首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The local atomic environment of Cd bound to the cell wall of the gram-positive bacterium Bacillus subtilis was determined by X-ray absorption fine structure (XAFS) spectroscopy. Samples were prepared at six pH values in the range 3.4 to 7.8, and the bacterial functional groups responsible for the adsorption were identified under each condition. Under the experimental Cd and bacterial concentrations, the spectroscopy results indicate that Cd binds predominantly to phosphoryl ligands below pH 4.4, whereas at higher pH, adsorption to carboxyl groups becomes increasingly important. At pH 7.8, we observe the activation of an additional binding site, which we tentatively ascribe to a phosphoryl site with smaller Cd-P distance than the one that is active at lower pH conditions. XAFS spectra of several cadmium acetate, phosphate, and perchlorate solutions were measured and used as standards for fingerprinting, as well as to assess the ability of FEFF8 and FEFFIT to model carboxyl, phosphoryl, and hydration environments, respectively. The results of this XAFS study in general corroborate existing surface complexation models; however, some binding mechanism details could only be detected with the XAFS technique.  相似文献   

2.
Uranium co-precipitation with iron oxide minerals   总被引:2,自引:0,他引:2  
In oxidizing environments, the toxic and radioactive element uranium (U) is most soluble and mobile in the hexavalent oxidation state. Sorption of U(VI) on Fe-oxides minerals (such as hematite [α-Fe2O3] and goethite [α-FeOOH]) and occlusion of U(VI) by Fe-oxide coatings are processes that can retard U transport in environments. In aged U-contaminated geologic materials, the transport and the biological availability of U toward reduction may be limited by coprecipitation with Fe-oxide minerals. These processes also affect the biological availability of U(VI) species toward reduction and precipitation as the less soluble U(IV) species by metal-reducing bacteria.To examine the dynamics of interactions between U(VI) and Fe oxides during crystallization, Fe-oxide phases (containing 0.5 to 5.4 mol% U/(U + Fe)) were synthesized by means of solutions of U(VI) and Fe(III). Wet chemical (digestions and chemical extractions) and spectroscopic techniques were used to characterize the synthesized Fe oxide coprecipitates after rinsing in deionized water. Leaching the high mol% U solids with concentrated carbonate solution (for sorbed and solid-phase U(VI) species) typically removed most of the U, leaving, on average, about 0.6 mol% U. Oxalate leaching of solids with low mol% U contents (about 1 mol% U or less) indicated that almost all of the Fe in these solids was crystalline and that most of the U was associated with these crystalline Fe oxides. X-ray diffraction and Fourier-transform infrared (FT-IR) spectroscopic studies indicate that hematite formation is preferred over that of goethite when the amount of U in the Fe-oxides exceeds 1 mol% U (∼4 wt% U). FT-IR and room temperature continuous wave luminescence spectroscopic studies with unleached U/Fe solids indicate a relationship between the mol% U in the Fe oxide and the intensity or existence of the spectra features that can be assigned to UO22+ species (such as the IR asymmetric υ3 stretch for O = U = O for uranyl). These spectral features were undetectable in carbonate- or oxalate-leached solids, suggesting solid phase and sorbed U(VI)O22+ species are extracted by the leach solutions. Uranium L3-edge x-ray absorption spectroscopic (XAFS) analyses of the unleached U-Fe oxide solids with less than 1 mol% U reveal that U(VI) exists with four O atoms at radial distances of 2.19 and 2.36 Å and second shell Fe at a radial distance at 3.19 Å.Because of the large ionic radius of UO22+ (∼1.8 Å) relative to that of Fe3+ (0.65 Å), the UO22+ ion is unlikely to be incorporated in the place of Fe in Fe(III)-oxide structures. Solid-phase U(VI) can exist as the uranyl [U(VI)O22+] species with two axial U-O double bonds and four or more equatorial U-O bonds or as the uranate species (such as γ-UO3) without axial U-O bonds. Our findings indicate U6+ (with ionic radii of 0.72 to 0.8 Å, depending on the coordination environment) is incorporated in the Fe oxides as uranate (without axial O atoms) until a point of saturation is reached. Beyond this excess in U concentration, precipitating U(VI) forms discrete crystalline uranyl phases that resemble the uranyl oxide hydrate schoepite [UO2(OH)2·2H2O]. Molecular modeling studies reveal that U6+ species could bond with O atoms from distorted Fe octahedra in the hematite structure with an environment that is consistent with the results of the XAFS. The results provide compelling evidence of U incorporation within the hematite structure.  相似文献   

