating of some of these fragments gave an age of c.10,700 y also suggesting a significant rest duration.  相似文献   

3.
The Y-5 ash is the most widespread layer in deep-sea sediments from the eastern Mediterranean. This ash layer was previously correlated with the Citara-Serrara tuff on Ischia Island and dated at approximately 25,000 yr B.P. New data on the glass chemistry of the Y-5 ash and pyroclastic deposits from the Neopolitan volcanic province suggest that the layer is correlative with the large-volume Campanian ignimbrite and not with the deposit from Ischia Island. The volume of the Y-5 ash is approximately 65 km3 which is comparable in magnitude to the volume of the Campanian ignimbrite. An interpolated age of approximately 38,000 yr B.P. is estimated based on sedimentation rates derived from δ18O stratigraphy. There is a discrepancy between this estimate and previously reported radiocarbon ages which range from 24,000 to 35,000 yr B.P. We propose that the “Campanian tuff ash layer” should be adopted as the full stratigraphic name for the Y-5 ash. The deep-sea ash layer is divisible into two units in proximal localities, probably correlating with two major phases of the eruption: plinian and ignimbrite.  相似文献   

4.
Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea)   总被引:11,自引:0,他引:11  
The Suwolbong pyroclastic sequence in the western part of Cheju Island, Korea, comprises partly preserved rim beds of a Quaternary basaltic tuff ring whose vent lies about 1 km seaward of the present shoreline. The sequence consists of breccia, lapillistone, lapilli tuff and tuff. Eighteen sedimentary facies are established and organized into six lateral facies sequences (LFS) and seven vertical facies sequences (VFS). The LFS 1, 4 and 5 begin with massive lapilli tuff which transforms downcurrent into either planar-bedded (LFS 1), undulatory-bedded (LFS 4) or climbing dune-bedded (LFS 5) (lapilli) tuff units. They are representative of relatively ‘dry’ base surge whose particle concentration decreases downcurrent with a progressive increase in both tractional processes and sorting. The LFS 2 begins with disorganized and massive lapilli tuff and transforms into crudely stratified units downcurrent. It results from relatively ‘wet’ base surge in which sorting is poor due to the cohesion of damp ash. The LFS 3 comprises well-sorted lapilli tuff and stratified tuff further downcurrent, suggestive of deposition from combined fall and surge of relatively ‘dry’ hydroclastic eruption. All seven vertical facies sequences generally comprise two facies units of coarse-grained fines-depleted lapilli tuff and an overlying fine-grained tuff. These sequences are suggestive of deposition from base surge that consists of a turbulent head and a low-concentration tail. Depositional processes in the Suwolbong tuff ring were dominated by a relatively ‘dry’ base surge. The base surge comprises turbulent and high-concentration suspension near the vent whose deposits are generally unstratified due to the lack of tractional transport. As the base surge becomes diluted downcurrent through fallout of clasts and mixing of ambient air, it develops large-scale turbulent eddies and is segregated into coarse-grained bedload and overlying fine-grained suspension forming thinly stratified units. Further downcurrent, the base surge may be either cooled and deflated or pushed up into the air, depending on its temperature. The Suwolbong tuff ring comprises an overall wet-to-dry cycle with several dry-to-wet cycles in it, suggestive of overall decrease in abundance of external water and fluctuation in the rate of magma rise.  相似文献   

