首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A model for the combined long-term cycles of carbon and sulfur has been constructed which combines all the factors modifying weathering and degassing of the GEOCARB III model [Berner R.A., Kothavala Z., 2001. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182-204] for CO2 with rapid recycling and oxygen dependent carbon and sulfur isotope fractionation of an isotope mass balance model for O2 [Berner R.A., 2001. Modeling atmospheric O2 over Phanerozoic time. Geochim. Cosmochim. Acta65, 685-694]. New isotopic data for both carbon and sulfur are used and new feedbacks are created by combining the models. Sensitivity analysis is done by determining (1) the effect on weathering rates of using rapid recycling (rapid recycling treats carbon and sulfur weathering in terms of young rapidly weathering rocks and older more slowly weathering rocks); (2) the effect on O2 of using different initial starting conditions; (3) the effect on O2 of using different data for carbon isotope fractionation during photosynthesis and alternative values of oceanic δ13C for the past 200 million years; (4) the effect on sulfur isotope fractionation and on O2 of varying the size of O2 feedback during sedimentary pyrite formation; (5) the effect on O2 of varying the dependence of organic matter and pyrite weathering on tectonic uplift plus erosion, and the degree of exposure of coastal lands by sea level change; (6) the effect on CO2 of adding the variability of volcanic rock weathering over time [Berner, R.A., 2006. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. Am. J. Sci.306 (in press)]. Results show a similar trend of atmospheric CO2 over the Phanerozoic to the results of GEOCARB III, but with some differences during the early Paleozoic and, for variable volcanic rock weathering, lower CO2 values during the Mesozoic. Atmospheric oxygen shows a major broad late Paleozoic peak with a maximum value of about 30% O2 in the Permian, a secondary less-broad peak centered near the Silurian/Devonian boundary, variation between 15% and 20% O2 during the Cambrian and Ordovician, a very sharp drop from 30% to 15% O2 at the Permo-Triassic boundary, and a more-or less continuous rise in O2 from the late Triassic to the present.  相似文献   

2.
Large variations of the CO2 flux through the soil were observed between November 2002 and January 2006 at Mt. Etna volcano. In many cases, the CO2 flux was strongly influenced by changes in air temperature and atmospheric pressure. A new filtering method was then developed to remove the atmospheric influences on soil CO2 flux and, at the same time, to highlight the variations strictly related to volcanic activity. Successively, the CO2 corrected data were quantitatively compared with the spectral amplitude of the volcanic tremor by cross correlation function, cross-wavelet spectrum and wavelet coherence. These analyses suggested that the soil CO2 flux variations preceded those of volcanic tremor by about 50 days. Given that volcanic tremor is linked to the shallow (a few kilometer) magma dynamics and soil CO2 flux related to the deeper (~12 km b.s.l.) magma dynamics, the “delayed similarity” between the CO2 flux and the volcanic tremor amplitude was used to assess the average speed in the magma uprising into the crust, as about 170–260 m per day. Finally, the large amount of CO2 released before the onset of the 2004–2005 eruption indicated a deep ingression of new magma, which might have triggered such an eruption.  相似文献   

3.
We evaluate whether the global weathering budget is near steady state for the pre-anthropogenic modern environment by assessing the magnitude of acidity-generating volcanic exhalations. The weathering rate induced by volcanic acid fluxes, of which the CO2 flux is the most important, can be expressed as an average release rate of dissolved silica, based on a model feldspar-weathering scheme, and the ratio of carbonate-to-silicate rock weathering. The theoretically predicted flux of silica from chemical weathering is slightly smaller than the estimated global riverine silica flux. After adjustment for carbonate weathering, the riverine dissolved bicarbonate flux is larger than the volcanic carbon degassing rate by a factor of about three. There are substantial uncertainties associated with the calculated and observed flux values, but the modern system may either not be in steady state, or additional, “unknown” carbon sources may exist. The closure errors in the predicted budgets and observed riverine fluxes suggest that continental weathering rates might have had an impact on atmospheric CO2 levels at a time scale of 103-104 years, and that enhanced weathering rates during glacial periods might have been a factor in the reduced glacial atmospheric CO2 levels. Recent anthropogenic emissions of carbon and sulfur have a much larger acid-generating capacity than the natural fluxes. Estimated potential weathering budgets to neutralize these fluxes are far in excess of observed values. A theoretical scenario for a return to steady state at the current anthropogenic acidity emissions (disregarding the temporary buffering action of the ocean reservoir) requires either significantly lower pH values in continental surface waters as a result of storage of strong acids, and/or higher temperatures as a result of enhanced atmospheric CO2 levels in order to create weathering rates that can neutralize the total flux of anthropogenic and natural background acidity.  相似文献   

