首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The effects of fish farm activities on sediment biogeochemistry were investigated in Loch Creran (Western Scotland) from March to October 2006. Sediment oxygen uptake rates (SOU) were estimated along an organic matter gradient generated from an Atlantic salmon farm using a combination of in situ techniques: microelectrodes, planar optode and benthic chamber incubations. Sulphide (H2S) and pH distributions in sediment porewater were also measured using in situ microelectrodes, and dissolved inorganic carbon (DIC) fluxes were measured in situ using benthic chambers. Relationships between benthic fluxes, vertical distribution of oxidants and reduced compounds in the sediment were examined as well as bacterial abundance and biomass. Seasonal variations in SOU were relatively low and mainly driven by seasonal temperature variations. The effect of the fish farm on sediment oxygen uptake rate was clearly identified by higher total and diffusive oxygen uptake rates (TOU and DOU, respectively) on impacted stations (TOU: 70 ± 25 mmol O2 m?2 day?1; DOU: 70 ± 32 mmol O2 m?2 day?1 recalculated at the summer temperature), compared with the reference station (TOU: 28.3 ± 5.5 mmol O2 m?2 day?1; DOU: 21.5 ± 4.5 mmol O2 m?2 day?1). At the impacted stations, planar optode images displayed high centimetre scale heterogeneity in oxygen distribution underlining the control of oxygen dynamics by small-scale processes. The organic carbon enrichment led to enhanced sulphate reduction as demonstrated by large vertical H2S concentration gradients in the porewater (from 0 to 1,000 μM in the top 3 cm) at the most impacted site. The impact on ecosystem functions such as bioirrigation was evidenced by a decreasing TOU/DOU ratio, from 1.7 in the non-impacted sediments to 1 in the impacted zone. This trend was related to a shift in the macrofaunal assemblage and an increase in sediment bacterial population. The turnover time of the organic load of the sediment was estimated to be over 6 years.  相似文献   

2.
Measurements of primary production and respiration provide fundamental information about the trophic status of aquatic ecosystems, yet such measurements are logistically difficult and expensive to sustain as part of long-term monitoring programs. However, ecosystem metabolism parameters can be inferred from high frequency water quality data collections using autonomous logging instruments. For this study, we analyzed such time series datasets from three Gulf of Mexico estuaries: Grand Bay, MS; Weeks Bay, AL; and Apalachicola Bay, FL. Data were acquired from NOAA's National Estuarine Research Reserve System Wide Monitoring Program and used to calculate gross primary production (GPP), ecosystem respiration (ER), and net ecosystem metabolism (NEM) using Odum's open water method. The three systems represent a diversity of estuaries typical of the Gulf of Mexico region, varying by as much as two orders of magnitude in key physical characteristics, such as estuarine area, watershed area, freshwater flow, and nutrient loading. In all three systems, GPP and ER displayed strong seasonality, peaking in summer and being lowest during winter. Peak rates of GPP and ER exceeded 200 mmol O2?m?2 day?1 in all three estuaries. To our knowledge, this is the first study examining long-term trends in rates of GPP, ER, and NEM in estuaries. Variability in metabolism tended to be small among sites within each estuary. Nitrogen loading was highest in Weeks Bay, almost two times greater than that in Apalachicola Bay and 35 times greater than to Grand Bay. These differences in nitrogen loading were reflected in average annual GPP rates, which ranged from 825 g C m?2 year?1 in Weeks Bay to 401 g C m?2 year?1 for Apalachicola Bay and 377 g C m?2 year?1 in Grand Bay. Despite the strong inter-annual patterns in freshwater flow and salinity, variability in metabolic rates was low, perhaps reflecting shifts in the relative importance of benthic and phytoplankton productivity, during different flow regimes. The advantage of the open water method is that it uses readily available and cost-effective sonde monitoring technology to estimate these fundamental estuarine processes, thus providing a potential means for examining long-term trends in net carbon balance. It also provides a historical benchmark for comparison to ongoing and future monitoring focused on documenting the effect of human activities on the coastal zone.  相似文献   

