首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Opdyke BN  Walker JC 《Geology》1992,20(8):733-736
Differences in the rate of coral reef carbonate deposition from the Pleistocene to the Holocene may account for the Quaternary variation of atmospheric CO2. Volumes of carbonate associated with Holocene reefs require an average deposition rate of 2.0 x 10(13) mol/yr for the past 5 ka. In light of combined riverine, midocean ridge, and ground-water fluxes of calcium to the oceans of 2.3 x 10(13) mol/yr, the current flux of calcium carbonate to pelagic sediments must be far below the Pleistocene average of 1.2 x 10(13) mol/yr. We suggest that sea-level change shifts the locus of carbonate deposition from the deep sea to the shelves as the normal glacial-interglacial pattern of deposition for Quaternary global carbonates. To assess the impact of these changes on atmospheric CO2, a simple numerical simulation of the global carbon cycle was developed. Atmospheric CO2 as well as calcite saturation depth and sediment responses to these carbonate deposition changes are examined. Atmospheric CO2 changes close to those observed in the Vostok ice core, approximately 80 ppm CO2, for the Quaternary are observed as well as the approximate depth changes in percent carbonate of sediments measured in the Pacific Ocean over the same time interval.  相似文献   

2.
Two of the most important factors that control the accumulation rate of material in carbonate platform environments on geological time scales are climate and eustasy. Accurately assessing the importance of these inter‐related factors through the study of both modern and ancient carbonate facies, however, is problematic. These difficulties arise from both the complexities inherent in carbonate depositional systems and the demonstrable incompleteness of the stratigraphic record. Here, a new compilation of more than 19 000 global Phanerozoic shallow marine carbonate accumulation rates derived from nearly 300 individual stratigraphic sections is presented. These data provide the first global holistic view of changes in shallow marine carbonate production in response to climate and eustasy on geological time scales. Notably, a clear latitudinal dependence on carbonate accumulation rates is recognized in the data. Moreover, it can also be demonstrated that rates calculated across the last glacial maximum and Holocene track changes in sea‐level. In detail, the data show that globally averaged changes in carbonate accumulation rates lagged changes in sea‐level by ca 3 kyr, reflecting the commonly observed delay in the response of individual carbonate successions to sea‐level rise. Differences between the rates of carbonate accumulation and sea‐level change over the past 25 kyr ostensibly reflect changing accumulation mode, with platform drowning (give‐up mode) pervasive during peak Early Holocene sea‐level rise, followed by a switch to catch‐up mode accumulation from ca 9 ka to the present. Carbonate accumulation rates older than the Quaternary are typically calculated over time spans much greater than 100 kyr, and at these time spans, rates primarily reflect long‐term tectonically mediated accommodation space changes rather than shorter term changes in climate/eustasy. This finding, coupled with issues of stratigraphic incompleteness and data abundance, tempers the utility of this and other compilations for assessing accurately the role of climate and eustasy in mediating carbonate accumulation rates through geological time.  相似文献   

3.
Evidence for glaciation during the mid-late Neoproterozoic is widespread on Earth, reflecting three or more ice ages between 730 Ma and 580 Ma. Of these, the late Neoproterozoic Marinoan glaciation of approximately 635 Ma stands out because of its ubiquitous association with a characteristic, microcrystalline cap dolostone that drapes glacially influenced rock units worldwide. The Marinoan glaciation is also peculiar in that evidence for low altitude glaciation at equatorial latitudes is compelling. Three models have been proposed linking abrupt deglaciation with this global carbonate precipitation event: (i) overturn of an anoxic deep ocean; (ii) catastrophically accelerated rates of chemical weathering because of supergreenhouse conditions following global glaciation (Snowball Earth Hypothesis); and (iii) massive release of carbonate alkalinity from destabilized methane clathrates. All three models invoke extreme alkalinity fluxes into seawater during deglaciation but none explains how such alkalinity excess from point sources could be distributed homogeneously around the globe. In addition, none explains the consistent sequence of precipitation events observed within cap carbonate successions, specifically: (i) the global blanketing of carbonate powder in shallow marine environments during deglaciation; (ii) widespread and disruptive precipitation of dolomite cement; followed by (iii) localized barite precipitation and seafloor cementation by aragonite. The conceptual model presented here proposes that low latitude deglaciation was so massive and abrupt that the resultant meltwater plume could extend worldwide, physically separating the surface and deep ocean reservoirs for ≥103 years. It is proposed that cap dolostones formed primarily by microbially mediated precipitation of carbonate whitings during algal blooms within this low salinity plumeworld rather than by abiotic precipitation from normal salinity seawater. Many of the disruption features that are characteristic of cap dolostones can be explained by microbially mediated, early diagenetic dolomitization and cementation. The re-initiation of whole ocean circulation degassed CO2 into the atmosphere in areas of upwelling, triggering localized, abiotic CaCO3 precipitation in the form of aragonite fans that overlie cap dolostones in NW Canada and Namibia. The highly oxygenated shallow marine environments of the glacial and post-glacial Neoproterozoic world provided consistently favourable conditions for the evolutionary development of animals and other oxygenophiles.  相似文献   