4.
The terrestrial carbon cycle and the role of atmospheric CO2 concentrations in controlling global temperatures can be inferred from the study of ancient soils (paleosols). Soil-formed goethite and calcite have been the primary minerals used as a geochemical proxy for reconstructing atmospheric pCO2 from ancient terrestrial records. In the case of goethite, optimum sampling strategies for reconstructing pCO2 focus on the portion of the soil profile that displays steep gradients in both soil CO2 concentration and δ13C values of soil CO2 such that a keeling plot can be developed for a given soil and atmospheric pCO2 can be calculated from it. We report data from a Carboniferous paleosol that depart from the expected linear trends. The results indicate that pedogenic goethite is sensitive to variations in the isotopic composition of soil CO2, over a range of timescales, and can record these variations in the carbon isotope composition and mole fraction of Fe(CO3)OH in solid solution with goethite. We explore possible environmental conditions that can drive these changes as a function of either moisture controlled variations in soil respired CO2 or in the residence time of carbon in soils. The implications of this result are overestimation of paleoatmospheric pCO2 from pedogenic goethite.  相似文献   

5.
Using coupled terrestrial and coastal zone models, we investigated the impacts of deglaciation and anthropogenic inputs on the CO2–H2O–CaCO3 system in global coastal ocean waters from the Last Glacial Maximum (LGM: 18,000 year BP) to the year 2100. With rising sea level and atmospheric CO2, the carbonate system of coastal ocean water changed significantly. We find that 6 × 1012 metric tons of carbon were emitted from the coastal ocean, growing due to the sea level rise, from the LGM to late preindustrial time (1700 AD) because of net heterotrophy and calcification processes. This carbon came to reside in the atmosphere and in the growing vegetation on land and in uptake of atmospheric CO2 through the weathering of rocks on land. It appears that carbonate accumulation, mainly, but not exclusively, in coral reefs from the LGM to late preindustrial time could account for about 24 ppmv of the 100 ppmv rise in atmospheric CO2, lending some support to the “coral reef hypothesis”. In addition, the global coastal ocean is now, or soon will be, a sink of atmospheric CO2. The temperature rise of 4–5°C since the LGM led to increased weathering rates of inorganic and organic materials on land and enhanced riverine fluxes of total C, N, and P to the coastal ocean of 68%, 108%, and 97%, respectively, from the LGM to late preindustrial time. During the Anthropocene, these trends have been exacerbated owing to rising atmospheric CO2, due to fossil fuel combustion and land-use practices, other human activities, and rising global temperatures. River fluxes of total reactive C, N, and P are projected to increase from late preindustrial time to the year 2100 by 150%, 380%, and 257%, respectively, modifying significantly the behavior of these element cycles in the coastal ocean, particularly in proximal environments. Despite the fact that the global shoal water carbonate mass has grown extensively since the LGM, the pHT (pH values on the total proton scale) of global coastal waters has decreased from ~8.35 to ~8.18 and the carbonate ion concentration declined by ~19% from the LGM to late preindustrial time. The latter represents a rate of decline of about 0.028 μmol CO3 2? per decade. In comparison, the decrease in coastal water pHT from the year 1900 to 2000 was about 8.18–8.08 and is projected to decrease further from about 8.08 to 7.85 between 2000 and 2100, according to the IS92a business-as-usual scenario of CO2 emissions. Over these 200 years, the carbonate ion concentration will fall by ~120 μmol kg?1 or 6 μmol kg?1 per decade. This decadal rate of decline of the carbonate ion concentration in the Anthropocene is 214 times the average rate of decline for the entire Holocene. Hence, when viewed against the millennial to several millennial timescale of geologic change in the coastal ocean marine carbon system, one can easily appreciate why ocean acidification is the “other CO2 problem”.  相似文献   