3.
Uraninite solubility in 0.001–2.0 m HCl solutions was experimentally studied at 500°C, 1000 bar, and hydrogen fugacity corresponding to the Ni/NiO buffer. It was shown that the following U(IV) species dominate in the aqueous solution: U(OH)40, U(OH)2Cl20, and UOH Cl30 Using the results of uraninite solubility measurement, the Gibbs free energies of U(IV) species at 500°C and 1000 bar were calculated (kJ/mol): −9865.55 for UO2(aq), −1374.57 for U(OH)2 Cl20, and −1265.49 for UOH Cl30, and the equilibrium constants of uraninite dissolution in water and aqueous HCl solutions were estimated: UO2(cr) = UO2(aq), pK 0 = 6.64; UO2(cr) + 2HCl0 = U(OH)2 Cl20, pK 2 = 3.56; and UO2(cr) + 3HCl0 = UOHcl30 + H2O, pK 3 = 3.05. The value pK 1 ≈ 5.0 was obtained as a first approximation for the equilibrium UO2(cr) + H2O + HCl0 = U(OH)3Cl0. The constant of the reaction UO2(cr) + 4HCl0 = UCl40 + 2H2O (pK 4 = 7.02) was calculated taking into account the ionization constants of U Cl40 and U(OH)40, obtained by extrapolation from 25 to 500°C at 1000 bar using the BR model. Intense dissolution and redeposition of gold (material of experimental capsules) was observed in our experiments. The analysis and modeling of this phenomenon suggested that the UO2 + x /UO2 redox pair oxidized Au(cr) to Au+(aq), which was then reduced under the influence of stronger reducers.  相似文献   

4.
Uraninite solubility in HF solutions (0.0001–0.5 m) was experimentally studied at 500°C, 1000 bar, and hydrogen fugacity corresponding to the Ni/NiO buffer. It was shown that the predominant U(IV) species in aqueous solution are U(OH)40, U(OH)3F0, and U(OH)2 F20. Using the results of uraninite solubility measurement, the Gibbs free energies of the uranium (IV) species were calculated at 500°C and 1000 bar (kJ/mol): −986.55 for UO2(aq), −1712.42 for U(OH)3F0, −1755.53 for U(OH)2F20, and the equilibrium constants of the uraninite solubility in water and HF solutions were estimated: UO2(κ) = UO2(aq), which is similar to UO2(cr) + 2H2O = U(OH)40, pK0 = 6.64; UO2(cr) + HF0 + H2O = U(OH)3F0, K1 = 0.0513; UO2(cr) + 2HF0 = U(OH)2F20K2 = 7.00 × 10−4. Approximate values K3 = 5.75 × 10−3 and K4 = 6.7 × 10−2 were obtained for equilibria UO2(cr) + 4HF0 =UF40 + 2H2O and UO2(cr) + 4HF = UF40 + 2H2O. Maximum observed in the uranium concentration curve as a function of HF concentration can be explained by the decrease (to < 1) of activity coefficient ratio of HF0 to U(OH)3F0 with increasing HF concentrations.  相似文献   