4.
At many North Atlantic continental margins, the early Neocomian is characterized by a major stratigraphic turning point from Late Jurassic-Berriasian carbonate bank/pelagic carbonate deposition to Valanginian-Barremian hemipelagic sedimentation with thick Wealden-type deltaic to deep-sea fan sequences. The stratigraphy and structure of the very old, starved passive margin of the Mazagan Plateau and adjacent steep escarpment off Morocco was studied during the French-German CYAMAZ deep diving campaign. The drowning of the Late Jurassic-early Berriasian carbonate platform was strongly influenced by a global late Berriasian sea level fall which was followed by a rapid late Valanginian sea level rise and/or by a major regional blockfaul ting event with accelerated subsidence rates. Upper Berriasian to (?) Hauterivian quartz-bearing bioclastic wackestones document the transition from the carbonate platform to the hemipelagic deposition on the drowned platform margin. Seawards, these deposits are correlated with a deep sea fan sequence. We discuss also an example from the Tarfaya Basin-Fuerteventura area further south. A 300 m thick succession of organic-rich claystone and sandstone turbidites (including m-thick debris flow units) of Hauterivian to Barremian age was an unexpected discovery at DSDP Site 603 off North Carolina (Leg 93). We discuss a tectonically confined fan model with laterally migrating channels, influenced by sea level fluctuations and varying terrigenous supply. During the Valanginian to Barremian time of high-standing (or rising) sea level, shelf construction (Wealden-type deltas) coincided with subdued, resedimentation-starved turbiditic system on the continental rise. Extensive unconsolidated sands, however, reflect sudden input of shelfal material into the basin during a mid-Aptian sea level lowstand (shelf destruction). The following global late Aptian transgression terminated the clastic fan deposition, raised the CCD and started the deposition of organic-rich shales.  相似文献   

5.
南海北部陆坡ODP 1144站位第四纪硅藻及其古环境演变   总被引:9,自引:0,他引:9  
李家英 《地质论评》2002,48(5):542-551
中国南海北部陆坡ODP 1144站位硅藻植物群的研究,建立了西太平洋边缘海一个新的中更新世晚期以来的硅藻生物地层图式,根据硅藻化石中具有指示意义的硅藻种的分布和生态变化(暖水种和冷水种),划分了8个硅藻组合带,其硅藻组合带分别在不同的高低海面环境下形成的,根据ODP1144站位氧同位素(OIS)测定结果,8个硅藻组合带与OIS 1-8期相对应。1、3、5、7硅藻组合带相当于OIS1、3、5、7期,间冰期是以热带和亚热带硅藻占优势,其中冷期出现大量的沿岸硅藻为特征,反映高海平面温暖的气候条件;2、4、6、8硅藻组合带相当于OIS2、4、6、8期,冰期是以亚热带,热带和出现较多冷水硅藻为特征,反映低海平面较冷气候条件,硅藻丰度值的变化与冰期和间冰期有关,可以证实间冰期时期高的海平面和较低的生物生产力以及冰期时低的海平面和高的生物生产力,而生物生产力的变化又与沉积时期沿岸流或上升流的强弱及水团活动有密切关系,进而揭示该区古海洋环境的演化与季风强弱之间的内在关系。  相似文献   