6.
Epochs of changing atmospheric CO2 and seawater CO2–carbonic acid system chemistry and acidification have occurred during the Phanerozoic at various time scales. On the longer geologic time scale, as sea level rose and fell and continental free board decreased and increased, respectively, the riverine fluxes of Ca, Mg, DIC, and total alkalinity to the coastal ocean varied and helped regulate the C chemistry of seawater, but nevertheless there were major epochs of ocean acidification (OA). On the shorter glacial–interglacial time scale from the Last Glacial Maximum (LGM) to late preindustrial time, riverine fluxes of DIC, total alkalinity, and N and P nutrients increased and along with rising sea level, atmospheric PCO2 and temperature led, among other changes, to a slightly deceasing pH of coastal and open ocean waters, and to increasing net ecosystem calcification and decreasing net heterotrophy in coastal ocean waters. From late preindustrial time to the present and projected into the 21st century, human activities, such as fossil fuel and land-use emissions of CO2 to the atmosphere, increasing application of N and P nutrient subsidies and combustion N to the landscape, and sewage discharges of C, N, P have led, and will continue to lead, to significant modifications of coastal ocean waters. The changes include a rapid decline in pH and carbonate saturation state (modern problem of ocean acidification), a shift toward dissolution of carbonate substrates exceeding production, potentially leading to the “demise” of the coral reefs, reversal of the direction of the sea-to-air flux of CO2 and enhanced biological production and burial of organic C, a small sink of anthropogenic CO2, accompanied by a continuous trend toward increasing autotrophy in coastal waters.  相似文献   

7.
Annually integrated air-water CO2 flux data in 44 coastal environments were compiled from literature. Data were gathered in 8 major ecosystems (inner estuaries, outer estuaries, whole estuarine systems, mangroves, salt marshes, coral reefs, upwelling systems, and open continental shelves), and up-scaled in the first attempt to integrate air-water CO2 fluxes over the coastal ocean (26×106 km2), taking into account its geographical and ecological diversity. Air-water CO2 fluxes were then up-scaled in global ocean (362×106 km2) using the present estimates for the coastal ocean and those from Takahashi et al. (2002) for the open ocean (336×106 km2). If estuaries and salt marshes are not taken into consideration in the up-scaling, the coastal ocean behaves as a sink for atmospheric CO2(−1.17 mol C m−2 yr−1) and the uptake of atmospheric CO2 by the global ocean increases by 24% (−1.93 versus −1.56 Pg C yr−1). The inclusion of the coastal ocean increases the estimates of CO2 uptake by the global ocean by 57% for high latitude areas (−0.44 versus −0.28 Pg C yr−1) and by 15% for temperate latitude areas (−2.36 versus −2.06 Pg C yr−1) At subtropical and tropical latitudes, the contribution from the coastal ocean increases the CO2 emission to the atmosphere from the global oceam by 13% (0.87 versus 0.77 Pg C yr−1). If estuaries and salt marshes are taken into consideration in the upscaling, the coastal ocean behaves as a source for atmospheric CO2 (0.38 mol C m−2 yr−1) and the uptake of atmospheric CO2 from the global ocean decreases by 12% (−1.44 versus −1.56 Pg C yr−1) At high and subtropical and tropical latitudes, the coastal ocean behaves as a source for atmospheric CO2 but at temperate latitudes, it still behaves as a moderate CO2 sink. A rigorous up-scaling of air-water CO2 fluxes in the coastal ocean is hampered by the poorly constrained estimate of the surface area of inner estuaries. The present estimates clearly indicate the significance of this biogeochemically, highly active region of the biosphere in the global CO2 cycle.  相似文献   

8.
Despite uncertainties in our understanding of early Earth volcanism and atmospheric composition, thermodynamic modelling is able to offer estimates of the global production of reactive trace species (NO, OH, SO3, Cl, Br and I) from early Earth volcanism, and thereby to shed light on processes which may have been different in Earth’s early atmosphere. Model results show that thermal decomposition of magmatic H2O, CO2 and SO2 in high-T mixtures of magmatic and atmospheric gases (at T > 1400 °C) generate high levels of reactive trace gas species. Production of these reactive trace species is insensitive to atmospheric CO2 in mixtures where the atmospheric gas is the minor component and will hence continue during periods of low atmospheric CO2. Fluxes of NO, OH, Cl, Br and I from early Earth volcanism are predicted to exceed those from modern Earth volcanism as the higher temperature of early Earth emissions compensates for lower levels of O2 in the atmosphere, compared to the modern Earth. Under certain conditions, the volcanic NO flux from early Earth volcanism is found to be comparable to other sources of reactive N such as lightning NO and photochemical HCN. This is one possible source of fixed nitrogen which may alleviate any postulated Archean nitrogen crisis. Our thermodynamic model reveals that production of SO3 (a potential precursor for near-source volcanic sulphate and hence ‘primary’ volcanic aerosol) is likely to be significantly lower from early Earth volcanism. Uncertainty in the pathway to near-source sulphate in modern volcanism (i.e., the reaction of SO3 with water or direct emission) introduces a large uncertainty into the production rate of near-source volcanic sulphate on the early Earth.  相似文献   

