首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variations of hydrometeorological variables of the Rybinsk Reservoir area from 1947 to 2005 are analyzed. A special attention is given to the global warming period started since 1976. It is shown that the intensity of air temperature increase on the reservoir shore during recent 30 years made up 0.46–0.56°C/10 years. The maximum increase in the water temperature at shore stations and in the surface layer was registered in July at an increase rate of 0.7–1.2°C/10 years. The change in climate conditions resulted in the increase in low-water runoff, decrease in snowmelt flood volumes, and shift in the time of snowmelt flood start.  相似文献   

2.
One obstacle on the way to a comprehensive spatial reconstruction of regional temperature changes over the past centuries is the sparseness of long winter temperature records. This paper reconstructs a proxy record of April and November–December temperatures in south-central Finland for the interval from 1836 to 1872 from breakup and freeze-up dates and ice-cover duration of a lake. Emphasis is on detecting the suitable winter months and quantifying the calibrations with measured temperatures (1873–2002). The calibration slope for the breakup date (0.158°C/day) is larger than for freeze-up date (0.119°C/day) or duration (0.090°C/day). A comparison with results from other proxy records shows that the slope may depend also on the geographical site. Trend analyses of the full temperature records (1836–2002) indicate the existence of minor change-points at around 1867 (April temperature) and 1874 (November–December temperature), with warming rates thereafter of 1.67°C per century (April) and 1.16°C per century (November–December). Spectral analyses reveal peaks in the band between 2 and 5?year period, which may point to influences of the North Atlantic Oscillation, and less power in the decadal band (up to 42?year period).  相似文献   

3.
The Yangtze River Delta Economic Belt is one of the most active and developed areas in China and has experienced quick urbanization with fast economic development. The weather research and forecasting model (WRF), with a single-layer urban canopy parameterization scheme, is used to simulate the influence of urbanization on climate at local and regional scales in this area. The months January and July, over a 5-year period (2003–2007), were selected to represent the winter and summer climate. Two simulation scenarios were designed to investigate the impacts of urbanization: (1) no urban areas and (2) urban land cover determined by MODIS satellite observations in 2005. Simulated near-surface temperature, wind speed and specific humidity agree well with the corresponding measurements. By comparing the simulations of the two scenarios, differences in near-surface temperature, wind speed and precipitation were quantified. The conversion of rural land (mostly irrigation cropland) to urban land cover results in significant changes to near-surface temperature, humidity, wind speed and precipitation. The mean near-surface temperature in urbanized areas increases on average by 0.45?±?0.43°C in winter and 1.9?±?0.55°C in summer; the diurnal temperature range in urbanized areas decreases on average by 0.13?±?0.73°C in winter and 0.55?±?0.84°C in summer. Precipitation increases about 15% over urban or leeward areas in summer and changes slightly in winter. The urbanization impact in summer is stronger and covers a larger area than that in winter due to the regional east-Asian monsoon climate characterized by warm, wet summers and cool, dry winters.  相似文献   

4.
This study examines the changes in regional extreme temperature in South Korea using quantile regression, which is applied to analyze trends, not only in the mean but in all parts of the data distribution. The results show considerable diversity across space and quantile level in South Korea. In winter, the slopes in lower quantiles generally have a more distinct increase trend compared to the upper quantiles. The time series for daily minimum temperature during the winter season only shows a significant increasing trend in the lower quantile. In case of summer, most sites show an increase trend in both lower and upper quantiles for daily minimum temperature, while there are a number of sites with a decrease trend for daily maximum temperature. It was also found that the increase trend of extreme low temperature in large urban areas (0.80°C decade?1) is much larger than in rural areas (0.54°C decade?1) due to the effects of urbanization.  相似文献   