6.
《Sedimentary Geology》2001,139(3-4):319-340
Facies analysis of the upper Kimmeridgian rocks in the outcrops located near Ricla (Zaragoza province, northeast Spain) and the integration of the resultant data in a broader context (the northern part of the Iberian Basin), has produced two general models showing the facies distribution and the processes that controlled the sedimentation in the Kimmeridgian carbonate ramp. Using these two models the transition from shallow to relatively deep environments of the carbonate ramp is examined in detail. Model 1 corresponds to the development of a mixed carbonate-siliciclastic ramp during a slow rise and stillstand of sea level (Sequence 1-HST), whereas Model 2 represents the growth of a pure carbonate ramp during a rapid rise of sea level (Sequence 2-TST).Carbonate production was higher in the shallow ramp domains (coral reefs and oolitic shoals in Model 1 and reefs in Model 2) than in deeper domains, where there is no indication of significant pelagic or benthic production. The activity of unidirectional return flows induced by winter storms and hurricanes, played an important role in the redistribution of the sediment across the ramp, generating different coarse-grained deposits. In the inner and mid-ramp settings dunes, lower scale bedforms and tempestites occur in Model 1, and storm lobes, bars and tempestites in Model 2. Moreover, a significant bulk of the carbonate mud produced in shallow areas would eventually be resedimented in the outer ramp as suspended load in the density currents. Stillstand of sea level in Model 1 involved a rapid progradation of the inner and proximal mid-ramp carbonate and siliciclastic facies. The rapid relative sea level rise of Model 2 is determined by the dominance of the carbonate facies and by the presence of aggradational geometries in the transitional area between shallow and deep-ramp domains. The presence of relatively thick sections in the outer-ramp settings (instead of condensed sections, as observed in Model 1) during times of sea level rise (Model 2) can mainly be explained by the increase of the shallow production in the reef dominated areas.  相似文献   

7.
A piston core from the Maldives carbonate platform was investigated for carbonate mineralogy, grain‐size distributions, calcium carbonate content and organic carbon. The sedimentary record was linked to Late Pleistocene sea‐level variations, using an age model based on oxygen isotopes obtained from planktonic foramanifera, nannofossil biostratigraphy and 14C age determinations. The correlation between the sedimentary record and Late Pleistocene sea‐level showed that variations in aragonite and mud during the past 150 000 years were clearly related to flooding and sea floor exposure of the main lagoons of the atolls of the Maldives carbonate platform. Platform flooding events were characterized by strongly increased deposition of aragonite and mud within the Inner Sea of the Maldives. Exposure events, in contrast, can be recognized by rapid decreases in the values of both proxy records. The results show that sediments on the Maldives carbonate platform contain a continuous record of Pleistocene sea‐level variations. These sediments may, therefore, contribute to a better understanding of regional and even global sea‐level changes, and yield new insights into the interplay between ocean currents and carbonate platform morphology.  相似文献   

8.
The Japan Sea was profoundly different during glacial times than today. Available δ18O evidence indicates that sea surface salinity was lower by several per mil. This probably increased the stability of the water column and caused anoxic sedimentary conditions in the deep sea, as shown by the absence of benthic microfossils and the presence of laminated sediment. These changes are likely related to the effects of late Quaternary sea-level change on the shallow sills (ca. 130 m) across which the Japan Sea exchanges with the open ocean. The Hwang He (Yellow River) has previously been implicated as the source of fresh water to the Japan Sea during glaciation, but the possible roles of the Amur River and excess precipitation over evaporation must also be considered. Ambiguous radiocarbon chronologies for the latest Quaternary of Japan Sea cores do not adequately constrain the timing of salinity lowering. Previous studies have suggested that lowest sea surface salinity was achieved 27,000 to 20,000 14C yr B.P. However, if global sea-level fall restricted exchange with the open ocean circulation, then lowest salinity in the Japan Sea may have occurred as recently as 15,000 to 20,000 yr ago when sea level was lowest. If this alternative is correct, then as sea level abruptly rose about 12,000 yr ago, relatively fresh water must have been discharged to the open Pacific. This might have affected the dynamics of outflow, local faunal and floral expression of the polar front, and stable isotope ratios in foraminifera. These environmental changes could be misinterpreted as evidence for the cooling of Younger Dryas age, which has not been identified in nearby terrestrial records.  相似文献   