9.
Streams and rivers are major exporters of C and other dissolved materials from watersheds to coastal waters. In streams and rivers, substantial amounts of terrigenous organic C is metabolized and degassed as CO2 to the atmosphere. A long-term evaluation of CO2 dynamics in streams is essential for understanding factors controlling CO2 dynamics in streams in response to changes in climate and land-use. Long-term changes in the partial pressure of CO2 (pCO2) were computed in the Anacostia River and the lower Potomac River in the Chesapeake Bay watershed. Long-term estimates were made using routine monitoring data of pH, total alkalinity, and dissolved nutrients from 1985 to 2006 at 14 stations. Longitudinal variability in pCO2 dynamics was also investigated along these rivers downstream of the urban Washington D.C. metropolitan area. Both rivers were supersaturated with CO2 with respect to atmospheric CO2 levels (392 μatm) and the highly urbanized Anacostia waters (202–9694 μatm) were more supersaturated than the Potomac waters (557–3800 μatm). Long-term variability in pCO2 values may be due to changes in river metabolism and organic matter and nutrient loadings. Both rivers exchange significant amounts of CO2 with the atmosphere (i.e., Anacostia at 0.2–72 mmol m−2 d−1 and Potomac at 0.12–24 mmol m−2 d−1), implying that waterways receiving organic matter and nutrient subsidies from urbanized landscapes have the potential to increase river metabolism and atmospheric CO2 fluxes along the freshwater–estuarine continuum.  相似文献   

10.
Modeling of soil?Cwater, ?Cheat and ?Ccarbon (C) fluxes provides an important tool for predicting mass and energy transfers based on a hydraulic-, thermal- and C-mass balance approach. Model predictions were evaluated using measured data from two water-limited study sites, one pasture and one supporting an alfalfa crop, to indentify differences between these ecosystems. Soil water content, temperature, and evapotranspiration (ET) data were used to validate soil water dynamics components of a process-based numerical model. Soil surface CO2 efflux estimates (i.e., fluxes from soil respiration) were also made to estimate soil CO2 emissions. The results show that the Hydrus-1D numerical model can be parameterized to simulate the soil hydrodynamics and CO2 fluxes measured at both locations. Rainfall and irrigation events triggering increases in plant root and microbial respiration rates were simulated to recreate observed pulsed CO2 fluxes. There were distinct differences in ET and soil CO2 effluxes between the ecosystems and watering events significantly modified the fluxes. Differences in potential evapotranspiration and soil texture could help explain these discrepancies. The results demonstrate that numerical modeling can be a useful tool for estimating soil surface fluxes in calibrated ecosystems when micrometeorological methods may not be suitable.  相似文献   

11.
We present results from a long term geochemical cycling model, with a focus on the sensitivity of atmospheric carbon dioxide, oxygen, and the major element composition of seawater to seafloor spreading rates. This model incorporates rock weathering, basalt–seawater exchange reactions, and the formation and destruction of chemical sediments and organic matter. Hydrothermal reactions between seafloor and seawater involving calcium, magnesium, sodium, potassium, sulfate and carbon are the high temperature counterparts to low temperature redox, weathering, precipitation and diagenetic reactions. A major source of uncertainty is the extent to which these exchange fluxes are controlled by seafloor spreading rate. In addition, the return fluxes of these components to the atmospheric and primary silicate reservoirs reflect not only the overall rates of subduction and metamorphism, but the distribution of the overlying sedimentary burden and authigenic minerals formed during basalt alteration as well. In particular, we show how the stoichiometry of exchange fluxes (Mg/Ca and SO4/Ca) may buffer atmospheric CO2 and O2 concentrations.  相似文献   