5.
The surface reactivity of biogenic, nanoparticulate UO2 with respect to sorption of aqueous Zn(II) and particle annealing is different from that of bulk uraninite because of the presence of surface-associated organic matter on the biogenic UO2. Synthesis of biogenic UO2 was accomplished by reduction of aqueous uranyl ions, by Shewanella putrefaciens CN32, and the resulting nanoparticles were washed using one of two protocols: (1) to remove surface-associated organic matter and soluble uranyl species (NAUO2), or (2) to remove only soluble uranyl species (BIUO2). A suite of bulk and surface characterization techniques was used to examine bulk and biogenic, nanoparticulate UO2 as a function of particle size and surface-associated organic matter. The N2-BET surface areas of the two biogenic UO2 samples following the washing procedures are 128.63 m2 g−1 (NAUO2) and 92.56 m2 g−1 (BIUO2), and the average particle sizes range from 5-10 nm based on TEM imaging. Electrophoretic mobility measurements indicate that the surface charge behavior of biogenic, nanoparticulate UO2 (both NAUO2 and BIUO2) over the pH range 3-9 is the same as that of bulk. The U LIII-edge EXAFS spectra for biogenic UO2 (both NAUO2 and BIUO2) were best fit with half the number of second-shell uranium neighbors compared to bulk uraninite, and no oxygen neighbors were detected beyond the first shell around U(IV) in the biogenic UO2. At pH 7, sorption of Zn(II) onto both bulk uraninite and biogenic, nanoparticulate UO2 is independent of electrolyte concentration, suggesting that Zn(II) sorption complexes are dominantly inner-sphere. The maximum surface area-normalized Zn(II) sorption loadings for the three substrates were 3.00 ± 0.20 μmol m−2 UO2 (bulk uraninite), 2.34 ± 0.12 μmol m−2 UO2 (NAUO2), and 2.57 ± 0.10 μmol m−2 UO2 (BIUO2). Fits of Zn K-edge EXAFS spectra for biogenic, nanoparticulate UO2 indicate that Zn(II) sorption is dependent on the washing protocol. Zn-U pair correlations were observed at 2.8 ± 0.1 Å for NAUO2 and bulk uraninite; however, they were not observed for sample BIUO2. The derived Zn-U distance, coupled with an average Zn-O distance of 2.09 ± 0.02 Å, indicates that Zn(O,OH)6 sorbs as bidentate, edge-sharing complexes to UO8 polyhedra at the surface of NAUO2 nanoparticles and bulk uraninite, which is consistent with a Pauling bond-valence analysis. The absence of Zn-U pair correlations in sample BIUO2 suggests that Zn(II) binds preferentially to the organic matter coating rather than the UO2 surface. Surface-associated organic matter on the biogenic UO2 particles also inhibited particle annealing at 90 °C under anaerobic conditions. These results suggest that surface-associated organic matter decreases the reactivity of biogenic, nanoparticulate UO2 surfaces relative to aqueous Zn(II) and possibly other environmental contaminants.  相似文献   

6.
Speciation of uranium (VI) in acetate solutions between 25 and 250°C, at pH values between 1.8 and 3.8 and acetate/uranium (Ac/U) ratios of 0.5 to 100 has been investigated using uranium LIII-edge X-ray absorption spectroscopy. With increasing pH the UO2(Ac)20 species becomes more important than UO2(Ac)+ species, which is predominant below pH 2. It remains the dominant species as pH is further increased to 3.8 at an Ac/U ratio of 20. Decrease in U-Oeq bond distance and coordination number with increasing solution age indicates that steric/kinetic factors are important and that equilibrium is attained slowly in this system with initial acetate coordination to the uranyl ion being monodentate or pseudo-bridging before slow conversion to bidentate chelation. Acetate coordination to the uranyl ion appears to decrease as temperature is increased from room temperature to ∼100°C before increasing in solutions of Ac/U > 2. For solutions where Ac/U ≤ 2 at pH 2.1, there is no evidence for uranyl acetate speciation at low temperatures, but at elevated temperature bidentate uranyl-acetate ion-pairing is evident. The existence of the uranyl acetate species in the temperature range 200 to 240°C demonstrates the importance of including acetate and other organic ligands in models of uranium transport at elevated temperatures.  相似文献   

7.
Between pH 3.5 and 7, humic acids form a water-soluble uranyl-humic acid complex with the uranyl ion, UO22+ (log β1 = 7.8 ± 0.4 at μ = 0.1). The stability constant of the complex is practically independent of the ionic strength (μ). Experimental results can be explained by the formation of a complex in which every uranyl ion is simultaneously bonded to one phenolic oxygen and one dissociated carboxyl group. The bonding through the phenolic group is considerably stronger than that through carboxylic groups.  相似文献   