5.
The instrumental temperature record is of insufficient length to fully express the natural variability of past temperature. High elevation tree-ring widths from Great Basin bristlecone pine (Pinus longaeva) are a particularly useful proxy to infer temperatures prior to the instrumental record in that the tree-rings are annually dated and extend for millennia. From ring-width measurements integrated with past treeline elevation data we infer decadal- to millennial-scale temperature variability over the past 4,500 years for the Great Basin, USA. We find that twentieth century treeline advances are greater than in at least 4,000 years. There is also evidence for substantial volcanic forcing of climate in the preindustrial record and considerable covariation between high elevation tree-ring widths and temperature estimates from an atmosphere–ocean general circulation model over much of the last millennium. A long-term temperature decline of ~?1.1 °C since the mid-Holocene underlies substantial volcanic forcing of climate in the preindustrial record.  相似文献   

6.
H. Athar 《Climatic change》2013,119(2):333-344
Variability in the observed daily temperature for the 31-year period (1978–2008) is studied for northern Saudi Arabia (nSA) by computing the probability distribution functions (PDFs) on a seasonal basis. The 31-year base period is divided into three decades and the results for the first (1978–1987) and the last decade (1999–2008) are presented. When averaged over all seasons, mean values of the observed decadal PDFs depict a positive shift from the first to last decade in the minimum, mean, and maximum temperature of 0.81 °C, 1.03 °C, and 1.25 °C, respectively. The daily temperature datasets from a regional climate model (RCM) and two versions of a coupled atmosphere-ocean general circulation model (AOGCM) are compared with the observed daily temperature datasets. The RCM is driven by re-analysis data for the historical period and by the HadCM3 model for the future, while the AOGCMs used are the GFDL CM2.0 and 2.1 models, with both HadCM3 and the GFDL simulations corresponding to the SRES A1B scenario. The average shifts from 1978–1987 to 1999–2008 in the mean value of the PDFs for the minimum, mean and maximum temperature are 0.63 °C, 0.54 °C and 0.45 °C, respectively, for the RCM, and 0.97 °C, 0.97 °C and 0.96 °C, respectively, for the AOGCM. Thus, the RCM shows a smaller shift in the mean of PDF for maximum temperature than for mean or minimum temperature, the AOGCM shows a comparable shift for all three, and the observations show a greater shift in the PDF for maximum temperature. For the period 2070–2099 relative to 1978–2008, the three average shifts are 4.11 °C, 3.87 °C and 3.44 °C for the RCM and 3.63 °C, 3.74 °C and 3.84 °C for the AOGCM.  相似文献   

7.
Tendencies in climate change in the Amur River basin are generally synchronous to the global ones. During the last century, the annual mean temperature of surface air increased by 1.3°C, minimum warming being observed in the east part of the basin (0.6°C) and maximum one in the west part (1.7–2.5°C). The largest impact on the annual mean temperature growth comes from winter and spring temperature increase (2–4°C/100 years). During the last 30 years, the warming rate in the basin was 2–3 times higher than during the whole period of 1891–2004. Simultaneously with warming in the Amur River basin, annual and warm-season precipitation totals increased by 8 and 6%, respectively, during the 115-year period. The highest increase in precipitation totals occurs in cold season (29% during 115 years). During the last 30 years, together with intense warming in the Amur River basin, the annual precipitation totals are found to decrease by an average of 2.1%/10 years.  相似文献   

8.
The study of the winter temperatures, averaged from the records of 11 observatories in the Da Hinggan Mountains and its western areas in China (DHM-WA), identified 11 extremely cold (≤???1.5 °C) and 13 extremely warm winters (≥?+?1.5 °C) during the past 60 years (1951–2010). The winters of 2011 and 2012 are another two extremely cold events. Aimed at exploring the climate causes, a comprehensive investigation is carried out on variations of some major atmospheric circulation components. Additionally, opposite circulation regimes are verified by examining the mean 500-hPa circulation patterns and sea level pressure (SLP) corresponding to 14 warm and 18 cold sea surface temperature (SST) phases over the North India Ocean (NIO) during the period of 1951–2010. Composite of an extremely cold winter usually includes a large and strong Siberian High, a deep East Asian trough to the west, an small and weak western Pacific Subtropical High to the east, a large North Polar vortex and a weakened westerly stream over Eurasia continent accompanied by a strong meridional winds from the polar region to lower latitude. Moreover, it has been found that a favorable circulation condition associated with the extremely cold winters to DHM-WA is mainly controlled by the SST over NIO in the previous warm season (June–September); This is primarily related to changes in the intensity of the Walker and Anti-Walker circulations, which subsequently influence the major circulation components and result in an extremely cold winter in DHM-WA.  相似文献   