12.
In order to better understand the spatiotemporal variations and interrelationships of greenhouse gases (GHG), monthly surface fluxes and profile concentrations of GHG (CO2, N2O and CH4) in karst areas in the Guizhou Province, southwest China, were measured from June 2006 to May 2007. GHG fluxes showed high variability, with a range of 460.9?C1,281.2?mg?m?2?h?1 for CO2, ?25.4 to 81.5???g?m?2?h?1 for N2O and ?28.7 to ?274.9???g?m?2?h?1 for CH4, but no obvious seasonal change trends of the fluxes existed. Profile concentrations of CO2, N2O and CH4 varied between 0.5 and 31.5?mL?L?1, 0.273 and 0.734, and 0.1 and 3.5???L?L?1, respectively. In general, concentrations of CO2 and N2O increased with depth, while CH4 had an inverse trend. However, in October, November and January, the reversal of depth patterns of GHG concentrations took place below 15?cm, close to the soil?Crock interface. The spatiotemporal distribution of CO2 in soil profile was significantly positively correlated with that of N2O (p?<?0.05?C0.01) and negatively correlated with that of CH4 (p?<?0.01). The correlation analysis showed that soil temperature and moisture may be responsible for GHG dynamics in the soils, rather than the exchange of GHG between land and atmosphere.  相似文献   

13.
中国大陆新生代典型火山区温室气体释放的规模及其成因   总被引:5,自引:5,他引:0  
火山活动能够将地球深部的碳输送到大气圈,是地质碳排放和深部碳循环的重要形式.火山作用不仅在喷发期能够释放大量温室气体,而且在休眠期也能释放巨量的温室气体.在全球变暖的背景下,定量化地研究火山活动对大气圈温室气体含量增加的贡献具有至关重要的意义.本文利用密闭气室法等该领域国际先进的测试技术,测量并计算了长白山、腾冲、五大连池及青藏高原南部的羊八井等典型火山区的温室气体释放规模.结果显示,我国大陆新生代典型火山区向大气圈输送的温室气体总通量约为8.13×106t·a-1,接近107t·a-1级别,相当于全球火山活动导致的温室气体(主要为CO2)释放总量的6%左右.太平洋构造域火山区的温室气体在释放通量与总量方面均低于特提斯构造域,并且太平洋构造域火山气体的地壳混染程度较低,显示出大洋俯冲带与大陆俯冲带火山区温室气体释放的成因差异.  相似文献   

14.
The increase in atmospheric oxygen during the Precambrian is a key to understand the co-evolution of life and environment and has remained as a debatable topic. Among various proxies for the estimation of atmospheric oxygen levels, paleosols, ancient weathering profiles, can provide a quantitative pattern of atmospheric oxygen increase during the Precambrian period of Earth history. We have re-evaluated the chemical compositions of paleosols, and presented a new method of applying Fe2+ oxidation kinetics to the Fe2+ and Fe3+ concentrations in paleosols to decipher the quantitative partial pressure of atmospheric oxygen (PO2) between 2.5 and 2.0 Ga. We first estimated the compaction factor (CF, the fraction of original thickness) using the immobile elements such as Ti, Al and Zr on equal volume basis, which was then used to calculate retention fractions (MR), a mass ratio of paleosol to parent rock, of redox-sensitive elements. The CF and FeR values were evaluated for factors such as homogeneity of immobile elements, erosion, and formation time of weathering. FeR increased gradually within the time window of ∼2.5-2.1 Ga and remained close to 1.0 since ∼2.1 Ga onwards. MnR also increased gradually similar to FeR but at a slower rate and near complete retention was observed ∼1.85 Ga, suggesting an almost continuous increase in the oxidation of Fe2+ and Mn2+ in paleosols ranging in age between ∼2.5 and 1.9 Ga.We have modeled PO2 variations during the Paleoproterozoic by applying Fe2+ oxidation kinetics to the Fe2+ and Fe3+ concentrations in paleosols, which enabled us to derive an Fe2+ oxidation term referred to as ψ. Possible changes in temperature and PCO2 during this time window and their effects on resulting models of PO2 evolution have been also considered. We assumed four cases for the calculations of PO2 variations between 2.5 and 2.0 Ga: no change in either temperature or PCO2, long-term change in only PCO2, long-term changes in both temperature and PCO2, and short-term fluctuations of both temperature and PCO2 during the possible, multiple global-scale glaciations. The calculations indicate that PO2 increased gradually, linearly on the logarithmic scale, from <∼10−6 to >∼10−3 atm between 2.5 and 2.0 Ga. Our calculations show that the PO2 levels would have fluctuated significantly, if intense, global glaciation(s) followed by period(s) of high temperature occurred during the Paleoproterozoic. This gradual rise model proposes a distinct, quantitative pattern for the first atmospheric oxygen rise with important implications for the evolution of life.  相似文献   