9.
Cyclothemic sedimentary rocks of the Plio-Pleistocene Petane Group outcrop extensively in the Tangoio block of central Hawke's Bay, New Zealand. They are products of inner to mid-shelf sedimentation and were deposited during glacio-eustatic sea level fluctuations along the western margin of a shallow, pericontinental seaway located in a forearc setting. The succession consists of five laterally continuous cyclothems, each containing a fine grained interval of silt and a coarse grained interval of siliciclastic sand ± gravel or limestone. Five sedimentary facies assemblages comprising 20 separate facies have been recognized. Coarse grained intervals of cyclothems were deposited mostly during relative sea level lowstands and contain up to four facies assemblages: (1) a non-marine assemblage (with three component facies, representing braided river and overbank environments); (2) an estuarine assemblage (with three component facies, representing tidal flat and mud-dominated estuarine environments); (3) a siliciclastic shoreline assemblage (with six component facies, representing greywacke pebble beach, shoreface and inner shelf environments); and (4) a carbonate shelf assemblage (with four component facies, representing tide-dominated, inshore and shallow marine environments). Fine grained intervals of cyclothems were deposited during sea level highstands when the Tangoio area was generally experiencing mid-shelf sedimentation. This produced an offshore assemblage consisting of four component facies. The distribution of facies assemblages during relative sea level lowstands was dependent upon proximity to the shoreline, the type and rate of sediment supply to the basin, and shelf hydrodynamics. Carbonate shelf facies dominate coarse grained intervals in Cyclothems 3–5, but siliciclastic shoreline and non-marine facies dominate in Cyclothems 1 and 2. The abrupt change from siliciclastic to carbonate sedimentation during relative sea level lowstand deposition is thought to have been induced by rapidly falling interglacial to glacial sea level accentuated by regional tectonic shoaling. This caused most of the terrigenous sediment supply to bypass the Tangoio area. Consequently, carbonate sediment accumulated in inshore and shallow marine settings. Facies assemblages rarely show lateral interdigitation, but are vertically stratified over the entire Tangoio block. Facies successions in each cyclothem preserve a record of relative sea level change during deposition of the Petane Group and are consistent with a Plio-Pleistocene sea level change in eastern New Zealand of c. 75–150 m, i.e. approximately the magnitude suggested for Late Quaternary glacio-eustatic sea level changes.  相似文献   

10.
The Mid-Brunhes dissolution interval (MBDI) represents a period of global carbonate dissolution, lasting several hundred thousand years, centred around Marine Isotope Stage (MIS) 11. Here we report the effects of dissolution in ODP core 982, taken from 1134 m in the North Atlantic. Paradoxically, records of atmospheric CO2 from Antarctic ice-cores reveal no long term trend over the last 400 kyr and suggest that CO2 during MIS 11 was no higher than during the present interglacial. We suggest that a global increase in pelagic carbonate production during this period, possibly related to the proliferation of the Gephyrocapsa coccolithophore, could have altered marine carbonate chemistry in such a way as to drive increased dissolution under the constraints of steady state. An increase in the production of carbonate in surface waters would cause a drawdown of global carbonate saturation and increase dissolution at the seafloor. In order to reconcile the record of atmospheric CO2 variability we suggest that an increase in the flux of organic matter from the surface to deep ocean, associated with either a net increase in primary production or the enhanced ballasting effect provided by an increased flux of CaCO3, could have countered the effect of increased calcification on CO2.  相似文献   

11.
The onset of pelagic sedimentation attending the radiation of pelagic calcifiers during the Mesozoic was an important divide in Earth history, shifting the locus of significant carbonate sedimentation from the shallow shelf environments of the Paleozoic to the deep sea. This shift would have impacted the CO2 cycle, given that decarbonation of subducted pelagic carbonate is an important return flux of CO2 to the atmosphere. Coupled with the fact that the mean residence time of continental platform and basin sedimentary carbonate exceeds that of the oceanic crust, it thus becomes unclear whether carbon cycling would have operated on a substantially different footing prior to the pelagic transition. Here, we examine this uncertainty with sensitivity analyses of the timing of this transition using a coupled model of the Phanerozoic atmosphere, ocean, and shallow lithosphere. For purposes of comparison, we establish an age of 250 Ma (i.e., after the Permo-Triassic extinctions) as the earliest opportunity for deposition of extensive biogenic pelagic carbonate on the deep seafloor, an age that predates known occurrences of pelagic calcifiers (and intact seafloor). Although an approximate boundary, we do show that attempts to shift this datum either significantly earlier or later in time produce model results that are inconsistent with observed trends in the mass–age distribution of the rock record and with accepted trends in seawater composition as constrained by proxy data. Significantly, we also conclude that regardless of the timing of the onset of biogenic pelagic carbonate sedimentation, a carbon sink involving seawater-derived dissolved inorganic carbon played a critical role in carbon cycling, particularly in the Paleozoic. This CaCO3 sink may have been wholly abiogenic, involving calcium derived either directly from seawater (thus manifest as a direct seafloor deposit), or alternatively from basalt–seawater reactions (represented by precipitation of CaCO3 in veins and fissures within the basalt). Despite the uncertainty in the source and magnitude of this abiogenic CaCO3 flux, it is likely a basic and permanent feature of global carbon cycling. Subduction of this CaCO3 would have acted as a basic return circuit for atmospheric CO2 even in the absence of biogenically derived pelagic carbonate sedimentation. Lastly, model calculations of the ratio of dissolved calcium to carbonate ion (Ca2+/CO3 2?) show this quantity underwent significant secular evolution over the Phanerozoic. As there is increasing recognition of this ratio’s role in CaCO3 growth and dissolution reactions, this evolution, together with progressive increases in nutrient availability and saturation state, may have created a tipping point ultimately conducive to the appearance of pelagic calcifiers in the Mesozoic.  相似文献   