9.
Fruit production systems that rely on winter chill for breaking of dormancy might be vulnerable to climatic change. We investigated decreases in the number of winter chilling hours (0–7.2°C) in four mountain oases of Oman, a marginal area for the production of fruit trees with chilling requirements. Winter chill was calculated from long-term hourly temperature records. These were generated based on the correlation of hourly temperature measurements in the oases with daylength and daily minimum and maximum temperatures recorded at a nearby weather station. Winter chill was estimated for historic temperature records between 1983 and 2008, as well as for three sets of synthetic 100-year weather records, generated to represent historic conditions, and climatic changes likely to occur within the next 30 years (temperatures elevated by 1°C and 2°C). Our analysis detected a decrease in the numbers of chilling hours in high-elevation oases by an average of 1.2–9.5 h/year between 1983 and 2008, a period during which, according to the scenario analysis, winter chill was sufficient for most important species in most years in the highest oasis. In the two climate change scenarios, pomegranates, the most important tree crop, received insufficient chilling in 13% and 75% of years, respectively. While production of most traditional fruit trees is marginal today, with trees barely fulfilling their chilling requirements, such production might become impossible in the near future. Similar developments are likely to affect other fruit production regions around the world.  相似文献   

10.
The Peace–Athabasca Delta in northern Alberta, Canada, is a dynamic wetland ecosystem. Climatic, hydrologic, biological, and historical data are synthesized to elucidate how the ecosystem has changed over the past 300 years. Annual temperature is now higher than it has been in the past 300 years. For much of the 1700s, the Delta was colder in winter and had a lower flood frequency than that of the last 30 years. The 1800s were characterized by long and cold winters, 4–12 year-long episodes of high or low water, and repeated human epidemics. The early twentieth century was relatively moist and cool. Since mid-twentieth century the Delta has experienced periods of both intense warmth and cold, desiccation and recharge. Since the mid-1960s, local and regional mean annual temperatures have increased 0.30°C to 0.48°C per decade while winter temperatures have increased 0.68°C to 0.92°C per decade; annual snowfall has decreased 12 to 41 cm per decade while winter snowfall has decreased 12 to 34 cm per decade. Major events in the past 45 years include climatic changes favoring a warmer, drier ecosystem; cultural and socioeconomic changes; building of the Bennett Dam; prevention of the Athabasca River mainstem avulsion in 1972; the Cree Creek avulsion of 1982; large fluctuations in water, vegetation, and wildlife; and the development of the Alberta Tar Sands. Increased rates of basin desiccation and wildfire activity and upstream land disturbances may combine to alter the Delta’s biotic composition. There appears to be no relevant historical analogue of the present Delta.  相似文献   