15.
Pedogenic goethites in each of two Early Permian paleosols appear to record mixing of two isotopically distinct CO2 components—atmospheric CO2 and CO2 from in situ oxidation of organic matter. The δ13C values measured for the Fe(CO3)OH component in solid solution in these Permian goethites are −13.5‰ for the Lower Leonardian (∼283 Ma BP) paleosol (MCGoeth) and −13.9‰ for the Upper Leonardian (∼270 Ma BP) paleosol (SAP). These goethites contain the most 13C-rich Fe(CO3)OH measured to date for pedogenic goethites crystallized in soils exhibiting mixing of the two aforementioned CO2 components. δ13C measured for 43 organic matter samples in the Lower Leonardian (Waggoner Ranch Fm.) has an average value of −20.3 ± 1.1‰ (1s). The average value yields a calculated Early Permian atmospheric Pco2 value of about 1 × PAL, but the scatter in the measured δ13C values of organic matter permits a calculated maximum Pco2 of 11 × PAL (PAL = present atmospheric level). Measured values of the mole fraction of Fe(CO3)OH in MCGoeth and SAP correspond to soil CO2 concentrations in the Early Permian paleosol profiles of 54,000 and 50,000 ppmV, respectively. Such high soil CO2 concentrations are similar to modern soils in warm, wet environments.The average δ13C values of pedogenic calcite from 9 paleosol profiles stratigraphically associated with MCGoeth (Waggoner Ranch Fm.) range from −6.5‰ to −4.4‰, with a mean δ13C value for all profiles of −5.4‰. Thus, the value of Δ13C between the pedogenic calcite data set and MCGoeth is 8.1 (±0.9)‰, which is in reasonable accord with the value of 7.7‰ expected if atmospheric Pco2 and organic matter δ13C values were the same for both paleosol types. Furthermore, the atmospheric Pco2 calculated for the Early Permian from the average measured carbon isotopic compositions of the paleosol calcite and organic matter is also analytically indistinguishable from 1 × PAL, with a maximum calculated atmospheric Pco2 (permitted by one standard deviation of the organic matter δ13C value) of ∼5 × PAL.If, however, measured average δ13C values of the plant organic matter are more positive than the original soil organic matter as a result of diagenetic loss of 13C-depleted, labile organic compounds, calculated Permian atmospheric Pco2 using these 13C-enriched organic values would underestimate the actual atmospheric Pco2 using either goethite or calcite. This is the first stratigraphically constrained, intrabasinal study to compare ancient atmospheric CO2 concentrations calculated from pedogenic goethite and calcite. These results demonstrate that the two different proxies record the same information about atmospheric CO2.The Fe(CO3)OH component in pedogenic goethite from a Triassic paleosol in Utah is significantly enriched in 13C relative to Fe(CO3)OH in goethites from soils in which there are mixtures of two isotopic CO2 components. Field-relationships and the δ13C value (−1.9‰) of the Triassic goethite indicate that this ancient paleosol profile experienced mixing of three isotopically distinct CO2 components at the time of goethite crystallization. The three components were probably atmospheric CO2, CO2 from in situ oxidation of organic matter and CO2 from in situ dissolution of preexisting calcite. Although mixing of three isotopically distinct CO2 components, as recorded by Fe(CO3)OH in goethite, has been described in modern soil, this is the first example from a documented paleosol. Its preservation affirms the need for careful, case-by-case assessment of ancient paleosols to establish that goethite in any particular soil is likely to be a valid proxy of atmospheric Pco2.  相似文献   

