首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solubility of gold has been measured in aqueous solutions at temperatures between 300 and 600°C and pressures from 500 to 1500 bar to determine the stability and stoichiometry of the hydroxy complexes of gold(I) in hydrothermal solutions. The experiments were carried out using a flow-through autoclave system. The solubilities, measured as total dissolved gold, were in the range 1.2 × 10−8 to 2.0 × 10−6 mol kg−1 (0.002 to 0.40 mg kg−1), in solutions of total dissolved sodium between 0.0 and 0.5 mol kg−1, and total dissolved hydrogen between 4.0 × 10−6 and 4.0 × 10−4 mol kg−1. At constant hydrogen molality, the solubility of gold increases with increasing temperature and decreases with increasing pressure. The solubilities were found to be independent of pH but increased with decreasing hydrogen molality at constant temperature and pressure. Consequently, gold dissolves in aqueous solutions of acidic to alkaline pH according to the reactionAu(s)+H2O(l)=AuOH(aq)+0.5H2(g) Ks,1The solubility constant, logKs,1, increases with increasing temperature from a minimum of −8.76 (±0.18) at 300°C and 500 bar to a maximum of −7.50 (±0.11) at 500°C and 1500 bar and decreases to −7.61 (±0.08) at 600°C and 1500 bar. From the equilibrium solubility constant and the redox potential of gold, the formation constant to form AuOH(aq) was calculated. At 25°C the complex formation is characterised by an exothermic enthalpy and a positive entropy. With increasing temperature and decreasing pressure, the formation reaction becomes endothermic and is accompanied by a large positive entropy, indicating a greater electrostatic interaction between Au+ and OH.  相似文献   

2.
The solubility of silver sulphide (acanthite/argentite) has been measured in aqueous sulphide solutions between 25 and 400°C at saturated water vapour pressure and 500 bar to determine the stability and stoichiometry of sulphide complexes of silver(I) in hydrothermal solutions. The experiments were carried out in a flow-through autoclave, connected to a high-performance liquid chromatographic pump, titanium sampling loop, and a back-pressure regulator on line. Samples for silver determination were collected via the titanium sampling loop at experimental temperatures and pressures. The solubilities, measured as total dissolved silver, were in the range 1.0 × 10−7 to 1.30 × 10−4 mol kg−1 (0.01 to 14.0 ppm), in solutions of total reduced sulphur between 0.007 and 0.176 mol kg−1 and pHT,p of 3.7 to 12.7. A nonlinear least squares treatment of the data demonstrates that the solubility of silver sulphide in aqueous sulphide solutions of acidic to alkaline pH is accurately described by the reactions0.5Ag2S(s) + 0.5H2S(aq) = AgHS(aq) Ks,1110.5Ag2S(s) + 0.5H2S(aq) + HS = Ag(HS)2− Ks,122Ag2S(s) + 2HS = Ag2S(HS)22− Ks,232where AgHS(aq) is the dominant species in acidic solutions, Ag(HS)2− under neutral pH conditions and Ag2S(HS)22− in alkaline solutions. With increasing temperature the stability field of Ag(HS)2− increases and shifts to more alkaline pH in accordance with the change in the first ionisation constant of H2S(aq). Consequently, Ag2S(HS)22− is not an important species above 200°C. The solubility constant for the first reaction is independent of temperature to 300°C, with values in the range logKs,111 = −5.79 (±0.07) to −5.59 (±0.09), and decreases to −5.92 (±0.16) at 400°C. The solubility constant for the second reaction increases almost linearly with inverse temperature from logKs,122 = −3.97 (±0.04) at 25°C to −1.89 (±0.03) at 400°C. The solubility constant for the third reaction increases with temperature from logKs,232 = −4.78 (±0.04) at 25°C to −4.57 (±0.18) at 200°C. All solubility constants were found to be independent of pressure within experimental uncertainties. The interaction between Ag+ and HS at 25°C and 1 bar to form AgHS(aq) has appreciable covalent character, as reflected in the exothermic enthalpy and small entropy of formation. With increasing temperature, the stepwise formation reactions become progressively more endothermic and are accompanied by large positive entropies, indicating greater electrostatic interaction. The aqueous speciation of silver is very sensitive to fluid composition and temperature. Below 100°C silver(I) sulphide complexes predominate in reduced sulphide solutions, whereas Ag+ and AgClOH are the dominant species in oxidised waters. In high-temperature hydrothermal solutions of seawater salinity, chloride complexes of silver(I) are most important, whereas in dilute hydrothermal fluids of meteoric origin typically found in active geothermal systems, sulphide complexes predominate. Adiabatic boiling of dilute and saline geothermal waters leads to precipitation of silver sulphide and removal of silver from solution. Conductive cooling has insignificant effects on silver mobility in dilute fluids, whereas it leads to quantitative loss of silver for geothermal fluids of seawater salinity.  相似文献   