11.
Records of hydrologic parameters, especially those parameters that are directly linked to air temperature, were analyzed to find indicators of recent climate warming in Minnesota, USA. Minnesota is projected to be vulnerable to climate change because of its location in the northern temperate zone of the globe. Ice-out and ice-in dates on lakes, spring (snowmelt) runoff timing, spring discharge values in streams, and stream water temperatures recorded up to the year 2002 were selected for study. The analysis was conducted by inspection of 10-year moving averages, linear regression on complete and on partial records, and by ranking and sorting of events. Moving averages were used for illustrative purposes only. All statistics were computed on annual data. All parameters examined show trends, and sometimes quite variable trends, over different periods of the record. With the exception of spring stream flow rates the trends of all parameters examined point toward a warming climate in Minnesota over the last two or three decades. Although hidden among strong variability from year to year, ice-out dates on 73 lakes have been shifting to an earlier date at a rate of −0.13 days/year from 1965 to 2002, while ice-in dates on 34 lakes have been delayed by 0.75 days/year from 1979 to 2002. From 1990 to 2002 the rates of change increased to −0.25 days/year for ice-out and 1.44 days/year for ice-in. Trend analyses also show that spring runoff at 21 stream gaging sites examined occurs earlier. From 1964 to 2002 the first spring runoff (due to snowmelt) has occurred −0.30 days/year earlier and the first spring peak runoff −0.23 days/year earlier. The stream water temperature records from 15 sites in the Minneapolis/St Paul metropolitan area shows warming by 0.11C/year, on the average, from 1977 to 2002. Urban development may have had a strong influence. The analysis of spring stream flow rates was inconclusive, probably because runoff is linked as much to precipitation and land use as to air temperature. Ranking and sorting of annual data shows that a disproportionately large number of early lake ice-out dates has occurred after 1985, but also between 1940 and 1950; similarly late lake ice-in has occurred more frequently since about 1990. Ranking and sorting of first spring runoff dates also gave evidence of earlier occurrences, i.e. climate warming in late winter. A relationship of changes in hydrologic parameters with trends in air temperature records was demonstrated. Ice-out dates were shown to correlate most strongly with average March air temperatures shifting by −2.0 days for a 1°C increase in March air temperature. Spring runoff dates also show a relationship with March air temperatures; spring runoff dates shift at a rate of −2.5 days/1°C minimum March air temperature change. Water temperatures at seven river sites in the Minneapolis/St Paul metropolitan area show an average rise of 0.46°C in river temperature/1°C mean annual air temperature change, but this rate of change probably includes effects of urban development. In conclusion, records of five hydrologic parameters that are closely linked to air temperature show a trend that suggests recent climate warming in Minnesota, and especially from 1990 to 2002. The recent rates of change calculated from the records are very noteworthy, but must not be used to project future parameter values, since trends cannot continue indefinitely, and trend reversals can be seen in some of the long-term records.  相似文献   

12.
Instrumental temperature recording in the Greater Alpine Region (GAR) began in the year 1760. Prior to the 1850–1870 period, after which screens of different types protected the instruments, thermometers were insufficiently sheltered from direct sunlight so were normally placed on north-facing walls or windows. It is likely that temperatures recorded in the summer half of the year were biased warm and those in the winter half biased cold, with the summer effect dominating. Because the changeover to screens often occurred at similar times, often coincident with the formation of National Meteorological Services (NMSs) in the GAR, it has been difficult to determine the scale of the problem, as all neighbour sites were likely to be similarly affected. This paper uses simultaneous measurements taken for eight recent years at the old and modern site at Kremsmünster, Austria to assess the issue. The temperature differences between the two locations (screened and unscreened) have caused a change in the diurnal cycle, which depends on the time of year. Starting from this specific empirical evidence from the only still existing and active early instrumental measuring site in the region, we developed three correction models for orientations NW through N to NE. Using the orientation angle of the buildings derived from metadata in the station histories of the other early instrumental sites in the region (sites across the GAR in the range from NE to NW) different adjustments to the diurnal cycle are developed for each location. The effect on the 32 sites across the GAR varies due to different formulae being used by NMSs to calculate monthly means from the two or more observations made at each site each day. These formulae also vary with time, so considerable amounts of additional metadata have had to be collected to apply the adjustments across the whole network. Overall, the results indicate that summer (April to September) average temperatures are cooled by about 0.4°C before 1850, with winters (October to March) staying much the same. The effects on monthly temperature averages are largest in June (a cooling from 0.21° to 0.93°C, depending on location) to a slight warming (up to 0.3°C) at some sites in February. In addition to revising the temperature evolution during the past centuries, the results have important implications for the calibration of proxy climatic data in the region (such as tree ring indices and documentary data such as grape harvest dates). A difference series across the 32 sites in the GAR indicates that summers since 1760 have warmed by about 1°C less than winters.  相似文献   