12.
黄思静  麻建明 《沉积学报》1999,17(4):542-546
报道了广西钦州海槽早石炭世-早二叠世深水硅质岩的锶同位素测定结果和经年代校正后的87Sr/86Sr初始值,建立了锶同位素演化曲线;通过与同时代上扬子地区台地相碳酸盐岩87Sr/86Sr比值和演化曲线的对比,研究了二者的异同和造成差异的原因。深水硅质岩和同期台地相碳酸盐岩的锶同位素演化曲线在总体特征上具有一定的相似性,反映海平面变化对其影响的一致性。玄武岩喷发等局部事件和硅质岩中无法回避的陆源碎屑的影响是造成87Sr/86Sr比值和演化曲线差异的主要原因。硅质岩锶同位素演化曲线显示,海平面上升发生于早石炭世,在晚石炭世早期达到最大值,晚石炭世晚期,海平面有所下降,在其后的早二叠世,海平面再次上升。  相似文献   

13.
The Eocene Nummulitic Limestone of the Dauphinois domain in the Argentina Valley (Maritime Alps, Liguria, Italy) is characterized by the local presence of carbonate ramp facies rich in acervulinid macroids, rhodoliths and larger foraminifera. The development of these particular facies is mainly controlled by palaeomorphology of the substratum, tectonics, type and amount of terrigenous supply and global sea level changes.
The Upper Cretaceous to Eocene succession outcropping in the Argentina Valley shows differences in facies and age if compared to the typical succession of the Maritime Alps:
  • the Cretaceous substratum is younger (early Maastrichtian) and is followed by an unconformity that is interpreted as a submarine discontinuity surface;
  • the first Eocene carbonate deposits are older (late Lutetian);
  • the Nummulitic Limestone is characterized by the development of carbonate facies deposited in a deep infralittoral-circalittoral setting of a carbonate ramp, sheltered from terrigenous input; in these facies encrusting foraminifera (Solenomeris) replace calcareous red algae in nodules similar to rhodoliths (acervulinid macroids);
  • the Nummulitic Limestone is thicker than usual, reaching 110–160 m of thickness.
The Eocene tectonostratigraphic evolution can be summarized as follow: (1) synsedimentary tectonic activity that causes the development of a carbonate ramp with an adjacent structural trough where ramp-derived bioclastic material is deposited (late Lutetian); (2) interruption of the tectonic activity and uniform deposition of deep circalittoral sediments, characterized by deepening upward trend (late Lutetian?); (3) regression indicated by an abrupt shallowing of the depositional setting (Bartonian); and (4) deepening of the depositional setting, ending with the drowning of the carbonate ramp (late Bartonian).The evolution of the Eocene Argentina Valley succession is strongly influenced by tectonics related to the Alpine foreland basin development, but locally, and during definite time intervals, the global sea level changes could be recorded by the sediments during periods of stasis in tectonic activity. The regressive events recognized in the studied succession could be related to the sea level fall reported in the global sea level curve during the Bartonian.  相似文献   

14.
The Cretaceous is among the most unusual eras in the geological past. Geoscience communities have been having great concerns with geological phenomena within this period, for example carbonate platforms and black shales in the Early and Middle Cretaceous respectively, during the last decades. But few people have paid any attention to the set of pelagic redbeds lying on the black shales, not to mention the applications to paleoclimatology and paleoceanography. It is shown by the sedimentary records of redbeds, that they were deposited around the CCD, with both a higher content of iron and much lower concentrations of organic carbon, which implies conditions with a  相似文献   