3.
The present study examines the temporal variability of air–water CO2 fluxes (FCO2) and seawater carbonate chemistry in a Baja California coastal lagoon during an exceptionally warm anomaly that was developed in Northeast Pacific coasts during 2014. This oceanographic condition led to a summer-like season (weak upwelling condition) during the study period, which reached a maximum surface temperature anomaly of 2 °C in September 2014. San Quintín Bay acts as a source of CO2 to the atmosphere in 2014 (3.3 ± 4.8 mmol C m?2 day?1) with the higher positive fluxes mainly observed in summer months (9.0 ± 5.3 mmol C m?2 day?1). Net ecosystem production (NEP) switched seasonally between net heterotrophy and net autotrophy during the study period, with an annual average of 2.2 ± 7.1 mmol C m?2 day?1, which indicates that San Quintín Bay was a net autotrophic system during the atypical warm oceanographic condition in 2014. This pattern of seasonal variations in the carbon balance at San Quintín Bay appears to be linked to the life cycle of benthic communities, which play an important role in the whole-ecosystem metabolism. Under the limited input from external sources coupled with an increase in seawater temperatures, the recycled benthic carbon and nutrient fluxes play a major role to sustain water-column processes within the bay. Since the upwelling condition may influence the magnitude of the air–water CO2 fluxes, our results clearly indicated that San Quintín Bay is a net source of carbon to the atmosphere regardless of the adjacent oceanic conditions. Our study sheds light on the carbon dynamics and its metabolic implications in a shallow coastal ecosystem under a regional warm anomaly and contributes potentially relevant information in view of the likely future scenario of global climate change.  相似文献   

4.
Hypoxia is emerging as a major threat to marine coastal biota. Predicting its occurrence and elucidating the driving factors are essential to set successful management targets to avoid its occurrence. This study aims to elucidate the effects of warming on the likelihood of hypoxia. High-frequency dissolved oxygen measurements have been used to estimate gross primary production (GPP), net ecosystem production (NEP) and community respiration (CR) in a shallow macroalgae (Caulerpa prolifera) ecosystem in a highly human-influenced closed Mediterranean bay. Daily averaged GPP and CR ranged from 0 to 1,240.9 and 51.4 to 1,297.3?mmol?O2?m?2?day?1, respectively. The higher GPP and CR were calculated for the same day, when daily averaged water temperature was 28.3?°C, and resulted in a negative NEP of ?56.4?mmol?O2?m?2?day?1. The ecosystem was net heterotrophic during the studied period, probably subsidized by allochthonous organic inputs from ground waters and from the surrounding town and boating activity. Oxygen dynamics and metabolic rates strongly depend on water temperature, with lower oxygen content at higher temperatures. The probability of hypoxic conditions increased at a rate of 0.39?% °C?1 (±0.14?% °C?1). Global warming will increase the likelihood of hypoxia in the bay studied, as well as in other semi-enclosed bays.  相似文献   

5.
Optical in situ chemical sensors enable sampling intervals and durations that rival acoustic techniques used for measuring currents. Coupling these high-frequency biogeochemical and physical measurements in estuaries to address ecosystem-scale questions, however, is still comparatively novel. This study investigated how tides affect ecosystem metabolism in a mesotidal estuary in central California (Elkhorn Slough). Dissolved oxygen measurements were used to estimate the terms in a control volume budget for a tidal creek/marsh complex at tidal timescales over several weeks. Respiration rates were 1.6 to 7.3 g O2 m?2 day?1; net community production approached 20 g O2 m?2 day?1. We found that aquatic NCP integrated throughout the creek complex varied significantly over the spring-neap cycle. The intertidal contribution to aquatic metabolism was net heterotrophic during spring tides and generally in balance during neap tides because spring-tide marsh inundation was limited to nighttime, and therefore the marsh could not contribute any primary production to the water column. At the estuary scale, the fortnightly export of oxygen from the main channel to the intertidal was largely balanced by an advective flux up-estuary.  相似文献   