13.
Temperature trends in Libya over the second half of the 20th century   总被引:1,自引:0,他引:1  
This paper investigates spatial variability of temperature trends over Libya in the second half of the 20th century. The study is based on complete and homogeneous time series of minimum, maximum, and mean temperature for ten observatories. During the investigated period (1951–1999), temperature trend analyses have experienced a downward trend in the maximum surface temperature (about –0.06°C decade–1) and an upward trend in the minimum surface temperature (about 0.23°C decade–1). Cooling tendency in maximum temperature is spatially more pronounced in inland stations compared to coastal stations. At the seasonal scale, maximum temperature cooling is more obvious in winter and spring, meanwhile minimum temperature warming is more pronounced in summer and fall. In accordance with global trends, the surface mean temperature has moderately risen at an average rate of 0.09°C decade–1. However, this trend has shown considerable temporal variability considering a more pronounced upward trend in summer and fall. In conjunction with other regional and global investigations, clear trends towards smaller diurnal range are presented (–0.28°C decade–1).  相似文献   

14.
Changes in snowfall in northern Europe (55–71°N, 5–35°E) are analysed from 12 regional model simulations of twenty-first century climate under the Special Report on Emissions Scenarios A1B scenario. As an ensemble mean, the models suggest a decrease in the winter total snowfall in nearly all of northern Europe. In the middle of the winter, however, snowfall generally increases in the coldest areas. The borderline between increasing and decreasing snowfall broadly coincides with the ?11 °C isotherm in baseline (1980–2010) monthly mean temperature, although with variation between models and grid boxes. High extremes of daily snowfall remain nearly unchanged, except for decreases in the mildest areas, where snowfall as a whole becomes much less common. A smaller fraction of the snow in the simulated late twenty-first century climate falls on severely cold days and a larger fraction on days with near-zero temperatures. Not only do days with low temperatures become less common, but they also typically have more positive anomalies of sea level pressure and less snowfall for the same temperature than in the present-day climate.  相似文献   

15.
Sensitivities to the potential impact of Climate Change on the water resources of the Athabasca River Basin (ARB) and Fraser River Basin (FRB) were investigated. The Special Report on Emissions Scenarios (SRES) of IPCC projected by seven general circulation models (GCM), namely, Japan’s CCSRNIES, Canada’s CGCM2, Australia’s CSIROMk2b, Germany’s ECHAM4, the USA’s GFDLR30, the UK’s HadCM3, and the USA’s NCARPCM, driven under four SRES climate scenarios (A1FI, A2, B1, and B2) over three 30-year time periods (2010–2039, 2040–2069, 2070–2100) were used in these studies. The change fields over these three 30-year time periods are assessed with respect to the 1961–1990, 30-year climate normal and based on the 1961–1990 European Community Mid-Weather Forecast (ECMWF) re-analysis data (ERA-40), which were adjusted with respect to the higher resolution GEM forecast archive of Environment Canada, and used to drive the Modified ISBA (MISBA) of Kerkhoven and Gan (Adv Water Resour 29(6):808–826, 2006). In the ARB, the shortened snowfall season and increased sublimation together lead to a decline in the spring snowpack, and mean annual flows are expected to decline with the runoff coefficient dropping by about 8% per °C rise in temperature. Although the wettest scenarios predict mild increases in annual runoff in the first half of the century, all GCM and emission combinations predict large declines by the end of the twenty-first century with an average change in the annual runoff, mean maximum annual flow and mean minimum annual flow of −21%, −4.4%, and −41%, respectively. The climate scenarios in the FRB present a less clear picture of streamflows in the twenty-first century. All 18 GCM projections suggest mean annual flows in the FRB should change by ±10% with eight projections suggesting increases and 10 projecting decreases in the mean annual flow. This stark contrast with the ARB results is due to the FRB’s much milder climate. Therefore under SRES scenarios, much of the FRB is projected to become warmer than 0°C for most of the calendar year, resulting in a decline in FRB’s characteristic snow fed annual hydrograph response, which also results in a large decline in the average maximum flow rate. Generalized equations relating mean annual runoff, mean annual minimum flows, and mean annual maximum flows to changes in rainfall, snowfall, winter temperature, and summer temperature show that flow rates in both basins are more sensitive to changes in winter than summer temperature.  相似文献   