5.
Archean felsic volcanic rocks form a 2000 m thick succession stratigraphically below the Helen Iron Formation in the vicinity of the Helen Mine, Wawa, Ontario. Based on relict textures and structures, lateral and vertical facies changes, and fragment type, size and distribution, the felsic volcanic rocks have been subdivided into (a) lava flows and domes (b) hyalotuffs, (c) bedded pyroclastic flows, (d) massive pyroclastic flows, and (e) block and ash flows.Lava flows and domes are flow-banded, massive, and/or brecciated and occur throughout the stratigraphic succession. Dome/flow complexes are believed to mark the end of explosive eruptive cycles. Deposits interpreted as hyalotuffs are finely bedded and composed dominantly of ash-size material and accretionary lapilli. These deposits are interlayered with bedded pyroclastic flow deposits and probably formed from phreatomagmatic eruptions in a shallow subaqueous environment. Such eruptions led to the formation of tuff cones or rings. If these structures emerged they may have restricted the access of seawater to the eruptive vent(s), thus causing a change in eruptive style from short, explosive pulses to the establishment of an eruption column. Collapse of this column would lead to the accumulation of pyroclastic material within and on the flanks of the cone/ring structure, and to flows which move down the structure and into the sea. Bedded pyroclastic deposits in the Wawa area are thought to have formed in this manner, and are now composed of a thicker, more massive basal unit which is overlain by one or more finely bedded ash units. Based on bed thickness, fragment and crystal size, type and abundance, these deposits are further subdivided into central, proximal and distal facies.Central facies units consist of poorly graded, thick (30–80 m) basal beds composed of 23–60% lithic and 1–8% juvenile fragments. These are overlain by 1–4 thinner ash beds (2–25 cm). Proximal facies basal beds range from 2–35 m in thickness and are composed of 15–35% lithic and 4–16% juvenile fragments. Typically, lithic components are normally graded, whereas juvenile fragments are inversely graded. These basal beds are overlain by ash beds (2–14 in number) which range from 12 cm to 6 m in thickness. Distal basal beds, where present, are thin (1–2 m), and composed of 2–8% lithic and 6–21% juvenile fragments. Overlying ash beds range up to 40 in number.The climax of pyroclastic activity is represented by a thick (1000 m) sequence of massive, poorly sorted, pyroclastic flow deposits which are composed of 5–15% lithic fragments and abundant pumice. These deposits are similar to subaerial ash flows and appear to mark the rapid eruption of large volumes of material. They are overlain by felsic lavas and/or domes. Periodic collapse of the growing domes produced abundant coarse volcanic breccia. The overall volcanic environment is suggestive of caldera formation and late stage dome extrusion.  相似文献   

6.
Pyroclastic surge is a dilute and turbulent flow of volcanic gas and tephra that is commonly generated during explosive volcanic eruptions and can threaten lives along its flow paths. Assessing its travel distance and delineating future volcanic hazards have therefore been major concerns of volcanologists. Historical eruptions show that most pyroclastic surges travel a few tens of kilometres or less from their sources. Aeolian or aquagene processes have therefore been evoked for the emplacement of supposed surge deposits much beyond this distance. Here we show that a Cretaceous tuff bed in Korea was emplaced by an exceptionally powerful pyroclastic surge that flowed as far as the most powerful pyroclastic flows that formed the low-aspect-ratio ignimbrites (LARI). This has significant implications for interpreting ancient volcanic eruptions and delineating volcanic hazards by pyroclastic surges, and casts intriguing questions on the eruption dynamics and physics of long-runout pyroclastic surges and their distinction from LARI-forming pyroclastic flows.  相似文献   

7.
Sedimentation and welding processes of the high temperature dilute pyroclastic density currents and fallout erupted at 7.3 ka from the Kikai caldera are discussed based on the stratigraphy, texture, lithofacies characteristics, and components of the resulting deposits. The welded eruptive deposits, Unit B, were produced during the column collapse phase, following a large plinian eruption and preceding an ignimbrite eruption, and can be divided into two subunits, Units Bl and Bu. Unit Bl is primarily deposited in topographic depressions on proximal islands, and consists of multiple thin (< 1 m) flow units with stratified and cross-stratified facies with various degrees of welding. Each thin unit appears as a single aggradational unit, composed of a lower lithic-rich layer or pod and an upper welded pumice-rich layer. Lithic-rich parts are fines-depleted and are composed of altered country rock, fresh andesite lava, obsidian clasts with chilled margins, and boulders. The overlying Unit Bu shows densely welded stratified facies, composed of alternating lithic-rich and pumice-rich layers. The layers mantle lower units and are sometimes viscously deformed by ballistics. The sedimentary characteristics of Unit Bl such as welded stratified or cross-stratified facies indicate that high temperature dilute pyroclastic density currents were repeatedly generated from limited magma-water interactions. It is thought that dense brittle particles were segregated in a turbulent current and were immediately buried by deposition of hot, lighter pumice-rich particles, and that this process repeated many times. It is also suggested that the depositional temperature of eruptive materials was high and the eruptive style changed from a normal plinian eruption, through surge-generating explosions (Unit Bl), into an agglutinate-dominated fallout eruption (Unit Bu). On the basis of field data, welded pyroclastic surge deposits could be produced only under specific conditions, such as (1) rapid accumulation of pyroclastic particles sufficiently hot to weld instantaneously upon deposition, and (2) elastic particles' interactions with substrate deformation. These physical conditions may be achieved within high temperature and highly energetic pyroclastic density currents produced by large-scale explosive eruptions.  相似文献   