6.
Community Oxygen and Nutrient Fluxes in Seagrass Beds of Florida Bay, USA   总被引:1,自引:0,他引:1  
We used clear, acrylic chambers to measure in situ community oxygen and nutrient fluxes under day and night conditions in seagrass beds at five sites across Florida Bay five times between September 1997 and March 1999. Underlying sediments are biogenic carbonate with porosities of 0.7–0.9 and with low organic content (<1.6%). The seagrass communities always removed oxygen from the water column during the night and produced oxygen during daylight, and sampling date and site significantly affected both night and daytime oxygen fluxes. Net daily average fluxes of oxygen (?4.9 to 49 mmol m?2 day?1) ranged from net autotrophy to heterotrophy across the bay and during the 18-month sampling period. However, the Rabbit Key Basin site, located in the west-central bay and covered with a dense Thalassia testudinum bed, was always autotrophic with net average oxygen production ranging from 4.8 to 49 mmol m?2 day?1. In November 1998, three of the five sites were strongly heterotrophic and oxygen production was least at Rabbit, suggesting the possibility of hypoxic conditions in fall. Average ammonium (NH4) concentrations in the water column varied widely across the bay, ranging from a mean of 6.9 μmol l?1 at Calusa in the eastern bay to a mean of 0.6 μmol l?1 at Rabbit Key for the period of study. However, average NH4 fluxes by site and date (?240 to 110 μmol m?2 h?1) were not correlated with water column concentrations and did not vary in a consistent diel, seasonal, or spatial pattern. Concentrations of dissolved organic nitrogen (DON) in the water column, averaged by site (15–25 μmol l?1), were greater than mean NH4 concentrations, and the range of day and night DON fluxes (?920 to 1,300 μmol m?2 h?1), averaged by site and date, was greater than the range of mean NH4 fluxes. Average DON fluxes did not vary consistently from day to night, seasonally or spatially. Mean silicate fluxes ranged from ?590 to 860 μmol m?2 h?1 across all sites and dates, but mean net daily fluxes were less variable and most of the time contributed small amounts of silicate to the water column. Mean concentrations of filterable reactive phosphorus (FRP) in the water column across the bay were very low (0.021–0.075 μmol l?1); but site average concentrations of dissolved organic phosphorus (DOP) were higher (0.04–0.15 μmol l?1) and showed a gradient of increasing concentration from east to west in the bay. A pronounced gradient in average surficial sediment total phosphorus (1.1–12 μmol g DW?1) along an east-to-west gradient was not reflected in fluxes of phosphorus. FRP fluxes, averaged by site and date, were low (?5.2 to 52 μmol m?2 h?1), highly variable, and did not vary consistently from day to night or across season or location. Mean DOP fluxes varied over a smaller range (?8.7 to 7.4 μmol m?2 h?1), but also showed no consistent spatial or temporal patterns. These small DOP fluxes were in sharp contrast to the predominately organic phosphorus pool in surficial sediments (site means?=?0.66–7.4 μmol g DW?1). Significant correlations of nutrient fluxes with parameters related to seagrass abundance suggest that the seagrass community may play a major role in nutrient recycling. Integrated means of net daily fluxes over the area of Florida Bay, though highly variable, suggest that seagrass communities might be a source of DOP and NH4 to Florida Bay and might remove small amounts of FRP and potentially large amounts of DON from the waters of the bay.  相似文献   

7.
Benthic microalgae (BMA) inhabit the upper few centimeters of shelf sediments. This review summarizes the current information on BMA communities in the South Atlantic Bight (SAB) region of the Southeastern US continental shelf to provide insights into the potential role of these communities in the trophodynamics and biogeochemical cycling in shelf waters. Benthic irradiance is generally 2–6% of surface irradiance in the SAB region, providing sufficient light to support BMA primary production over 80–90% of the shelf width. BMA biomass greatly exceeds that of integrated phytoplankton biomass in the overlying water column on an areal basis. The SAB appears to have lower BMA biomass, but higher production than most temperate continental shelves. Annual production estimates average 101 and 89 g C m?2 year?1 for 5–20 and >?20 depth intervals, respectively. However, high variation in rates and biomass in time and space make comparisons between studies difficult. Submarine groundwater discharge (SGD) rather than the water column or in situ N regeneration from organic matter maybe the major “new” N source for BMA. The estimated supply of N (1.2 mmol N m?2 day?1) by SGD closely approximates the rates needed to support BMA primary production (3.1 to 1.6 mmol N m?2 day?1) in the sediments of the SAB. Identifying the source(s) of fixed N supporting the BMA community is essential for understanding the carbon dynamics and net ecosystem metabolism within the large area (76,000 km2) of the continental shelf in the SAB as well other temperate shelves worldwide.  相似文献   