15.
《Quaternary Science Reviews》2004,23(14-15):1681-1698
The southern Cape region of South Africa has extensive coastal aeolianites and barrier dunes. Whilst previously reported, limited knowledge of their age has precluded an understanding of their relationship with the climatic and sea-level fluctuations that have taken place during the Late Quaternary. Sedimentological and geomorphological studies combined with an optical dating programme reveal aeolianite development and barrier dune construction spanning at least the last two glacial–interglacial cycles. Aeolianite deposition has occurred on the southern Cape coast at ca 67–80, 88–90, 104–128, 160–189 and >200 ka before the present. Using this and other published data coupled with a better understanding of Late Quaternary sea-level fluctuations and palaeocoastline configurations, it is concluded that these depositional phases appear to be controlled by interglacial and subsequent interstadial sea-level high stands. These marine transgressions and regressions allowed onshore carbonate-rich sediment movement and subsequent aeolian reworking to occur at similar points in the landscape on a number of occasions. The lack of carbonates in more recent dunes (Oxygen Isotope Stages 1/2 and 4/5) is attributed not to leaching but to changes to carbonate production in the sediment source area caused by increased terrigenous material and/or changes in the balance between the warm Agulhas and nutrient-rich Benguela ocean currents.  相似文献   

16.
The sedimentological study of thirteen sediment cores from the periplatform setting surrounding Pedro Bank (Northern Nicaragua Rise, Caribbean Sea) shows that during the last 300 ka turbidite deposition is controlled by at least four factors: (1) late Quaternary sea level fluctuations, (2) prolific fine-grained sediment production and export resulting in oversteepening of the upper slope environment, (3) the proximity to the bank margin, and (4) local slope and seafloor morphology. The most intriguing finding of this study is the paucity of turbidites, with only 101 turbidites in 13 cores in this tectonically active setting near the Caribbean plate boundary. Throughout the last 300 ka, the frequency of turbidite input during interglacial stages is three times higher than during glacial stages. Also it is obvious that changes in sea level influence the timing of turbidite deposition. This is especially evident during the transgressions resulting in rapid renewed bank-top flooding, subsequent neritic sediment overproduction, and offbank export. The flooding event during each transgression is usually recorded by the onset of turbidite deposition at various sites along several platform-to-basin transects in down- and upcurrent slope settings. Overall, however, more turbidites are deposited during the regressive rather than the transgressive phases in sea level, probably as a result of sediment reorganisation on the slope resulting in slope failure. Five cores show "highstand bundling" of calciturbidites, i.e. higher number of turbidites during highstands than during lowstands in sea level.  相似文献   

17.
The Rabigh area, a coastal region north of Jeddah city, Saudi Arabia contains raised Quaternary coral reefal terraces and reworked coral fragments mixed with sand and gravel. This area has a thin exposure Lower Miocene shallow marine carbonate rocks that laterally pass into evaporites. The Miocene carbonate and evaporite rocks conformably overly the Lower Miocene siliciclastic sequence, are in turn capped by the Harrat basaltic boulders. The Miocene carbonates are made up of dolomitic packstone, wackestone and mudstone, whereas the overlying Quaternary reefal terraces are composed of coral boundstone and grainstones.The Quaternary reefal terraces of Rabigh area have been dated using the uranium-series dating method to obtain precise dates for these corals. The calculated ages (128, 212 and 235 ka) indicate that deposition took place during high sea level stands associated with interglacial times during Oxygen Isotope Stages (OIS) 5 and 7. The youngest age (128 ka) clearly corresponds to stage 5e of the last interglacial period. The obtained ages correlate well with those of the emerged reefs on the Sudanese and Egyptian coasts at the western side of the Red Sea. The broad distribution of wet climate, pluvial deposits on the continents and high sea level stands indicate a wide geographical range of the interglacial events of the Oxygen Isotope Stages (OIS) 5 and 7.The oxygen and carbon isotopic composition of the Miocene and Quaternary carbonate rocks in Rabigh area show a broad range of δ13C and δ18O. The Quaternary carbonate rocks have significantly higher δ13C than the Miocene ones, but low δ13C values of the Miocene samples likely indicate a high contribution of carbon from organic sources at the time of deposition. Linear trends are evident in both groups of samples supporting the likelihood of secondary alteration.  相似文献   