8.
9.
The fate and transport of uranium in contaminated soils and sediments may be affected by adsorption onto the surface of minerals such as montmorillonite. Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to investigate the adsorption of uranyl (UO22+) onto Wyoming montmorillonite. At low pH (∼4) and low ionic strength (10−3 M), uranyl has an EXAFS spectrum indistinguishable from the aqueous uranyl cation, indicating binding via cation exchange. At near-neutral pH (∼7) and high ionic strength (1 M), the equatorial oxygen shell of uranyl is split, indicating inner-sphere binding to edge sites. Linear-combination fitting of the spectra of samples reacted under conditions where both types of binding are possible reveals that cation exchange at low ionic strengths on SWy-2 may be more important than predicted by past surface complexation models of U(VI) adsorption on related montmorillonites. Analysis of the binding site on the edges of montmorillonite suggests that U(VI) sorbs preferentially to [Fe(O,OH)6] octahedral sites over [Al(O,OH)6] sites. When bound to edge sites, U(VI) occurs as uranyl-carbonato ternary surface complexes in systems equilibrated with atmospheric CO2. Polymeric surface complexes were not observed under any of the conditions studied. Current surface complexation models of uranyl sorption on clay minerals may need to be reevaluated to account for the possible increased importance of cation exchange reactions at low ionic strengths, the presence of reactive octahedral iron surface sites, and the formation of uranyl-carbonato ternary surface complexes. Considering the adsorption mechanisms observed in this study, future studies of U(VI) transport in the environment should consider how uranium retardation will be affected by changes in key solution parameters, such as pH, ionic strength, exchangeable cation composition, and the presence or absence of CO2.  相似文献   

10.
Precision and accuracy in SIMS zircon geochronology strongly depend on the method of determination of the interelement ion ratios (e.g., 206Pb/238U) from the measured secondary ion ratios (206Pb+/238U+). Six possible U–Pb calibrations (Pb/U–UO2/U, Pb/U–UO/U, Pb/U–UO2/UO, Pb/UO–UO2/U, Pb/UO–UO/U, Pb/UO–UO2/UO) based on simple power law relationships, and Pb/UO2‐related one‐ and two‐ (a power law) dimensional ones were compared using data acquired on the 91500 zircon reference material from one hundred measurement sessions, to determine the most statistically reliable scheme. Taking advantage of U oxide species (UO and UO2) over atomic U, due to their similar energy distribution to Pb and higher intensities, the data calibrated with Pb/UO–UO2/UO showed the smallest mean uncertainties and dispersions, and provided the best‐fit calibration curve consistently. Although it was demonstrated with Temora 2 that the unknown zircon age was not changed significantly by different calibrations, its precision could be improved using the Pb/UO–UO2/UO calibration in zircon geochronology.  相似文献   

11.
We have examined the effects of aqueous complexation on rates of dissimilatory reductive precipitation of uranium by Shewanella putrefaciens. Uranium(VI) was supplied as sole terminal electron acceptor to Shewanella putrefaciens (strain 200R) in defined laboratory media under strictly anaerobic conditions. Media were amended with different multidentate organic acids, and experiments were performed at different U(VI) and ligand concentrations. Organic acids used as complexing agents were oxalic, malonic, succinic, glutaric, adipic, pimelic, maleic, citric, and nitrilotriacetic acids, tiron, EDTA, and Aldrich humic acid. Reductive precipitation of U(VI), resulting in removal of insoluble amorphous UO2 from solution, was measured as a function of time by determination of total dissolved U. Reductive precipitation was measured, rather than net U(VI) reduction to U(IV), to assess overall U removal rates from solution, which may be used to gauge the influence of chelation on microbial U mineralization. Initial linear rates of U reductive precipitation were found to correlate with stability constants of 1:1 aqueous U(VI):ligand and U(IV):ligand complexes. In the presence of strongly complexing ligands (e.g., NTA, Tiron, EDTA), UO2 precipitation did not occur. Our results are consistent with ligand-retarded precipitation of UO2, which is analogous to ligand-assisted solid phase dissolution but in reverse: ligand exchange with the U4+ aquo cation acts as a rate-limiting reaction moderating coordination of water molecules with U4+, which is a necessary step in UO2 precipitation. Ligand exchange kinetics governing dissociation rates of ligands from U(VI)-organic complexes may also influence overall UO2 production rates, although the magnitude of this effect is unclear relative to the effects of U(IV)-organic complexation. Our results indicate that natural microbial-aqueous systems containing abundant organic matter can inhibit the formation of biogenic amorphous UO2.  相似文献   

12.
《Applied Geochemistry》2002,17(4):399-408
The sorption of U(VI) onto the surface of olivine has been experimentally investigated at 25 °C under an air atmosphere as a function of pH, solid surface to volume ratio and total U concentration. Sorption has been observed to decrease as the extent of carbonate complexation of U(VI) in solution increases, which is attributed to the competition between aqueous and solid ligands for the coordination of U. The experimental results have been interpreted by means of two different approaches: (1)a semi-empirical model, exemplified by the application of a Langmuir isotherm and (2) a non-electrostatic thermodynamic surface complexation model which includes the formation of the surface species: >SO–UO2+ and >SO–UO2(OH). The following stability constants for these species have been determined from the thermodynamic analysis: K(>SO–UO2+)=289±71 and K(>SO–UO2(OH))=(3.4±0.4)×10−6. The comparison of the sorption of U onto olivine with granites of different origin indicate that the use of this mineral as additive to the backfill of deep high level nuclear waste repositories could retard the migration of U from the repository to the geosphere.  相似文献   