8.
Filter-feeding bivalves, like oysters, couple pelagic primary production with benthic microbial processes by consuming plankton from the water column and depositing unassimilated material on sediment. Conceptual models suggest that at low to moderate oyster densities, this deposition can stimulate benthic denitrification by providing denitrifying bacteria with organic carbon and nitrogen (N). While enhanced denitrification has been found at oyster reefs, data from oyster aquaculture are limited and equivocal. This study measured seasonal rates of denitrification, as well as dissimilatory nitrate reduction to ammonium (DNRA), and dissolved inorganic N fluxes at a rack and bag eastern oyster (Crassostrea virginica) aquaculture farm. Consistent with models, denitrification was enhanced within the farm, with an average annual increase of 350% compared to a reference site. However, absolute denitrification rates were low relative to other coastal systems, reaching a maximum of 19.2 μmol m?2 h?1. Denitrification appeared to be nitrate (NO3 ?) limited, likely due to inhibited nitrification caused by sediment anoxia. Denitrification may also have been limited by competition for NO3 ? with DNRA, which accounted for an average of 76% of NO3 ? reduction. Consequently, direct release of ammonium (NH4 +) from mineralization to the water column was the most significant benthic N pathway, with seasonal rates exceeding 900 μmol m?2 h?1 within the farm. The enhanced N processes were spatially limited however, with significantly higher rates directly under oysters, compared to in between oyster racks. For commercial aquaculture farms like this, with moderate oyster densities (100–200 oysters m?2), denitrification may be enhanced, but nonetheless limited by biodeposition-induced sediment anoxia. The resulting shift in the sediment N balance toward processes that regenerate reactive N to the water column rather than remove N is an important consideration for water quality.  相似文献   

9.
Oxygen fluxes across the sediment–water interface reflect primary production and organic matter degradation in coastal sediments and thus provide data that can be used for assessing ecosystem function, carbon cycling and the response to coastal eutrophication. In this study, the aquatic eddy covariance technique was used to measure seafloor–water column oxygen fluxes at shallow coastal sites with highly permeable sandy sediment in the northeastern Gulf of Mexico for which oxygen flux data currently are lacking. Oxygen fluxes at wave-exposed Gulf sites were compared to those at protected Bay sites over a period of 4 years and covering the four seasons. A total of 17 daytime and 14 nighttime deployments, producing 408 flux measurements (14.5 min each), were conducted. Average annual oxygen release and uptake (mean ± standard error) were 191 ± 66 and ?191 ± 45 mmol m?2 day?1 for the Gulf sites and 130 ± 57 and ?152 ± 64 mmol m?2 day?1 for the Bay sites. Seasonal variation in oxygen flux was observed, with high rates typically occurring during spring and lower rates during summer. The ratio of average oxygen release to uptake at both sites was close to 1 (Bay: 0.9, Gulf: 1.0). Close responses of the flux to changes in light, temperature, bottom current velocity, and wave action (significant wave height) documented tight physical–biological, benthic–pelagic coupling. The increase of the sedimentary oxygen uptake with increasing temperature corresponded to a Q10 temperature coefficient of 1.4 ± 0.3. An increase in flow velocity resulted in increased oxygen uptake (by a factor of 1–6 for a doubling in flow), which is explained by the enhanced transport of organic matter and electron acceptors into the permeable sediment. Benthic photosynthetic production and oxygen release from the sediment was modulated by light intensity at the temporal scale (minutes) of the flux measurements. The fluxes measured in this study contribute to baseline data in a region with rapid coastal development and can be used in large-scale assessments and estimates of carbon transformations.  相似文献   