8.
In this paper,we describe three strata at the distal part of the pyroclastic-flow from the Tianchi volcano in 1215(±15) eruption.One of the strata with crosslayers that are different from typical pyroclastic-flow strata may come from a ground-surge.The grain-size and scanning electron microscopy(SEM) analysis was performed to study the origin of the pyroclastic-flow.Characteristics of grain-size distribution show that it is similar with the ash cloud.Through the SEM analyses,we found some quench structures with less damage on the surfaces of the vitric pumices.These phenomena indicate that there has been hydration in the transportation processes at the distal of pyroclastic-flow.It has partly changed the transportation mechanism of pyroclastic-flow,which transitions form dense flow to diluted flow.This paper develops a new distal pyroclastic-flow model in the Tianchi volcano that can be divided into three stages,i.e.the quench stage,expanding stage and depositing stage.  相似文献   

9.
Ignimbrite flow units commonly show reverse grading of large pumice clasts and normal grading of large lithic clasts. Ignimbrites show coarse-tail grading, in which particles beneath a critical diameter, ranging from 64 to 2 mm, are ungraded. Above this size the larger the clast diameter the more pronounced the segregation. The grading is consistent with the theoretical settling rates of particles in a dispersion with a high particle concentration. Ignimbrite flow units show a reversely graded, fine grained basal layer which is attributed to the action of boundary forces during flow. Ignimbrites are commonly associated with cross-stratified pyroclastic surge deposits and fine ash fall deposits formed in the same eruption. The fine ash fall deposit is depleted in crystals and is thought to be the deposit of the fine turbulent cloud observed making up the upper parts of nuées ardentes. Pyroclastic flows are postulated to be dense, poorly expanded partly fluidized debris flows. Only its fine grained components can be fluidized by gas. Pyroclastic flows are believed to behave as a dispersion of larger clasts in a medium of fluidized fines, which acts as a lubricant similar to water in mud-flows. Poor sorting in ignimbrites is attributed to high particle concentrations not turbulence. Many pyroclastic flows may be laminar in their movement with apparent viscosities, deduced from the lateral grading of large lithic clasts, in the range 101?103 poise.  相似文献   

10.
More than 7800 m of digital ground-penetrating radar data were acquired at the buried 6th century archaeological site of Ceren in El Salvador. The data were used to explore for buried structures and map the paleotopography through more than 5 m of volcanic overburden. The archaeological site consists of an agricultural village that was rapidly buried by pyroclastic debris erupted from a nearby volcano, preserving structures, plants, agricultural fields, and much of the surrounding landscape. Ground-penetrating radar profiles were computer-processed to remove system and background noise and time-depth corrected to identify the reflection which represents the ancient ground surface. This buried surface, and the structures built on it, were computer-modeled in two dimensions to aid in anomaly identification and interpretation. Twenty-six buried structures were identified on GPR profiles and an accurate representation of the landscape and environment, as it existed just prior to the eruption, was reconstructed. Ground-penetrating radar is an excellent geophysical tool with which to reconstruct buried landscapes and map cultural features due to its ability to accurately resolve underground features in three dimensions.  相似文献   