3.
A new sampling device is described which allows the separation of a fluid phase from the solid reactants in hydrothermal experiments at run conditions. The new method has been tested at temperatures up to 1,100° C at a total vapor pressure of 1 kbar.HF-concentrations of the fluid phase in equilibrium with quartz, fluorite, and wollastonite in the reaction CaF2+SiO2+H2O CaSiO3+2 HF known as the WFQ-buffer (Munoz and Eugster 1969) have been determined by direct chemical analysis using a fluoride electrode. HF-concentrations measured in the fluid phase range from 39±3 ppm at 510° C to 1,968±98 ppm at 820° C. This is equivalent to fugacities of 0.036 bar at 510° C compared to 0.033 as calculated from thermodynamic data, and 2.238 bar at 820° C compared to 2.142 bar. Equilibrium was reversed by starting out from aqueous HF-solutions in which the HF-concentrations were above or below the equilibrium value.  相似文献   

4.
The stoichiometry and stability of arsenic gaseous complexes were determined in the system As-H2O ± NaCl ± HCl ± H2S at temperatures up to 500°C and pressures up to 600 bar, from both measurements of As(III) and As(V) vapor-liquid and vapor-solid partitioning, and X-ray absorption fine structure (XAFS) spectroscopic study of As(III)-bearing aqueous fluids. Vapor-aqueous solution partitioning for As(III) was measured from 250 to 450°C at the saturated vapor pressure of the system (Psat) with a special titanium reactor that allows in situ sampling of the vapor phase. The values of partition coefficients for arsenious acid (H3AsO3) between an aqueous solution (pure H2O) and its saturated vapor (K = mAsvapor /mAsliquid) were found to be independent of As(III) solution concentrations (up to ∼1 to 2 mol As/kg) and equal to 0.012 ± 0.003, 0.063 ± 0.023, and 0.145 ± 0.020 at 250, 300, and 350°C, respectively. These results are interpreted by the formation, in the vapor phase, of As(OH)3(gas), similar to the aqueous As hydroxide complex dominant in the liquid phase. Arsenic chloride or sulfide gaseous complexes were found to be negligible in the presence of HCl or H2S (up to ∼0.5 mol/kg of vapor). XAFS spectroscopic measurements carried out on As(III)-H2O (±NaCl) solutions up to 500°C demonstrate that the As(OH)3 complex dominates As speciation both in dense H2O-NaCl fluids and low-density supercritical vapor. Vapor-liquid partition coefficients for As(III) measured in the H2O-NaCl system up to 450°C are consistent with the As speciation derived from these spectroscopic measurements and can be described by a simple relationship as a function of the vapor-to-liquid density ratio and temperature. Arsenic(III) partitioning between vapor and As-concentrated solutions (>2 mol As/kg) or As2O3 solid is consistent with the formation, in the vapor phase, of both As4O6 and As(OH)3. Arsenic(V) (arsenic acid, H3AsO4) vapor-liquid partitioning at 350°C for dilute aqueous solution was interpreted by the formation of AsO(OH)3 in the vapor phase.The results obtained were combined with the corresponding properties for the aqueous As(III) hydroxide species to generate As(OH)3(gas) thermodynamic parameters. Equilibrium calculations carried out by using these data indicate that As(OH)3(gas) is by far the most dominant As complex in both volcanic gases and boiling hydrothermal systems. This species is likely to be responsible for the preferential partition of arsenic into the vapor phase as observed in fluid inclusions from high-temperature (400 to 700°C) Au-Cu (-Sn, -W) magmatic-hydrothermal ore deposits. The results of this study imply that hydrolysis and hydration could be also important for other metals and metalloids in the H2O-vapor phase. These processes should be taken into account to accurately model element fractionation and chemical equilibria during magma degassing and fluid boiling.  相似文献   