10.
The metabolic rate of individual habitats can differ significantly in their contribution to the total system productivity of estuaries. Changing environmental conditions such as those created by tidal exchange can frequently alter these rates. In an effort to quantify these rate responses, metabolic rates were measured for macroalgal and sediment habitats at different salinities. Microcosms representing the two habitats were incubated at three salinity ranges (high: 25 to 31‰; moderate: 12 to 18‰; and low: 0 to 4‰) and production and respiration rates were estimated. The production rates for both habitats were proportional to the salinity of the water in the incubation, with the lowest metabolic rates associated with the lowest salinity. Average macroalgal habitat net production rates were 879 mg O2 m?2 h?1, 609 mg O2 m?2 h?1, and 451 mg O2 m?2 h?1 at high, moderate, and low salinity treatments, respectively, and the dark respiration rates were ?401 mg O2 m?2 h?1, ?341 mg O2 m?2 h?1, and ?333 mg O2 m?2 h?1. Average sediment habitat net production rates were 60 mg O2 m?2 h?1, 13 mg O2 m?2 h?1 and 10 mg O2 m?2 h?1 and the respiration rates were ?114 mg O2 m?2 h?1, ?55 mg O2 m?2 h?1, and ?31 mg O2 m?2 h?1 at high, moderate, and low salinity treatments. The larger contribution of macroalgal habitats to system metabolism may account for observed diurnal changes in water column oxygen levels in some estuaries. Macroalgal production rates explained 83% of the increase in water column oxygen levels during daylight hours and macroalgal respiration rates explained 65% of the decline in oxygen levels during the night. The contribution of macroalgal metabolism to the system can be influenced by even short-term changes in water column salinity. Environmental processes that alter salinity levels on hourly time scales may moderate the effect of macroalgal metabolism on oxygen levels.  相似文献   

11.
The spatial and temporal variations of the flux of CO2 were determined during 2007 in the Recife estuarine system (RES), a tropical estuary that receives anthropogenic loads from one of the most populated and industrialized areas of the Brazilian coast. The RES acts as a source of nutrients (N and P) for coastal waters. The calculated CO2 fluxes indicate that the upstream inputs of CO2 from the rivers are largely responsible for the net annual CO2 emission to the atmosphere of +30 to +48 mmol m?2 day?1, depending on the CO2 exchange calculation used, which mainly occurs during the late austral winter and early summer. The observed inverse relationship between the CO2 flux and the net ecosystem production (NEP) indicates the high heterotrophy of the system (except for the months of November and December). The NEP varies between ?33 mmol m?2 day?1 in summer and ?246 mmol m?2 day?1 in winter. The pCO2 values were permanently high during the study period (average ~4,700 μatm) showing a gradient between the inner (12,900 μatm) and lower (389 μatm) sections on a path of approximately 30 km. This reflects a state of permanent pollution in the basin due to the upstream loading of untreated domestic effluents (N/P?=?1,367:6 μmol kg?1 and pH?=?6.9 in the inner section), resulting in the continuous mineralization of organic material by heterotrophic organisms and thereby increasing the dissolved CO2 in estuarine waters.  相似文献   

12.
Vertical distributions of particulate silica, and of production and dissolution rates of biogenic silica, were determined on two N-S transects across the Pacific sector of the Antarctic Circumpolar Current during the austral spring of 1978. Particulate silica profiles showed elevated levels in surface water and near the bottom, with low (35–110 nmol Si · 1?1) and vertically uniform values through the intervening water column. Both the particulate silica content of the upper 200 m and the production rate of biogenic silica in the photic zone increased from north to south, reaching their highest values near the edge of the receding pack ice. A significant, but variable, fraction (18–58%) of the biogenic silica produced in the surface layer was redissolving in the upper 90–98 m. Net production of biogenic silica in the surface layer (production minus dissolution) was proceeding at a mean rate of ca. 2 mmol Si · m?2 · day?1. This is ca. 4 times greater than the most recent estimate of the mean accumulation rate of siliceous sediments beneath the ACC. We estimate, based on mass balance, that the mean dissolution rate of biogenic silica in subsurface water column in the Southern Ocean is 1.2–2.9 mmol Si · m?2 · day?1.  相似文献   