11.
吉林龙岗火山群火山碎屑基浪堆积特征与成因机理   总被引:9,自引:0,他引:9  
吉林龙岗火山群火山碎屑基浪堆积是中国少数保存较好的、近代喷发的低平火山区之一。基于岩性、岩相与相序的识别与分析,火山碎屑基浪堆积序列由分选性和磨圆度较差的玄武质砂、砾和火山灰构成的毫米级-厘米级厚高频率韵律有序叠置而成,堆积物中发育大量的块状层理、似丘状层理、低角度板状交错层理、槽泊层理、平行层理、冲蚀槽等堆积构造。横向上低平火山由内至外其碎屑粒度、堆积构造、厚度存在着一定规律变化,与易混淆的火山岩区地面流水沉积和火山碎屑流堆积物存在明显的差别。岩浆射汽喷发晚期往往伴随斯通博利式喷发和夏威夷式熔岩流,三者构成一个完整火山活动旋回。  相似文献   

12.
This research focuses on providing information related to the damaging effects of the 2010 eruption of Merapi volcano in Central Java, Indonesia. This information will be used to help emergency responders to assess losses more timely and efficiently, and to monitor the progress in emergency response and recovery. The objectives of this research are: (a) to generate a map of pyroclastic deposits based on activities pre- and post-volcano eruption of 2010 in the research area, (b) to investigate the impact of volcano eruption on the environment, and (c) to assess the impact of volcano eruption on landuse. ALOS PALSAR remote sensing data pre- and post-disaster were used in this research for mapping the volcano eruption. Topographic and geomorphological maps were analyzed for profiling and field orientation, which were used to investigate the impact of volcano eruption on the environment. SPOT 4 satellite images were used in this research for updating landuse information from the topographic map. The result of the landuse updated data was used for assessment of the volcano eruption’s impact on landuse with the GIS raster environment. The volcanic eruption that occurred in 2010 is estimated to have an impact of 133.31 ha for settlements, 92.32 ha for paddy fields, 235.60 ha for dry farming, 570.98 ha for plantations, 380.86 ha for bare land, and 0.12 ha for forest areas. An estimate of the number of buildings damaged due to the volcano eruption in 2010 was carried out by overlaying a map of pyroclastic deposits and the information point of the building sites from the topographic map. The total number of buildings damaged is estimated to be around 12,276 units.  相似文献   

13.
当代火山喷发碎屑堆积物的研究进展及其主要类型   总被引:6,自引:0,他引:6  
刘祥 《世界地质》1996,15(1):1-6
火山喷发碎屑堆积物主要分为:火山喷发空中降落堆积物、火山碎屑、流状堆积物、火山泥流堆积物和火山基浪堆积物。简述了这些火山碎屑堆积物的成因及主要特征。  相似文献   

14.
The Efate Pumice Formation (EPF) is a trachydacitic volcaniclastic succession widespread in the central part of Efate Island and also present on Hat and Lelepa islands to the north. The volcanic succession has been inferred to result from a major, entirely subaqueous explosive event north of Efate Island. The accumulated pumice-rich units were previously interpreted to be subaqueous pyroclastic density current deposits on the basis of their bedding, componentry and stratigraphic characteristics. Here we suggest an alternative eruptive scenario for this widespread succession. The major part of the EPF is distributed in central Efate, where pumiceous pyroclastic rock units several hundred meters thick are found within fault scarp cliffs elevated about 800 m above sea level. The basal 200 m of the pumiceous succession is composed of massive to weakly bedded pumiceous lapilli units, each 2-3 m thick. This succession is interbedded with wavy, undulatory and dune bedded pumiceous ash and fine lapilli units with characteristics of co-ignimbrite surges and ground surges. The presence of the surge beds implies that the intervening units comprise a subaerial ignimbrite-dominated succession. There are no sedimentary indicators in the basal units examined that are consistent with water-supported transportation and/or deposition. The subaerial ignimbrite sequence of the EPF is overlain by a shallow marine volcaniclastic Rentanbau Tuffs. The EPF is topped by reef limestone, which presumably preserved the underlying EPF from erosion. We here propose that the EPF was formed by a combination of initial subaerial ignimbrite-forming eruptions, followed by caldera subsidence. The upper volcaniclastic successions in our model represent intra-caldera pumiceous volcaniclastic deposits accumulated in a shallow marine environment in the resultant caldera. The present day elevated position of the succession is a result of a combination of possible caldera resurgence and ongoing arc-related uplift in the region.  相似文献   