16.
Maximum latewood density and δ 13C discrimination of Interior Alaska white spruce were used to reconstruct summer (May through August) temperature at Fairbanks for the period 1800–1996, one of the first high-resolution reconstructions for this region. This combination of latewood density and δ 13C discrimination explains 59.9% of the variance in summer temperature during the period of record 1906–1996. The 200-yr. reconstruction is characterized by 7 decadal-scale regimes. Regime changes are indicated at 1816, 1834, 1879, 1916, 1937, and 1974, are abrupt, and appear to be the result of synoptic scale climate changes. The mean of summer temperature for the period of reconstruction (1800–1996) was 13.49 °C. During the period of instrument record (1903–1996) the mean of summer temperature was 13.31 °C for both the reconstruction and the recorded data. The coldest interval was 1916–1937 (12.62 ° C) and the warmest was 1974–1996 (14.23 °C) for the recorded data. The reconstruction differs from records of northern hemisphere temperatures over this period, especially because of Interior Alaska warm periods reconstructed from 1834 to 1851 (14.24 °C) and from 1862 to 1879 (14.19 °C) and because of the cool period in the early part of the 20th century (1917–1974). We show additional tree ring data that support our reconstruction of these warm periods. Alternate hypotheses involving autogenic effect of tree growth on the site, altered tree sensitivity, or novel combinations of temperature and precipitation were explored and while they cannot be ruled out as contributors to the anomalously warm 19th century reconstruction, they were not supported by available data. White spruce radial growth is highly correlated with reconstructed summer temperature, and temperature appears to be a reliable index of carbon uptake in this system.  相似文献   

17.
A continuous 10-year simulation in Asia for the period of 1 July 1988 to 31 December 1998 was conducted using the Regional Integrated Environmental Model System (RIEMS) with NCEP Reanalysis II data as the driving fields. The model processes include surface physics state package (BATS 1e), a Holtslag explicit planetary boundary layer formulation, a Grell cumulus parameterization, and a modified radiation package (CCM3). Model-produced surface temperature and precipitation are compared with observations from 1001 meteorology stations distributed over Asia and with the 0.5 × 0.5 CRU gridded dataset. The analysis results show that: (1) RIEMS reproduces well the spatial pattern and the seasonal cycle of surface temperature and precipitation; (2) When regionally averaged, the seasonal mean temperature biases are within 1–2C. For precipitation, the model tends to give better simulation in winter than in summer, and seasonal precipitation biases are mostly in the range of ?12%–50%; (3) Spatial correlation coefficients between observed and simulated seasonal precipitation are higher in north of the Yangtze River than in the south and higher in winter than in summer; (4) RIEMS can well reproduce the spatial pattern of seasonal mean sea level pressure. In winter, the model-simulated Siberian high is stronger than the observed. In summer, the simulated subtropical high is shifted northwestwards; (5) The temporal evolution of the East Asia summer monsoon rain belt, with steady phases separated by more rapid transitions, is reproduced.  相似文献   

18.
A regional sea-ice?Cocean model was used to investigate the response of sea ice and oceanic heat storage in the Hudson Bay system to a climate-warming scenario. Projections of air temperature (for the years 2041?C2070; effective CO2 concentration of 707?C950?ppmv) obtained from the Canadian Regional Climate Model (CRCM 4.2.3), driven by the third-generation coupled global climate model (CGCM 3) for lateral atmospheric and land and ocean surface boundaries, were used to drive a single sensitivity experiment with the delta-change approach. The projected change in air temperature varies from 0.8°C (summer) to 10°C (winter), with a mean warming of 3.9°C. The hydrologic forcing in the warmer climate scenario was identical to the one used for the present climate simulation. Under this warmer climate scenario, the sea-ice season is reduced by 7?C9?weeks. The highest change in summer sea-surface temperature, up to 5°C, is found in southeastern Hudson Bay, along the Nunavik coast and in James Bay. In central Hudson Bay, sea-surface temperature increases by over 3°C. Analysis of the heat content stored in the water column revealed an accumulation of additional heat, exceeding 3?MJ?m?3, trapped along the eastern shore of James and Hudson bays during winter. Despite the stratification due to meltwater and river runoff during summer, the shallow coastal regions demonstrate a higher capacity of heat storage. The maximum volume of dense water produced at the end of winter was halved under the climate-warming perturbation. The maximum volume of sea ice is reduced by 31% (592?km3) while the difference in the maximum cover is only 2.6% (32,350?km2). Overall, the depletion of sea-ice thickness in Hudson Bay follows a southeast?Cnorthwest gradient. Sea-ice thickness in Hudson Strait and Ungava Bay is 50% thinner than in present climate conditions during wintertime. The model indicates that the greatest changes in both sea-ice climate and heat content would occur in southeastern Hudson Bay, James Bay, and Hudson Strait.  相似文献   