5.
The univariant reaction governing the upper stability of heulandite (CaAl2Si7O18·6H2O), heulandite=laumontite+3 quartz+2H2O (1), has been bracketed through reversal experiments at: 155±6° C, 1000 bar; 175±6° C, 1500 bar; and 180±8° C, 2000 bar. Reversals were established by determining the growth of one assemblage at the expense of the other, using both XRD and SEM studies. The standard molal entropy of heulandite is estimated to be 783.7±16 J mol–1 K–1 from the experimental brackets. Predicted standard molal Gibbs free energy and enthalpy of formation of heulandite are –9722.3±6.3 kJ mol–1 and –10524.3±9.6 kJ mol–1, respectively. The reaction (1), together with the reaction, stilbite=laumontite+3 quartz+3 H2O, defines an invariant point at which a third reaction, stilbite=heulandite+ H2O, meets. By combining the present experimental data with past work, this invariant point is located at approximately 600 bar and 140° C. Heulandite, which is stable between the stability fields of stilbite and laumontite, can occur only at pressures higher than that of the invariant point, for = P total.These results are consistent with natural parageneses in low-grade metamorphic rocks recrystallized in equilibrium with an aqueous phase in which is very close to unity.  相似文献   

6.
The Xihuashan tungsten deposit is closely related to a small highly evolved granitic intrusion. The fluid phases associated with the wolframite-bearing quartz veins have been investigated using microthermometry and the Raman microprobe; they are highly variable in density and composition. The earlier fluids are low-density and low-salinity CO2-bearing aqueous solutions circulating at temperatures up to 420 °C, and low-salinity (2–3 equiv. wt% NaCl) aqueous solutions without traces of CO2 circulating at high temperatures 280°–400 °C) involved in a specific hydrothermal fracturing event; limited unmixing occurs at 380 °C and 200–100 bar in response to a sudden pressure drop. The second types of fluids related to deposition of idiomorphic drusy quartz are typical CO2-bearing aqueous solutions with low salinity (2.5 equiv. wt% NaCl) homogenizing at low to moderate temperatures (180°–340 °C). The late fluids characterize the sulfide deposition stage; they are aqueous fluids with variable salinities homogenizing in the liquid phase between 100° and 275 °C. The Xihuashan hydrothermal evolution resulted from a discontinuous sequence of specific events occurring between 420° and 150 °C and during a continuous hydrothermal evolution of the system during cooling. The role played by the CO2-rich fluids in the transport and deposition of tungsten in the hydrothermal environment is discussed.  相似文献   

7.
The monovariant reaction Opx+H2O Cum+Ol+Q and the Cum+Opx+Q stability field were studied under hydrothermal conditions at P total=2940, 4900 bar and the oxygen fugacity of the QFM buffer. Under these conditions, the Opx lower stability brackets were 730°±10° and 740°±5° C, respectively. The kinetics of the reactions in the Cum+ Opx+Q mixture showed that there were only minor differences in the equilibrium compositions of the coexisting Opx and Cum over the 740°–780° C range. At T=780°, 760° and 740° C, the FeO/FeO+MgO ratio, in mol% was: Opx52.5–Cum49.5, Opx62–Cum57, Opx72–Cum66 (P=2940 bar) and Opx62–Cum58.5 Opx71.5–Cum66.5, Opx80–Cum75 (P= 4900 bar). The results are in good agreement with earlier studies in the Opx+Ol+Q and Cum+Ol+Q assemblages.Abbreviations Opx Orthopyroxene - Ol olivine - Cum cummingtonite - Mt magnetite - Q quartz - tk talc  相似文献   

8.
The adsorption of hydrogen sulfide (ΓH2S) and protons (ΓH+) on the surface of crystalline sulfur was investigated experimentally in H2S-bearing solutions at temperatures of 25, 50, and 70°C, NaCl concentrations of 0.1 and 0.5 mol/dm−3 and log CH+ values in the range −2.3 to −5. At all temperatures, the dominant process on the surface of the sulfur was deprotonation, and the average values of ΓH2S were very close to the highest values determined for ΓH+. This finding, combined with the lack of detectable proton adsorption in H2S-free solutions, suggests that proton adsorption/desorption on the surface of sulfur occurs through formation of ≡ SH2S complexes in the presence of H2S.We propose that this complexation represents sulfidation of the sulfur surface, a process analogous to hydroxylation of oxide surfaces, and that the sulfidation can be described by the reaction: ≡ S + H2S = ≡SSH20 β° The deprotonation of the ≡ SH° complex occurs via the reaction: ≡ SSH20 = ≡SSH + H+ β Values of 2.9, 2.8, and 2.9 (± 0.23) were obtained for −log β at 25, 50, and 70°C, respectively. These data were employed to estimate the second dissociation constant for hydrogen sulfide in aqueous solutions using the extrapolation method proposed by Schoonen and Barnes (1988) and yielded corresponding values for the constant of 17.4 ± 0.3, 15.7, and 14.5, respectively. The value for 25°C is in very good agreement with the experimentally determined values of Giggenbach (1971) at 17 ± 0.1; Meyer et al. (1983) at 17 ± 1; Licht and Manassen (1987) at 17.6 ± 0.3; and Licht et al. (1990) at 17.1 ± 0.3.  相似文献   