16.
Volcanic areas play a key role in the input of elements into the ocean and in the regulation of the geological carbon cycle. The aim of this study is to investigate the budget of silicate weathering in an active volcanic area. We compared the fluxes of the two major weathering regimes occurring at low temperature in soils and at high temperature in the active volcanic arc of Kamchatka, respectively. The volcanic activity, by inducing geothermal circulation and releasing gases to the surface, produces extreme conditions in which intense water-rock interactions occur and may have a strong impact on the weathering budgets. Our results show that the chemical composition of the Kamchatka river water is controlled by surface low-temperature weathering, atmospheric input and, in some limited cases, strongly imprinted by high-temperature water-rock reactions. We have determined the contribution of each source and calculated the rates of CO2 consumption and chemical weathering resulting from low and high-temperature water/rock interactions. The weathering rates (between 7 and 13.7 t/km2/yr for cations only) and atmospheric CO2 consumption rates (∼0.33-0.46 × 106 mol/km2/yr for Kamchatka River) due to rock weathering in soils (low-temperature) are entirely consistent with the previously published global weathering laws relating weathering rates of basalts with runoff and temperature. In the Kamchatka River, CO2 consumption derived from hydrothermal activity represents about 11% of the total HCO3 flux exported by the river. The high-temperature weathering process explains 25% of the total cationic weathering rate in the Kamchatka River. Although in the rivers non-affected by hydrothermal activity, the main weathering agent is carbonic acid (reflected in the abundance of in rivers), in the region most impacted by hydrothermalism, the protons responsible for minerals dissolution are provided not only by carbonic acid, but also by sulphuric and hydrochloric acid. A clear increase of weathering rates in rivers impacted by sulphuric acid can be observed. In the Kamchatka River, 19% of cations are released by hydrothermal acids or the oxidative weathering of sulphur minerals.Our results emphasise the important impact of both low and high-temperature weathering of volcanic rocks on global weathering fluxes to the ocean. Our results also show that besides carbonic acid derived from atmospheric CO2, hydrochloric acid and especially sulphuric acid are important weathering agents. Clearly, sulphuric acid, with hydrothermal activity, are key parameters that cause first-order increases of the chemical weathering rates in volcanic areas. In these areas, accurate determination of weathering budgets in volcanic area will require to better quantify sulphuric acid impact.  相似文献   

17.
The aim of this research was to measure the rate of carbon dioxide (CO2) exchange between the soil and atmosphere in the inter-tidal forest floor of the Indian Sundarbans mangrove ecosystem and to study its response with soil temperature and soil water content. Soil CO2 effluxes were monitored every month at two stations (between April, 2011 and March, 2012); one situated at the land–ocean boundary of the Bay of Bengal (outer part of the mangrove forest) and the other lying 55 km inshore from the coast line (inner part of the mangrove forest). The static closed chamber technique was implemented at three inter-tidal positions (landward, seaward and bare mudflats) in each station. Fluxes were measured in the daytime every half an hour by circulating chamber headspace air through a sampling manifold assembly and a closed-path non-dispersive infrared gas analyser. The fluxes ranged between 0.15 and 2.34 μmol m?2 s?1 during the annual course of sampling. Effluxes of higher magnitude were measured during summer; however, it abruptly decreased during the monsoon. CO2 flux from the forest floor was strongly related to soil temperature, with the highest correlation found with temperature at 2 cm depth. No such significant relationship between soil water content and CO2 efflux could be properly ascertained; however, excessively high soil water content was found to be the only reason which hampered the rate of effluxes during the monsoon. On the whole, landward (LW) sites of the mangrove forest emitted more than the seaward (SW) sites. Q 10 values (obtained from simple exponential model) which denote the multiplicative factor by which the efflux rate increases for a 10 °C rise in temperature ranged between 2.07 and 4.05.  相似文献   