13.
The behavior of the 0.1 mNaCl + 0.002 mHCl + 1.9 × 10?5 mUO2(NO3)2 solution was studied at pH from 2.7 to 11.0, 25°C, and 1 bar in an argon atmosphere. The curve of variations in U concentration exhibits two minima at pH = 6.6 ± 0.7 and 10.0 ± 0.5. These minima are related to the precipitation of schoepite and clarkeite, respectively. The experimental data were used to refine the stability constants of U(VI) (hydroxo) complexes. For the polymer species of U(VI) with charges from +2 to ?1, the method of additivity of thermochemical increments was used, and increments of the linear relation were determined for the calculation of the Gibbs free energies of formation (ΔfG 298.15 0 ) of respective homologue series. The proposed method was applied to calculate the ΔfG 298.15 0 of formation of U(VI) (hydroxo)complexes containing from one to five uranium atoms.  相似文献   

14.
《Applied Geochemistry》2000,15(7):953-973
The enhancement of mobility of radionuclides in the geosphere through complexation by humic substances is a source of uncertainty in performance assessment of radioactive waste repositories. Only very few data sets are available which are relevant for performance assessment of an underground repository for radioactive waste. Using the equilibrium dialysis-ligand exchange method developed at the Paul Scherrer Institut, conditional stability constants for the formation of complexes of Aldrich humic acid with Ca2+, NpO2+, Co2+, Ni2+, UO22+ and Eu3+ and complexes of Laurentian soil- and Suwannee River fulvic acid with Co2+, UO22+ and Eu3+ were measured. pH was varied between 5 and 10 and ionic strength between 0.02 and 0.2 M. The data are presented as equilibrium coefficients that are free from any model assumptions. The equilibrium coefficients increased in the order Ca2+≅NpO2+<Co2+< Ni2+<UO22+< Eu3+. The quality of the data is assessed in an extended discussion of statistical and systematical errors, and by a critical ‘rereview’ of the auxiliary stability constants used for the calculation of the equilibrium coefficients. An approximate overall uncertainty of 0.5 log-units is estimated for the stability data reported. The conditional stability constants were found to increase markedly with increasing pH in the case of Co2+, UO22+ and Eu3+. For Ni2+, Ca2+ and NpO2+ this effect was less pronounced. For all metal ions tested, the influence of ionic strength was of less importance, and the conditional stability constants did not show a significant dependence on the type of humic substances investigated.  相似文献   

15.
Recent studies of uranium(VI) geochemistry have focused on the potentially important role of the aqueous species, CaUO2(CO3)32− and Ca2UO2(CO3)30(aq), on inhibition of microbial reduction and uranium(VI) aqueous speciation in contaminated groundwater. However, to our knowledge, there have been no direct studies of the effects of these species on U(VI) adsorption by mineral phases. The sorption of U(VI) on quartz and ferrihydrite was investigated in NaNO3 solutions equilibrated with either ambient air (430 ppm CO2) or 2% CO2 in the presence of 0, 1.8, or 8.9 mM Ca2+. Under conditions where the Ca2UO2(CO3)30(aq) species predominates U(VI) aqueous speciation, the presence of Ca in solution lowered U(VI) adsorption on quartz from 77% in the absence of Ca to 42% and 10% at Ca concentrations of 1.8 and 8.9 mM, respectively. U(VI) adsorption to ferrihydrite decreased from 83% in the absence of Ca to 57% in the presence of 1.8 mM Ca. Surface complexation model predictions that included the formation constant for aqueous Ca2UO2(CO3)30(aq) accurately simulated the effect of Ca2+ on U(VI) sorption onto quartz and ferrihydrite within the thermodynamic uncertainty of the stability constant value. This study confirms that Ca2+ can have a significant impact on the aqueous speciation of U(VI), and consequently, on the sorption and mobility of U(VI) in aquifers.  相似文献   