9.
In order to understand the formation mechanisms of gold-bearing arsenopyrites, hydrothermal experiments have been performed. Needle-shaped gold-rich (up to 1.7 wt % as compared to 1.6 wt % in some natural occurrences) zoned arsenopyrites were obtained at 400 °C and 500 °C under 1 and 2 kbar PH2O. Comparisons with natural needle-like gold-rich arsenopyrite from the Le Châtelet deposit (Creuse, France) revealed analogous zoning of As/S ratio, with similar gold content and zonations. Fluid inclusion studies carried out in the host quartz of the latter indicate high formation temperatures and variable redox conditions. Compared with the neighbouring Villeranges gold deposit, where arsenopyrite was formed at about 200 °C with gold being mainly trapped within its structure, it appears that temperature is not likely to be the major factor for such an incorporation. Alternatively, it is suggested that non-equilibrium rapid crystallization may induce gold trapping under an extended range of T-P-fO2 conditions. The practical importance of the needle-like habit of arsenopyrite in areas where geochemical gold anomalies are known without visible gold being detected, is emphasized.  相似文献   

10.
Clinochlore, which is, within the limits of error, the thermally most stable member of the Mg-chlorites, breaks down at = P tot to the assemblage enstatite+forsterite+spinel+H2O along a univariant curve located at 11 kb, 838 ° C; 15kb, 862 ° C; and 18 kb, 880 ° C (±1 kb ±10 ° C). At water pressures above that of an invariant point at 20.3 kb and 894 ° C involving the phases clinochlore, enstatite, forsterite, spinel, pyrope, and hydrous vapor, clinochlore disintegrates to pyrope+forsterite+spinel+H2O. The resulting univariant curve has a steep, negative dP/dT slope of –930 bar/ °C at least up to 35 kb.Thus, given the proper chemical environment, Mg-chlorites have the potential of appearing as stable phases within the earth's upper mantle to maximum depths between about 60 and 100 km depending on the prevailing undisturbed geotherm, and to still greater depths in subduction zones. However, unequivocal criteria for mantle derived Mg-chlorites are difficult to find in ultrabasic rocks.  相似文献   

11.
Hydrothermal experiments were conducted to evaluate the kinetics of H2(aq) oxidation in the homogeneous H2-O2-H2O system at conditions reflecting subsurface/near-seafloor hydrothermal environments (55-250 °C and 242-497 bar). The kinetics of the water-forming reaction that controls the fundamental equilibrium between dissolved H2(aq) and O2(aq), are expected to impose significant constraints on the redox gradients that develop when mixing occurs between oxygenated seawater and high-temperature anoxic vent fluid at near-seafloor conditions. Experimental data indicate that, indeed, the kinetics of H2(aq)-O2(aq) equilibrium become slower with decreasing temperature, allowing excess H2(aq) to remain in solution. Sluggish reaction rates of H2(aq) oxidation suggest that active microbial populations in near-seafloor and subsurface environments could potentially utilize both H2(aq) and O2(aq), even at temperatures lower than 40 °C due to H2(aq) persistence in the seawater/vent fluid mixtures. For these H2-O2 disequilibrium conditions, redox gradients along the seawater/hydrothermal fluid mixing interface are not sharp and microbially-mediated H2(aq) oxidation coupled with a lack of other electron acceptors (e.g. nitrate) could provide an important energy source available at low-temperature diffuse flow vent sites.More importantly, when H2(aq)-O2(aq) disequilibrium conditions apply, formation of metastable hydrogen peroxide is observed. The yield of H2O2(aq) synthesis appears to be enhanced under conditions of elevated H2(aq)/O2(aq) molar ratios that correspond to abundant H2(aq) concentrations. Formation of metastable H2O2 is expected to affect the distribution of dissolved organic carbon (DOC) owing to the existence of an additional strong oxidizing agent. Oxidation of magnetite and/or Fe++ by hydrogen peroxide could also induce formation of metastable hydroxyl radicals (•OH) through Fenton-type reactions, further broadening the implications of hydrogen peroxide in hydrothermal environments.  相似文献   