18.
A Barremian to Albian succession on Mount Kanala, part of a Tethyan isolated carbonate platform, was investigated for its δ13C variations. The limestone sequence is composed of a series of peritidal shallowing-upward cycles with clear petrographic evidence for strong early diagenetic overprinting related to repeated subaerial exposure. Despite significant impact of diagenesis, the observed changes in δ13C can be very well correlated with deep-water sections from different ocean basins and shallow water carbonate platforms in the Middle East. This lends further support to the applicability of δ13C variations for stratigraphic purposes in shallow-water limestones. Using the δ13C signal, time resolution in Lower Cretaceous platform carbonates can be significantly increased, independent of bio-zonations often hampered by ecological variability.
Cyclostratigraphic analysis of the Aptian part of the section shows that strong positive excursions of the cumulative departure from mean cycle thickness of the peritidal shallowing-upward cycles coincide with global positive δ13C excursions. This, and the fact that positive shifts in the δ13C record are preserved within shallow water limestones, provide evidence that black-shale accumulation in the ocean basins occurred during sea-level rise and flooding of platform tops. Integration of carbon-isotope-, cyclo- and sequence-stratigraphic results from different carbonate platforms indicate that strong positive global δ13C shifts and concurrent organic-carbon burial during black-shale deposition are ultimately caused by rapid rises of eustatic sea level. Hence, the rate of change of eustatic sea level is considered to play a crucial role in black-shale accumulation in the global ocean basins during the Cretaceous.  相似文献   

19.
Deepwater oil and gas exploration has become a global hotspot in recent years and the study of the deep waters of marginal seas is an important frontier research area.The South China Sea(SCS)is a typical marginal sea that includes Paleo SCS and New SCS tectonic cycles.The latter includes continental marginal rifting,intercontinental oceanic expansion and oceanic shrinking,which controlled the evolution of basins,and the generation,migration and accumulation of hydrocarbons in the deepwater basins on the continental margin of the northern SCS.In the Paleogene,the basins rifted along the margin of the continent and were filled mainly with sediments in marine-continental transitional environments.In the Neogene–Quaternary,due to thermal subsidence,neritic-abyssal facies sediments from the passive continental margin of the SCS mainly filled the basins.The source rocks include mainly Oligocene coal-bearing deltaic and marine mudstones,which were heated by multiple events with high geothermal temperature and terrestrial heat flow,resulting in the generation of gas and oil.The faults,diapirs and sandstones controlled the migration of hydrocarbons that accumulated principally in a large canyon channel,a continental deepwater fan,and a shelf-margin delta.  相似文献   

20.
The stable isotope geochemistry of Miocene sediments from the leeward margin of the Great Bahama Bank was examined to investigate burial diagenetic processes in periplatform carbonates. Data indicate that, in addition to differences in bulk proportions of neritic and pelagic carbonate along the slope, rhythmic variation in primary carbonate content has controlled patterns of burial diagenesis and associated geochemical signatures throughout much of the succession examined. The present study focuses on Ocean Drilling Program Sites 1006 and 1007, the most distal of five sites drilled from marginal to deep basin environments during Leg 166. These Miocene sections are characterized by their cyclic appearance, manifest as decimetre‐ to metre‐scale alternations between light‐coloured ooze/chalk/limestone and dark‐coloured marl/marlstone. The section at Site 1006 contains a high proportion of pelagic carbonate and is unlithified to a subbottom depth of ~675 m. Fluctuations in δ18O and δ13C values at this site are independent of lithological variation and reflect primary conditions. At Site 1007, located at the toe‐of‐slope and composed of a mixture of bank‐derived and pelagic carbonate, limestones are densely cemented, show little evidence of compaction and have δ18O values up to 2‰ higher than coeval sediments at Site 1006. Marlstones at Site 1007 are poorly cemented, exhibit an increase in compaction‐related features with depth and have lower and more variable δ18O values that are similar to those of coeval sediments at Site 1006. Isotopic and petrographic characteristics of limestone interbeds result from cement precipitation from cold sea water during the first ~100 m of burial. Higher proportions of insoluble materials and pelagic carbonate seem to have inhibited diagenetic alteration in adjacent marlstones; in spite of significant compaction and pressure solution during burial, original isotopic compositions appear to be best preserved in these intervals at Site 1007. The documented contrasts in petrographic and isotopic patterns illustrate the role of primary sediment composition in controlling lithification processes in periplatform carbonates and stress the importance of considering such factors when interpreting geochemical data from ancient shelf and slope limestones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号