16.
Adsorption of Zn2+ at the rutile TiO2 (110)-aqueous interface was studied with Bragg-reflection X-ray standing waves (XSW), polarization-dependent surface extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) calculations to understand the interrelated issues of adsorption site, its occupancy, ion-oxygen coordination and hydrolysis. At pH 8, Zn2+ was found to adsorb as an inner-sphere complex at two different sites, i.e., monodentate above the bridging O site and bidentate between two neighboring terminal O sites. EXAFS results directly revealed a four or fivefold first shell coordination environment for adsorbed Zn2+ instead of the sixfold coordination found for aqueous species at this pH. DFT calculations confirmed the energetic stability of a lower coordination environment for the adsorbed species and revealed that the change to this coordination environment is correlated with the hydrolysis of adsorbed Zn2+. In addition, the derived adsorption locations and the occupancy factors of both sites from three methods agree well, with some quantitative discrepancies in the minor site location among the XSW, EXAFS, and DFT methods. Additional XSW measurements showed that the adsorption sites of Zn2+ were unchanged at pH 6. However, the Zn2+ partitioning between the two sites changed substantially, with an almost equal distribution between the two types of sites at pH 6 compared to predominantly monodentate occupation at pH 8.  相似文献   

17.
Ambient-temperature environments in which dissolved silica and U(VI) are present may lack the conditions necessary to readily form crystalline uranyl-silicate phases; however amorphous phases, as defined by the absence of well-defined Bragg reflections in powder X-ray diffraction patterns, are kinetically favored when solution saturation levels are appropriate. Such amorphous uranyl-silicates may be related to the crystalline phases predicted to be thermodynamically stable and influence the mobility of U in the environment. To investigate amorphous uranyl-silicates and their relation to crystalline phases we precipitated solids from solutions containing 0.05 M UO2(ClO4)2 and 0.1 M Na2SiO3 adjusted to pH values from 2.2 to 9 and allowed the precipitates to age in their mother liquors for approximately 6 weeks at 22 °C. We compared the chemical composition, X-ray diffraction patterns, and Fourier transform infrared spectra of the precipitates to those of the crystalline phases predicted by thermodynamic modeling. The precipitates were amorphous with U:Si ratios of 0.8 ± 0.1. Their FTIR spectra revealed changes in the UO22+ and SiO44− vibrations as a function of pH that are consistent with a shift in mid-range structural linkages from those similar to soddyite to those more like Na-boltwoodite. Structural H2O, OH, and SiO3OH3− vibrations do not change as a function of pH and are consistent with a mixture of soddyite-like and Na-boltwoodite-like features. Six weeks of aging at ambient temperature is enough time for the precipitate structures to rearrange and adopt mid-range structural linkages characteristic of crystalline phases predicted by thermodynamic modeling.  相似文献   

18.
Sorption interactions with montmorillonite and other clay minerals in soils, sediments, and rocks are potentially important mechanisms for attenuating the mobility of U(6+) and other radionuclides through the subsurface environment. Batch experiments were conducted (in equilibrium with atmospheric % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% acbiGaiWiG-bfadaWgaaWcbaacbaGaa43qaiaa+9eadaWgaaqaaiaa% +jdaaWqabaaaleqaaaaa!400D!\[P_{CO_2 } \])to determine the effects of varying pH (2 to 9), solid-mass to solution-volume ratio (M/V = 0.028 to 3.2 g/L), and solution concentration (2 × 10?7 and 2 × 10?6 M 233U) on U(6+) sorption on SAz-1 montmorillonite. The study focused on U(6+) surface complexation on hydroxylated edge sites as the sorption mechanism of interest because it is expected to be the predominant sorption mechanism at pHs typical of natural waters (pH ≈6 to ≈9). Thus, the experiments were conducted with a 0.1 M NaNO3 matrix to suppress ion-exchange between U(6+) in solution and interlayer cations. The results show that U(6+) sorption on montmorillonite is a strong function of pH, reaching a maximum at near-neutral pH (≈6 to ≈6.5) and decreasing sharply towards more acidic or more alkaline conditions. A comparison of the pH-dependence of U(6+) sorption with that of U(6+) aqueous speciation indicates a close correspondence between U(6+) sorption and the predominance field of U(6+)-hydroxy complexes. At high pH, sorption is inhibited due to formation of aqueous U(6+)-carbonate complexes. At low pH, the low sorption values indicate that the 0.1 M NaNO3 matrix was effective in suppressing ion-exchange between the uranyl (UO2 2+) species and interlayer cations in montmorillonite. At pH and carbonate concentrations typical of natural waters, sorption of U(6+) on montmorillonite can vary by four orders of magnitude and can become negligible at high pH. The experimental results were used to develop a thermodynamic model based on a surface complexation approach to permit predictions of U(6+) sorption at differing physicochemical conditions. A Diffuse-Layer model (DLM) assuming aluminol (>AlOH?) and silanol (>SiOH?) edge sites and two U(6+) surface complexation reactions per site effectively simulates the complex sorption behavior observed in the U(6+)-H2O-CO2-montmorillonite system at an ionic strength of 0.1 M and pH > 3.5. A comparison of model predictions with data from this study and from published literature shows good agreement and suggests that surface complexation models based on parameters derived from a limited set of data could be useful in extrapolating radionuclide sorption over a range of geochemical conditions. Such an approach could be used to support transport modeling by providing a better alternative to the use of constant K d s in transport calculations.  相似文献   