12.
The Sanshandao gold deposit, with total resources of more than 60 t of gold, is located in the Jiaodong gold province, the most important gold province of China. The deposit is a typical highly fractured and altered, disseminated gold system, with high-grade, quartz-sulphide vein/veinlet stockworks that cut Mesozoic granodiorite. There are four stages of veins that developed in the following sequence: (1) quartz-K-feldspar-sericite; (2) quartz-pyrite±arsenopyrite; (3) quartz-base metal sulfide; and (4) quartz-carbonate. Fluid inclusions in quartz and calcite in vein/veinlet stockworks contain C-O-H fluids of three main types. The first type consists of dilute CO2–H2O fluids coeval with the early vein stage. Molar volumes of these CO2–H2O fluid inclusions, ranging from 50–60 cm3/mol, yield estimated minimum trapping pressures of 3 kbar. Homogenization temperatures, obtained mainly from CO2–H2O inclusions with lower CO2 concentration, range from 267–375 °C. The second inclusion type, with a CO2–H2O±CH4 composition, was trapped during the main mineralizing stages. These fluids may reflect the CO2–H2O fluids that were modified by fluid/rock reactions with altered wallrocks. Isochores for CO2-H2O±CH4 inclusions, with homogenization temperatures ranging from 204–325 °C and molar volumes from 55 to 70 cm3/mol, provide an estimated minimum trapping pressure of 1.2 kbar. The third inclusion type, aqueous inclusions, trapped in cross-cutting microfractures in quartz and randomly in calcite, are post-mineralization, and have homogenization temperatures between 143–228 °C and salinities from 0.71–7.86 wt% NaCl equiv. Stable isotope data show that the metamorphic fluid contribution is minimal and that ore fluids are of magmatic origin, most likely sourced from 120–126 Ma mafic to intermediate dikes. This is consistent with the carbonic nature of the fluid, and the cross-cutting nature of those deposits relative to the host Mesozoic granitoid.Editorial handling: R.J. Goldfarb  相似文献   

13.
The solubility of molybdenum (Mo) was determined at temperatures from 500 °C to 800 °C and 150 to 300 MPa in KCl-H2O and pure H2O solutions in cold-seal experiments. The solutions were trapped as synthetic fluid inclusions in quartz at experimental conditions, and analyzed by laser ablation inductively coupled plasma mass spectrometry (LA ICPMS).Mo solubilities of 1.6 wt% in the case of KCl-bearing aqueous solutions and up to 0.8 wt% in pure H2O were found. Mo solubility is temperature dependent, but not pressure dependent over the investigated range, and correlates positively with salinity (KCl concentration). Molar ratios of ∼1 for Mo/Cl and Mo/K are derived based on our data. In combination with results of synchrotron X-ray absorption spectroscopy of individual fluid inclusions, it is suggested that Mo-oxo-chloride complexes are present at high salinity (>20 wt% KCl) and ion pairs at moderate to low salinity (<11 wt% KCl) in KCl-H2O aqueous solutions. Similarly, in the pure H2O experiments molybdic acid is the dominant species in aqueous solution. The results of these hydrothermal Mo experiments fit with earlier studies conducted at lower temperatures and indicate that high Mo concentrations can be transported in aqueous solutions. Therefore, the Mo concentration in aqueous fluids seems not to be the limiting factor for ore formation, whereas precipitation processes and the availability of sulfur appear to be the main controlling factors in the formation of molybdenite (MoS2).  相似文献   