13.
Based on in situ microprofiles, chamber incubations and eddy covariance measurements, we investigated the benthic carbon mineralization and nutrient regeneration in a ~65-m-deep sedimentation basin of Loch Etive, UK. The sediment hosted a considerable amount of infauna that was dominated by the brittle star A. filiformis. The numerous burrows were intensively irrigated enhancing the benthic in situ O2 uptake by ~50 %, and inducing highly variable redox conditions and O2 distribution in the surface sediment as also documented by complementary laboratory-based planar optode measurements. The average benthic O2 exchange as derived by chamber incubations and the eddy covariance approach were similar (14.9 ± 2.5 and 13.1 ± 9.0 mmol m?2 day?1) providing confidence in the two measuring approaches. Moreover, the non-invasive eddy approach revealed a flow-dependent benthic O2 flux that was partly ascribed to enhanced ventilation of infauna burrows during periods of elevated flow rates. The ratio in exchange rates of ΣCO2 and O2 was close to unity, confirming that the O2 uptake was a good proxy for the benthic carbon mineralization in this setting. The infauna activity resulted in highly dynamic redox conditions that presumably facilitated an efficient degradation of both terrestrial and marine-derived organic material. The complex O2 dynamics of the burrow environment also concurrently stimulated nitrification and coupled denitrification rates making the sediment an efficient sink for bioavailable nitrogen. Furthermore, bioturbation mediated a high efflux of dissolved phosphorus and silicate. The study documents a high spatial and temporal variation in benthic solute exchange with important implications for benthic turnover of organic carbon and nutrients. However, more long-term in situ investigations with like approaches are required to fully understand how environmental events and spatio-temporal variations interrelate to the overall biogeochemical functioning of coastal sediments.  相似文献   

14.
Benthic fluxes of soluble reactive phosphorus (SRP) and dissolved inorganic carbon (DIC) were measured in situ using autonomous landers in the Gulf of Finland in the Baltic Sea, on four expeditions between 2002 and 2005. These measurements together with model estimates of bottom water oxygen conditions were used to compute the magnitude of the yearly integrated benthic SRP flux (also called internal phosphorus load). The yearly integrated benthic SRP flux was found to be almost 10 times larger than the external (river and land sources) phosphorus load. The average SRP flux was 1.25?±?0.56?mmol?m?2?d?1 on anoxic bottoms, and ?0.01?±?0.08?mmol?m?2?d?1 on oxic bottoms. The bottom water oxygen conditions determined whether the SRP flux was in a high or low regime, and degradation of organic matter (as estimated from benthic DIC fluxes) correlated positively with SRP fluxes on anoxic bottoms. From this correlation, we estimated a potential increase in phosphorus flux of 0.69?±?0.26?mmol?m?2?d?1 from presently oxic bottoms, if they would turn anoxic. An almost full annual data set of in situ bottom water oxygen measurements showed high variability of oxygen concentration. Because of this, an estimate of the time which the sediments were exposed to oxygenated overlying bottom water was computed using a coupled thermohydrodynamic ocean?Csea and ecosystem model. Total phosphorus burial rates were calculated from vertical profiles of total phosphorus in sediment and sediment accumulation rates. Recycling and burial efficiencies for phosphorus of 97 and 3%, respectively, were estimated for anoxic accumulation bottoms from a benthic mass balance, which was based on the measured effluxes and burial rates.  相似文献   

15.
The Service d’Observation de la Rade de Villefranche-sur-Mer is designed to study the temporal variability of hydrological conditions as well as the abundance and composition of holo- and meroplankton at a fixed station in this bay of the northwest Mediterranean. The weekly data collected at this site, designated as “Point B” since 1957, represent a long-term time series of hydrological conditions in a coastal environment. Since 2007, the historical measurements of hydrological and biological conditions have been complemented by measurements of the CO2–carbonic acid system parameters. In this contribution, CO2–carbonic acid system parameters and ancillary data are presented for the period 2007–2011. The data are evaluated in the context of the physical and biogeochemical processes that contribute to variations in CO2 in the water column and exchange of this gas between the ocean and atmosphere. Seasonal cycles of the partial pressure of CO2 in seawater (pCO2) are controlled principally by variations in temperature, showing maxima in the summer and minima during the winter. Normalization of pCO2 to the mean seawater temperature (18.5 °C), however, reveals an apparent reversal of the seasonal cycle with maxima observed in the winter and minima in the summer, consistent with a biogeochemical control of pCO2 by primary production. Calculations of fluxes of CO2 show this area to be a weak source of CO2 to the atmosphere during the summer and a weak sink during the winter but near neutral overall (range ?0.3 to +0.3 mmol CO2 m?2 h?1, average 0.02 mmol CO2 m?2 h?1). We also provide an assessment of errors incurred from the estimation of annual fluxes of CO2 as a function of sampling frequency (3-hourly, daily, weekly), using data obtained at the Hawaii Kilo Nalu coastal time-series station, which shows similar behavior to the Point B location despite significant differences in climate and hydrological conditions and the proximity of a coral reef ecosystem.  相似文献   