19.
Equilibrium calculations have shown that all the solutions in the experiments of Dongarra and Langmuir (1980) were super-saturated with respect to uranyl triphosphate; the degree of super-saturation varied from 3 to 857. In spite of the super-saturation, for all of their experiments n? and molal % UO2(HPO4)22? have been found to be <0.5 and <12 respectively. Similarly in all of their experiments 88–98% of ∑U(VI) existed as UO22+ or hydroxo complexes. Based on the analysis of their data it has been shown that their experimental conditions were not appropriate for determining the stability constant of UO2(HPO4)22?. The significance of careful design of experiments has been demonstrated. The uncertainty in log β (±0.2) as reported by these authors is too small in view of the very small n? as well as negligible pH change during titrations. Furthermore, the fact that the β determined by Dongarra and Langmuir is very close to that of Moskvin et al. (1967) certainly does not serve to validate the work of Dongarra and Langmuir, since Dongarra and Langmuir, as well as this writer, have found several problems in the work of Moskvin et al.  相似文献   

20.
Remediation of uranium in the deep unsaturated zone is a challenging task, especially in the presence of oxygenated, high-carbonate alkalinity soil and pore water composition typical for arid and semi-arid environments of the western regions of the U.S. This study evaluates the effect of various pore water constituencies on changes of uranium concentrations in alkaline conditions, created in the presence of reactive gases such as NH3 to effectively mitigate uranium contamination in the vadose zone sediments. This contaminant is a potential source for groundwater pollution through slow infiltration of soluble and highly mobile uranium species towards the water table. The objective of this research was to evaluate uranium sequestration efficiencies in the alkaline synthetic pore water solutions prepared in a broad range of Si, Al, and bicarbonate concentrations typically present in field systems of the western U.S. regions and identify solid uranium-bearing phases that result from ammonia gas treatment. In previous studies (Szecsody et al. 2012; Zhong et al. 2015), although uranium mobility was greatly decreased, solid phases could not be identified at the low uranium concentrations in field-contaminated sediments. The chemical composition of the synthetic pore water used in the experiments varied for silica (5–250 mM), Al3+ (2.8 or 5 mM), HCO3 (0–100 mM) and U(VI) (0.0021–0.0084 mM) in the solution mixture. Experiment results suggested that solutions with Si concentrations higher than 50 mM exhibited greater removal efficiencies of U(VI). Solutions with higher concentrations of bicarbonate also exhibited greater removal efficiencies for Si, Al, and U(VI). Overall, the silica polymerization reaction leading to the formation of Si gel correlated with the removal of U(VI), Si, and Al from the solution. If no Si polymerization was observed, there was no U removal from the supernatant solution. Speciation modeling indicated that the dominant uranium species in the presence of bicarbonate were anionic uranyl carbonate complexes (UO2(CO3)2−2 and UO2(CO3)3−4) and in the absence of bicarbonate in the solution, U(VI) major species appeared as uranyl-hydroxide (UO2(OH)3 and UO2(OH)4−2) species. The model also predicted the formation of uranium solid phases. Uranyl carbonates as rutherfordine [UO2CO3], cejkaite [Na4(UO2)(CO3)3] and hydrated uranyl silicate phases as Na-boltwoodite [Na(UO2)(SiO4)·1.5H2O] were anticipated for most of the synthetic pore water compositions amended from medium (2.9 mM) to high (100 mM) bicarbonate concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号