14.
The Rainbow hydrothermal field is located at 36°13.8′N-33°54.15′W at 2300 m depth on the western flank of a non-volcanic ridge between the South AMAR and AMAR segments of the Mid-Atlantic Ridge. The hydrothermal field consists of 10-15 active chimneys that emit high-temperature (∼365 °C) fluid. In July 2008, vent fluids were sampled during cruise KNOX18RR, providing a rich dataset that extends in time information on subseafloor chemical and physical processes controlling vent fluid chemistry at Rainbow. Data suggest that the Mg concentration of the hydrothermal end-member is not zero, but rather 1.5-2 mmol/kg. This surprising result may be caused by a combination of factors including moderately low dissolved silica, low pH, and elevated chloride of the hydrothermal fluid. Combining end-member Mg data with analogous data for dissolved Fe, Si, Al, Ca, and H2, permits calculation of mineral saturation states for minerals thought appropriate for ultramafic-hosted hydrothermal systems at temperatures and pressures in keeping with constraints imposed by field observations. These data indicate that chlorite solid solution, talc, and magnetite achieve saturation in Rainbow vent fluid at a similar pH(T,P) (400 °C, 500 bar) of approximately 4.95, while higher pH values are indicated for serpentine, suggesting that serpentine may not coexist with the former assemblage at depth at Rainbow. The high Fe/Mg ratio of the Rainbow vent fluid notwithstanding, the mole fraction of clinochlore and chamosite components of chlorite solid solution at depth are predicted to be 0.78 and 0.22, respectively. In situ pH measurements made at Rainbow vents are in good agreement with pH(T,P) values estimated from mineral solubility calculations, when the in situ pH data are adjusted for temperature and pressure. Calculations further indicate that pH(T,P) and dissolved H2 are extremely sensitive to changes in dissolved silica owing to constraints imposed by chlorite solid solution-fluid equilibria. Indeed, the predicted correlation between dissolved silica and H2 defines a trend that is in good agreement with vent fluid data from Rainbow and other high-temperature ultramafic-hosted hydrothermal systems. We speculate that the moderate concentrations of dissolved silica in vent fluids from these systems result from hydrothermal alteration of plagioclase and olivine in the form of subsurface gabbroic intrusions, which, in turn are variably replaced by chlorite + magnetite + talc ± tremolite, with important implications for pH lowering, dissolved sulfide concentrations, and metal mobility.  相似文献   

15.
The solubility of nantokite (CuCl(s)) and the structure of the predominant copper species in supercritical water (290-400 bar at 420 °C; 350-450 °C at 290 bar; 500 °C at 350 bar; density = 0.14-0.65 g/cm3) were investigated concurrently using synchrotron X-ray absorption spectroscopy (XAS) techniques. These conditions were chosen as they represent single phase solutions near the critical isochore, where the fluid density is intermediate of typical values for vapour and brine and is highly sensitive to even small changes in pressure. X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption spectroscopy (EXAFS) analyses show that aqueous copper occurs in a slightly distorted linear coordination in the solutions studied, with an average of 1.35(±0.3) Cl and 0.65(±0.3) O neighbours. The solubility of CuCl(s) decreases exponentially with decreasing water density (i.e., decreasing pressure at constant temperature), in a manner similar to the solubility behaviour of salts such as NaCl in water vapour. Based on this similarity, an apparent equilibrium constant for the dissolution reaction of 0.5 ± 0.4 was calculated from a regression of the data at 420 °C, and it was determined that each Cu atom is solvated by approximately three water molecules. This indicates that under these conditions, copper solubility is controlled mainly by the structure of the second-shell hydration, which is essentially invisible to the XAS techniques used in this study.These results demonstrate that for a supercritical fluid near the critical isochore, decreasing pressure may initiate precipitation of copper even before boiling or phase separation. Such a process could be responsible for near-surface ore deposition in seafloor hydrothermal systems, where supercritical fluids experience rapid pressure changes during the transition between lithostatic and hydrostatic domains.  相似文献   

16.
Yavapaiite, KFe(SO4)2, is a rare mineral in nature, but its structure is considered as a reference for many synthetic compounds in the alum supergroup. Several authors mention the formation of yavapaiite by heating potassium jarosite above ca. 400°C. To understand the thermal decomposition of jarosite, thermodynamic data for phases in the K-Fe-S-O-(H) system, including yavapaiite, are needed. A synthetic sample of yavapaiite was characterized in this work by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermal analysis. Based on X-ray diffraction pattern refinement, the unit cell dimensions for this sample were found to be a = 8.152 ± 0.001 Å, b = 5.151 ± 0.001 Å, c = 7.875 ± 0.001 Å, and β = 94.80°. Thermal decomposition indicates that the final breakdown of the yavapaiite structure takes place at 700°C (first major endothermic peak), but the decomposition starts earlier, around 500°C. The enthalpy of formation from the elements of yavapaiite, KFe(SO4)2, ΔH°f = −2042.8 ± 6.2 kJ/mol, was determined by high-temperature oxide melt solution calorimetry. Using literature data for hematite, corundum, and Fe/Al sulfates, the standard entropy and Gibbs free energy of formation of yavapaiite at 25°C (298 K) were calculated as S°(yavapaiite) = 224.7 ± 2.0 J.mol−1.K−1 and ΔG°f = −1818.8 ± 6.4 kJ/mol. The equilibrium decomposition curve for the reaction jarosite = yavapaiite + Fe2O3 + H2O has been calculated, at pH2O = 1 atm, the phase boundary lies at 219 ± 2°C.  相似文献   