19.
M.Lal 《大气科学进展》1994,11(2):239-246
The global mean surface temperature may rise by about 0.3oC per decade during the next Few decades as a result of anthropogenic greenhouse gas emissions in the earth’s atmosphere. The data generated in the greenhouse warming simulations (Business-as-Usual scenario of IPCC) with the climate models developed at Max Planck Institute for Meteorology, Hamburg have been used to assess future plausible hydrological scenario for the South Asian region. The model results indicate enhanced surface warming (2.7oC for summer and 3.6oC for winter) over the land regions of South Asia during the next hundred years. While there is no significant change in the precipitation over most of the land regions during winter, substantial increase in precipitation is likely to occur during summer. As a result, an increase in soil moisture is likely over central India, Bangladesh and South China during summer but a statistically sig-nificant decline in soil moisture is expected over central China in winter. A moderate decrease in surface runoff may occur over large areas of central China during winter while the flood prone areas of NE-India. Bangladesh and South China are likely to have an increase in surface runoff during summer by the end of next century.  相似文献   

20.
This study investigated the spatial distributions and long-term trends of the annual highest and lowest temperatures (summer peak temperature, SPT; winter peak temperature, WPT) and their timings (summer peak day, SPD; winter peak day, WPD) in South Korea and analyzed their relationship with the general circulation patterns. The two peaks were determined by selecting the highest and the lowest points after extracting temperature variations longer than the seasonal scale (91 days) in the time series of daily mean temperatures. For the long-term trend, we examined data for 100 years (1909–2008) for five stations and data for 35 years (1974–2008) for 61 stations. The SPD in South Korea is August 4 on average. It is earliest (July 31) in the central inland region, the central hilly sections, and the southern inland region and latest (August 10) in the southern coastal region and on Jeju Island (Seogwipo). The WPD in South Korea is January 16 on average. It is earliest (January 13) in the central inland region and southern inland region and latest (January 24) on Jeju Island (Jeju) and in Ulleungdo. The SPT and WPT are highest on Jeju Island (Seogwipo; 27.3 and 6.4 °C, respectively) and lowest in the central hilly sections (Daegwallyeong; 20.2 and ?7.9 °C, respectively). The interannual variations in the WPD and WPT are greater than those in SPD and SPT. A significant increasing trend in the WPT was observed for all of the analyzed stations only for the second half of the 100-year period (1959–2008). In the case of the 35-year period, the SPD did not show any clear changes at all stations, but the WPD tended to occur earlier at three stations in the east coastal area. The WPT showed an increasing trend at 55 stations for 35 years, but the SPT showed an increasing trend only in Seogwipo (0.041 °C/year) and even showed a decreasing trend in Mungyeong (?0.049 °C/year). General circulation patterns were indexed and their correlations with the seasonal peaks were investigated. No correlations were found with the SPD. However, the WPD showed a significant positive correlation with the day of the highest Siberian High Intensity (SHI) and the day of the lowest Arctic Oscillation Index (AOI). Furthermore, the SPT showed negative correlations with the intensities of the Okhotsk High and North Pacific High, whereas the WPT showed a negative correlation with SHI and a positive correlation with AOI and with the intensity of the northerly wind that flows into the Korean Peninsula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号