16.
Assessing nitrogen dynamics in the estuarine landscape is challenging given the unique effects of individual habitats on nitrogen dynamics. We measured net N2 fluxes, sediment oxygen demand, and fluxes of ammonium and nitrate seasonally from five major estuarine habitats: salt marshes, seagrass beds (SAV), oyster reefs, and intertidal and subtidal flats. Net N2 fluxes ranged from 332?±?116 μmol?N-N2?m?2?h?1 from oyster reef sediments in the summer to ?67?±?4 μmol?N-N2?m?2?h?1 from SAV in the winter. Oyster reef sediments had the highest rate of N2 production of all habitats. Dissimilatory nitrate reduction to ammonium (DNRA) was measured during the summer and winter. DNRA was low during the winter and ranged from 4.5?±?3.0 in subtidal flats to 104?±?34 μmol?15NH 4 + ?m?2?h?1 in oyster reefs during the summer. Annual denitrification, accounting for seasonal differences in inundation and light, ranged from 161.1?±?19.2 mmol?N-N2?m?2?year?1 for marsh sediments to 509.9?±?122.7 mmol?N-N2?m?2?year?1 for SAV sediments. Given the current habitat distribution in our study system, an estimated 28.3?×?106?mol of N are removed per year or 76 % of estimated watershed nitrogen load. These results indicate that changes in the area and distribution of habitats in the estuarine landscape will impact ecosystem function and services.  相似文献   

17.
A nutrient mass balance for the tidal freshwater segment of the James River was used to assess sources of nutrients supporting phytoplankton production and the importance of the tidal freshwater zone in mitigating nutrient transport to marine waters. Monthly mass balances for 2007–2010 were based on riverine inputs, local point sources (including sewer overflow events), ungauged inputs, riverine outputs, and tidal exchange. The tidal freshwater James River received exceptionally high areal loads (446 mg TN m?2 day?1 and 55 mg TP m?2 day?1) compared to other estuaries in the region and elsewhere. P inputs were principally from riverine sources (84 %) whereas point sources contributed appreciably (54 %) to high N loads. Despite high loading rates and short water residence time, areal mass retention was high (143 mg TN m?2 day?1 and 33 mg TP m?2 day?1). Retention of particulate fractions occurred during high discharge, whereas dissolved inorganic fractions were retained during low discharge when chlorophyll-a concentrations were high. On an annualized basis, P was retained more effectively (59 %) than N (32 %). P was retained by abiotic mechanisms via trapping of particulate forms, whereas N was retained through biological assimilation of dissolved inorganic forms. Results from a limited suite of stable isotope determinations suggest that DIN from point sources was preferentially retained. Combined inputs from diffuse and point sources accounted for only 20 % and 36 % (respectively) of estimated algal N and P demand, indicating that internal nutrient recycling was important to sustaining high rates of phytoplankton production in the tidal freshwater zone.  相似文献   