17.
Kinetics of arsenopyrite oxidative dissolution by oxygen   总被引:1,自引:0,他引:1  
We used a mixed flow reactor system to determine the rate and infer a mechanism for arsenopyrite (FeAsS) oxidation by dissolved oxygen (DO) at 25 °C and circumneutral pH. Results indicate that under circumneutral pH (6.3-6.7), the rate of arsenopyrite oxidation, 10−10.14±0.03 mol m−2 s−1, is essentially independent of DO over the geologically significant range of 0.3-17 mg L−1. Arsenic and sulfur are released from arsenopyrite in an approximate 1:1 molar ratio, suggesting that oxidative dissolution by oxygen under circumneutral pH is congruent. Slower rates of iron release from the reactor indicate that some of the iron is lost from the effluent by oxidation to Fe(III) which subsequently hydrolyzes and precipitates. Using the electrochemical cell model for understanding sulfide oxidation, our results suggest that the rate-determining step in arsenopyrite oxidation is the reduction of water at the anodic site rather than the transfer of electrons from the cathodic site to oxygen as has been suggested for other sulfide minerals such as pyrite.  相似文献   

18.
Aqueous Co(II) chloride complexes play a crucial role in cobalt transport and deposition in ore-forming hydrothermal systems, ore processing plants, and in the corrosion of special Co-bearing alloys. Reactive transport modelling of cobalt in hydrothermal fluids relies on the availability of thermodynamic properties for Co complexes over a wide range of temperature, pressure and salinity. Synchrotron X-ray absorption spectroscopy was used to determine the speciation of cobalt(II) in 0-6 m chloride solutions at temperatures between 35 and 440 °C at a constant pressure of 600 bar. Qualitative analysis of XANES spectra shows that octahedral species predominate in solution at 35 °C, while tetrahedral species become increasingly important with increasing temperature. Ab initio XANES calculations and EXAFS analyses suggest that in high temperature solutions the main species at high salinity (Cl:Co >> 2) is CoCl42−, while a lower order tetrahedral complex, most likely CoCl2(H2O)2(aq), predominates at low salinity (Cl:Co ratios ∼2). EXAFS analyses further revealed the bonding distances for the octahedral Co(H2O)62+ (octCo-O = 2.075(19) Å), tetrahedral CoCl42− (tetCo-Cl = 2.252(19) Å) and tetrahedral CoCl2(H2O)2(aq) (tetCo-O = 2.038(54) Å and tetCo-Cl = 2.210(56) Å). An analysis of the Co(II) speciation in sodium bromide solutions shows a similar trend, with tetrahedral bromide complexes becoming predominant at higher temperature/salinity than in the chloride system. EXAFS analysis confirms that the limiting complex at high bromide concentration at high temperature is CoBr42−. Finally, XANES spectra were used to derive the thermodynamic properties for the CoCl42− and CoCl2(H2O)2(aq) complexes, enabling thermodynamic modelling of cobalt transport in hydrothermal fluids. Solubility calculations show that tetrahedral CoCl42− is responsible for transport of cobalt in hydrothermal solutions with moderate chloride concentration (∼2 m NaCl) at temperatures of 250 °C and higher, and both cooling and dilution processes can cause deposition of cobalt from hydrothermal fluids.  相似文献   