15.
魏海泉  白志达  刘永顺 《地质论评》2022,68(5):1918-1941
火山碎屑岩是爆破性火山喷发行为的直接产物,不同的碎屑成分、粒度及结构反映了不同岩相的堆积动力学过程,对火山碎屑岩岩石学和岩相组合的研究发展成了以物理火山学为代表的现代火山学研究体系。作为火山爆发碎屑物质的集合,其中不同成因类型的火山碎屑物往往可以直接对应不同阶段火山作用动力学参数特征。火山碎屑物3个最基本的堆积物成因类型是火山碎屑降落物、火山碎屑流和火山碎屑涌浪。火山喷发时碎屑化过程主要涉及挥发分的出溶和岩浆碎屑化过程以及不同火山流体内部的碎屑化过程。对于岩浆喷发、射汽岩浆喷发以及射汽喷发的直接产物,火山碎屑岩在组成上都包含了岩浆破碎的同源碎屑、火山通道裹进的异源碎屑以及火山流体在地表流动时捕获的表生碎屑。火山碎屑定义为爆破性火山喷发的直接行为产物,而包括坡移、滑坡体、火山泥石流等火山降解过程的表生碎屑与熔岩流在自生、淬碎碎屑化过程产生的碎屑则被定义为火山质碎屑。火山岩岩相的建立,为20世纪80年代后期向火山学研究阶段的转变奠定了基础。在地质研究的基础上探索火山活动过程和控制机制的经验模型、实验模拟和数值模拟研究,其中流体动力学的介入对理解火山喷发的基本过程具有里程碑式的推动意义。由此形成的火山学是研究火山与火山喷发的形成机理、喷发过程和产物特性的科学。  相似文献   

16.
魏海泉  白志达  刘永顺 《地质论评》2022,68(3):2022052009-2022052009
火山碎屑岩是爆破性火山喷发行为的直接产物,不同的碎屑成分、粒度及结构反映了不同岩相的堆积动力学过程,对火山碎屑岩岩石学和岩相组合的研究发展成了以物理火山学为代表的现代火山学研究体系。作为火山爆发碎屑物质的集合,其中不同成因类型的火山碎屑物往往可以直接对应不同阶段火山作用动力学参数特征。火山碎屑物3个最基本的堆积物成因类型是火山碎屑降落物、火山碎屑流和火山碎屑涌浪。火山喷发时碎屑化过程主要涉及挥发分的出溶和岩浆碎屑化过程以及不同火山流体内部的碎屑化过程。对于岩浆喷发、射汽岩浆喷发以及射汽喷发的直接产物,火山碎屑岩在组成上都包含了岩浆破碎的同源碎屑、火山通道裹进的异源碎屑以及火山流体在地表流动时捕获的表生碎屑。火山碎屑定义为爆破性火山喷发的直接行为产物,而包括坡移、滑坡体、火山泥石流等火山降解过程的表生碎屑与熔岩流在自生、淬碎碎屑化过程产生的碎屑则被定义为火山质碎屑。火山岩岩相的建立,为20世纪80年代后期向火山学研究阶段的转变奠定了基础。在地质研究的基础上探索火山活动过程和控制机制的经验模型、实验模拟和数值模拟研究,其中流体动力学的介入对理解火山喷发的基本过程具有里程碑式的推动意义。由此形成的火山学是研究火山与火山喷发的形成机理、喷发过程和产物特性的科学。  相似文献   