18.
Carbonate-rich sediments at shoal to shelf depths (<200 m) represent a major CaCO3 reservoir that can rapidly react to the decreasing saturation state of seawater with respect to carbonate minerals, produced by the increasing partial pressure of atmospheric carbon dioxide (pCO2) and “acidification” of ocean waters. Aragonite is usually the most abundant carbonate mineral in these sediments. However, the second most abundant (typically ∼24 wt%) carbonate mineral is high Mg-calcite (Mg-calcite) whose solubility can exceed that of aragonite making it the “first responder” to the decreasing saturation state of seawater. For the naturally occurring biogenic Mg-calcites, dissolution experiments have been used to predict their “stoichiometric solubilities” as a function of mol% MgCO3. The only valid relationship that one can provisionally use for the metastable stabilities for Mg-calcite based on composition is that for the synthetically produced phases where metastable equilibrium has been achieved from both under- and over-saturation. Biogenic Mg-calcites exhibit a large offset in solubility from that of abiotic Mg-calcite and can also exhibit a wide range of solubilities for biogenic Mg-calcites of similar Mg content. This indicates that factors other than the Mg content can influence the solubility of these mineral phases. Thus, it is necessary to turn to observations of natural sediments where changes in the saturation state of surrounding waters occur in order to determine their likely responses to the changing saturation state in upper oceanic waters brought on by increasing pCO2. In the present study, we investigate the responses of Mg-calcites to rising pCO2 and “ocean acidification” by means of a simple numerical model based on the experimental range of biogenic Mg-calcite solubilities as a function of Mg content in order to bracket the behavior of the most abundant Mg-calcite phases in the natural environment. In addition, observational data from Bermuda and the Great Bahama Bank are also presented in order to project future responses of these minerals. The numerical simulations suggest that Mg-calcite minerals will respond to rising pCO2 by sequential dissolution according to mineral stability, progressively leading to removal of the more soluble phases until the least soluble phases remain. These results are confirmed by laboratory experiments and observations from Bermuda. As a consequence of continuous increases in atmospheric CO2 from burning of fossil fuels, the average composition of contemporary carbonate sediments could change, i.e., the average Mg content in the sediments may slowly decrease. Furthermore, evidence from the Great Bahama Bank indicates that the amount of abiotic carbonate production is likely to decline as pCO2 continues to rise.  相似文献   

19.
Mangrove ecosystems play an important, but understudied, role in the cycling of carbon in tropical and subtropical coastal ocean environments. In the present study, we examined the diel dynamics of seawater carbon dioxide (CO2) and dissolved oxygen (DO) for a mangrove-dominated marine ecosystem (Mangrove Bay) and an adjacent intracoastal waterway (Ferry Reach) on the island of Bermuda. Spatial and temporal trends in seawater carbonate chemistry and associated variables were assessed from direct measurements of dissolved inorganic carbon, total alkalinity, dissolved oxygen (DO), temperature, and salinity. Diel pCO2 variability was interpolated across hourly wind speed measurements to determine variability in daily CO2 fluxes for the month of October 2007 in Bermuda. From these observations, we estimated rates of net sea to air CO2 exchange for these two coastal ecosystems at 59.8 ± 17.3 in Mangrove Bay and 5.5 ± 1.3 mmol m−2 d−1 in Ferry Reach. These results highlight the potential for large differences in carbonate system functioning and sea-air CO2 flux in adjacent coastal environments. In addition, observation of large diel variability in CO2 system parameters (e.g., mean pCO2: 390–2,841 μatm; mean pHT: 8.05–7.34) underscores the need for careful consideration of diel cycles in long-term sampling regimes and flux estimates.  相似文献   

20.
Theoretical models predict a marked increase in atmospheric O2 to ∼35% during the Permo-Carboniferous (∼300 Ma) occurring against a low (∼0.03%) CO2 level. An upper O2 value of 35%, however, remains disputed because ignition data indicate that excessive global forest fires would have ensued. This uncertainty limits interpretation of the role played by atmospheric oxygen in Late Paleozoic biotic evolution. Here, we describe new results from laboratory experiments with vascular land plants that establish that a rise in O2 to 35% increases isotopic fractionation (Δ13C) during growth relative to control plants grown at 21% O2. Despite some effect of the background atmospheric CO2 level on the magnitude of the increase, we hypothesize that a substantial Permo-Carboniferous rise in O2 could have imprinted a detectable geochemical signature in the plant fossil record. Over 50 carbon isotope measurements on intact carbon from four fossil plant clades with differing physiological ecologies and ranging in age from Devonian to Cretaceous reveal a substantial Δ13C anomaly (5‰) occurring between 300 and 250 Ma. The timing and direction of the Δ13C excursion is consistent with the effects of a high O2 atmosphere on plants, as predicted from photosynthetic theory and observed in our experiments. Preliminary calibration of the fossil Δ13C record against experimental data yields a predicted O2/CO2 mixing ratio of the ancient atmosphere consistent with that calculated from long-term models of the global carbon and oxygen cycles. We conclude that further work on the effects of O2 in the combustion of plant materials and the spread of wildfire is necessary before existing data can be used to reliably set the upper limit for paleo-O2 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号