18.
We estimated CO2 and CH4 emissions from mangrove-associated waters of the Andaman Islands by sampling hourly over 24 h in two tidal mangrove creeks (Wright Myo; Kalighat) and during transects in contiguous shallow inshore waters, immediately following the northeast monsoons (dry season) and during the peak of the southwest monsoons (wet season) of 2005 and 2006. Tidal height correlated positively with dissolved O2 and negatively with pCO2, CH4, total alkalinity (TAlk) and dissolved inorganic carbon (DIC), and pCO2 and CH4 were always highly supersaturated (330–1,627 % CO2; 339–26,930 % CH4). These data are consistent with a tidal pumping response to hydrostatic pressure change. There were no seasonal trends in dissolved CH4 but pCO2 was around twice as high during the 2005 wet season than at other times, in both the tidal surveys and the inshore transects. Fourfold higher turbidity during the wet season is consistent with elevated net benthic and/or water column heterotrophy via enhanced organic matter inputs from adjacent mangrove forest and/or the flushing of CO2-enriched soil waters, which may explain these CO2 data. TAlk/DIC relationships in the tidally pumped waters were most consistent with a diagenetic origin of CO2 primarily via sulphate reduction, with additional inputs via aerobic respiration. A decrease with salinity for pCO2, CH4, TAlk and DIC during the inshore transects reflected offshore transport of tidally pumped waters. Estimated mean tidal creek emissions were ~23–173 mmol m?2 day?1 CO2 and ~0.11–0.47 mmol m?2 day?1 CH4. The CO2 emissions are typical of mangrove-associated waters globally, while the CH4 emissions fall at the low end of the published range. Scaling to the creek open water area (2,700 km2) gave total annual creek water emissions ~3.6–9.2?×?1010 mol CO2 and 3.7–34?×?107 mol CH4. We estimated emissions from contiguous inshore waters at ~1.5?×?1011 mol CO2?year?1 and 2.6?×?108 mol CH4?year?1, giving total emissions of ~1.9?×?1011 mol CO2?year?1 and ~3.0?×?108 mol CH4?year?1 from a total area of mangrove-influenced water of ~3?×?104 km2. Evaluating such emissions in a range of mangrove environments is important to resolving the greenhouse gas balance of mangrove ecosystems globally. Future such studies should be integral to wider quantitative process studies of the mangrove carbon balance.  相似文献   

19.
A combination of field studies and mathematical modeling was used to examine the role of subtidal benthic algae in the eutrophication processes in two shallow estuarine systems. Field measurements indicated uptake by benthic algae retained ammonium and phosphate in the sediments when light at the sediment surface exceeded ≈150 μE m2 s?1. The measurements were used to calibrate a newly developed model of benthic algal activity. The benthic algal model was coupled with a hydrodynamic model, a eutrophication model, and a sediment diagenesis model. In the simulated ecosystem, benthic algae had a major influence in the intra-annual cycling of nitrogen and phosphorus. When nutrients were abundant in the water column (late winter and spring) they were transferred to the sediments through algal activity. Diagenesis released these nutrients to the water column in summer when nutrients were scarce. As a result of the nutrient transfer, annual primary production in the water column, in the presence of benthic algae, exceeded production in the absence of the algae.  相似文献   

20.
Understanding the carbon dynamics in grassland is essential to precisely estimate global atmospheric carbon budget in response to climatic change. Eddy flux measurements were carried out during 2011 and 2012 to characterize seasonal and annual variability of carbon exchanges above a temperate meadow in eastern Inner Mongolia, China. The CO2 flux showed obvious diurnal variations and the monthly mean amplitudes of diurnal course followed June/July > August > May > September. The daily maximum NEE reached up to ?8.0 and ?7.7 g C m?2 for 2011 and 2012, respectively. CO2 uptake was mainly from May to August, with seasonal peaks of ?16.0 g C m?2 day?1 in both two years. Gross primary production (GPP) and ecosystem respiration (Re) were ?1,084.5, 987.1 g C m?2 year?1 in 2011, and ?1,123.3, 1,040.2 g C m?2 year?1 in 2012, respectively. The meadow acted as a stable carbon sink, with integrated net ecosystem exchange (NEE) of ?97.4 and ?83.1 g C m?2 year?1 for 2011 and 2012, respectively. Compared with 2011, the ecosystem assimilated more carbon and meanwhile respired even more, leading to a less carbon sequestration in 2012. PAR and leaf area index (LAI) dominated the seasonal variations in NEE, with PAR explaining 61–69 % of the variance in NEE as LAI maintaining the plateau during June to July. Harvest significantly decreased ecosystem carbon uptake. The interannual variability in GPP and Re resulted primarily from the variations in temperature and its effect on biomass growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号