17.
The event of September 12, 1999 is used to analyze large-scale disturbances associated with coronal mass ejections during the eruption of filaments outside active regions. The analysis is based on Hα filtergrams, EUV and soft X-ray images, and coronograph data. The filament eruption occurred in relatively weak magnetic fields, but was accompanied by larger-scale phenomena than flare events. During several hours after the eruption, a large-scale arcade developed, whose bases formed diverging flare-like ribbons. The volume of the event was bounded by an “EIT wave”, which was quasi-stationary at the solar surface and expanded above the limb. The event did not have an impulsive component; therefore the “EIT wave” above the limb was a magnetic structure, identified as the front of a coronal mass ejection by virtue of its shape, structural features, and kinematics. Three types of dimmings were observed within the areal of the event, cause by (a) the evacuation of plasma, (b) heating of plasma with its subsequent evacuation, and (c) the absorption of radiation in a system of filaments activated by the eruption. The fact that a dimming appeared due to plasma heating was revealed by its presence in soft X-rays, whereas the four EIT channels did not demonstrate this. This brings into question the correctness of certain conclusions drawn earlier based purely on EIT data. A transformation of magnetic fields brought about by the eruption also occurred in a stationary coronal hole adjacent to the areal of the event. The expansion of the coronal mass ejection was self-similar and characterized by a rapidly decreasing acceleration, which is not taken into account in the widely used polynomial approximation.  相似文献   

18.
本文根据野外地质特征、岩相学特征以及岩石化学和地球化学特征,将火山碎屑流和涌浪堆积归纳为三种不同的岩相组分,即次火山型熔结凝灰岩组合、涌浪型熔结凝灰岩组合和灰流型熔结凝灰岩组合。对这三种不同的岩相组合,特别是其中的熔结凝灰岩的各类特征分别进行了详细论述和相互对比,并在此基础上提出了一个火山碎屑流和涌浪堆积的综合成因模式。  相似文献   

19.
塔里木溢流玄武岩的喷发特征   总被引:5,自引:3,他引:2  
上官时迈  田伟  徐义刚  关平  潘路 《岩石学报》2012,28(4):1261-1272
通过对柯坪地区二叠系野外火山岩露头剖面和英买力、哈拉哈塘井区二叠系火山岩钻井剖面的对比,将塔里木早二叠世溢流玄武岩划分为三个旋回,从老到新依次是:库普库兹满溢流玄武岩旋回(KP),长英质火山碎屑岩旋回(FP)和开派兹雷克溢流玄武岩旋回(KZ)。KP旋回以巨厚溢流玄武岩夹凝灰岩为特征,在柯坪露头区和英买力井区均可划分出三层巨厚玄武质熔岩流,至哈拉哈塘井区减少为一层玄武岩流,但长英质火山碎屑岩和熔岩厚度增加。FP旋回在柯坪露头区自下而上包括空落相凝灰岩,熔结凝灰岩,再沉积火山碎屑岩和正常碎屑岩夹火山灰层,该层可与英买力及哈拉哈塘井区的凝灰岩层对比,表明在塔北存在一期面积广泛的长英质火山喷发。KZ旋回以溢流玄武岩为主,在开派兹雷克剖面识别出四期喷发共8层溢流玄武岩和一期安山质玄武岩,每期喷发之间夹少量碎屑岩,但未见长英质火山碎屑岩夹层,该特征与英买力和哈拉哈塘井区的火山层序组合不同,而与塔中溢流玄武岩类似。三个火山旋回的划分表明塔里木大火成岩省经历了"基性溢流玄武岩-酸性火山碎屑岩-基性溢流玄武岩"的演变过程,与Afro-Arabian溢流玄武岩省相似,可进行对比研究。  相似文献   

20.
Ordovician rhyolitic tuffs in North Wales are correlated on the basis of their whole-rock trace element composition. Multivariate statistics verify that major ignimbrite sheets are chemically unique, with Zr, Y and Nb being the most useful elements to characterize individual deposits. Fractionation processes during transport and emplacement of the pyroclastic flows results in little lateral variation in the whole-rock geochemistry of deposits; different diagenetic histories in subaerial and subaqueous environments did not mask recognition of primary ignimbrite units. A partially welded vitric ash flow tuff is correlated with the Pitts Head Tuff ash flow sheet, and a tuff horizon previously assumed to be reworked Pitts Head Tuff is shown to be chemically most similar to the fourth member of the Capel Curig Volcanic Formation. Validity of these correlations is upheld by biostratigraphic and sedimentological evidence. The new correlations necessitate a revision of the stratigraphy in North Wales and indicate a significant lapse of time (perhaps one million years) between emplacement of the Pitts Head Tuff and eruption of the Lower Rhyolitic Tuff of the overlying Snowdon Volcanic Group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号