19.
Agua Rica (27°26′S–66°16′O) is a world class Cu–Au–Mo deposit located in Catamarca, Argentina. In the E–W 6969400 section examined, the Seca Norte and the Trampeadero porphyries that have intruded the metasedimentary rock are cut by interfingered igneous and hydrothermal heterolithic and monolithic breccias, and sandy dikes. Relic biotite and K-feldspar of the early potassic alteration (370° to > 550 °C) with Cu (Mo–Au) mineralization are locally preserved and encapsulated in a widespread, white mica + quartz + rutile or anatase halo (phyllic alteration) with pyrite + covellite that suggests fluids with temperatures ≤ 360 °C and high f(S2). The Trampeadero porphyry and the surrounding metasedimentary rock with phyllic alteration have molybdenite in stringers and B-type quartz veinlets and the highest Mo grades (> 1000 ppm).Multistage advanced argillic alteration overprinted the earlier stages. Early andalusite ± pyrite ± quartz is preserved in the roots of the argillic halo rimmed by an alumina–silica material and white micas. This alteration assemblage is considered to have been formed at temperatures ≥ 375 °C from condensed magmatic vapor. At higher levels, pyrophyllite replaces muscovite and illite in clasts of hydrothermal breccias in the center and east sector of the study section, suggesting temperatures of 280 to 360 °C. Clasts of vuggy silica in the uppermost levels of the central breccia, indicates that at lower temperatures (< 250 °C), fluids reached very low pH (pH < 2). In this early stage of the advanced argillic alteration, hydrothermal fluids seem to have not precipitated sulfides or sulfosalts.Hydrothermal brecciation was concurrent with fluid exsolution (↑? V), which precipitated intermediate-temperature advanced argillic alunite (svanbergite + woodhouseite) ± diaspore ± zunyite as breccia cement along with abundant covellite + pyrite + enargite ± native sulfur ± kuramite at intermediate depths and in lateral transitional zones to unbrecciated rocks. This mineral assemblage indicates temperatures near 300 °C, oxidized and silica-undersaturated hydrothermal fluids with high sulfur fugacity to prevent gold precipitation. Multiple generations of pyrite, emplectite, colusite, Pb- and Bi-bearing sulfosalts, and native sulfur with Au and Ag, accompanied by alunite introduction in the upper level breccias, probably occurred at lower temperatures, but still high sulfur and oxygen activity. An independent Zn and Pb (as galena) mineralization stage locally coincides with Au–Ag and sulfosalts, and advanced at depth, controlled by fractures and overprinting much of the previous mineralization. A later paragenesis of veinlets of alunite + woodhouseite + svanvergite + pyrite ± enargite that cut the phyllic halo suggests temperatures ~ 250 °C and without woodhouseite + svanvergite, temperatures ~ 200 °C. Kaolinite occurs in the phyllic halo as a late mineral in clots and in veinlets thus, in this zone, the fluid had cooled enough for its formation.  相似文献   

20.
We experimentally determined the boron partitioning and boron isotope fractionation between coexisting liquid and vapor in the system H2O−NaCl−B2O3. Experiments were performed along the 400 and 450°C isotherms. Pressure conditions ranged from 23 to 28 MPa at 400°C and from 38 to 42 MPa at 450°C. Boron partitions preferentially into the liquid. Its overall liquid-vapor fractionation is, however, weak: Calculated boron distribution coefficients DBliquid-vapor are < 2.5 at all run conditions. With decreasing pressure (i.e. increasing opening of the solvus) DBliquid-vapor increases along the individual isotherms. Extrapolation to salt saturated conditions yields maximum boron liquid-vapor fractionations of DBliquid-vapor = 1.8 at 450°C and DBliquid-vapor = 2.7 at 400°C. 11B preferentially fractionates into the vapor. Calculated Δ11Bvapor-liquid = {[(11B/10B)vapor - (11B/10B)liquid]/(11B/10B)NBS 951}*1000 are small and range from 0.2 (± 0.7) to 0.9 (± 0.5) ‰ at 450°C and from 0.1 (± 0.6) to 0.7 (± 0.6) ‰ at 400°C. The data indicate increasing isotopic fractionation with decreasing pressure (i.e. increasing opening of the solvus). Extrapolation to salt saturated conditions yields maximum boron isotope liquid-vapor fractionations of Δ11Bvapor-liquid = 1.5 (± 0.7) ‰ at 450°C and Δ11Bvapor-liquid = 1.3 (± 0.6) ‰ at 400°C. The weak boron isotope fractionation suggests similar trigonal speciation in liquid and vapor. Although the boron and boron isotope fractionation between liquid and vapor is only weak, mass balance calculations indicate that for high degrees of fractionation liquid-vapor phase separation in an open system can significantly alter the boron and boron isotope signature of low-salinity hydrous fluids in hydrothermal systems. Comparing the model calculations with natural oceanic hydrothermal fluids, however, indicate that other processes than fluid phase separation dominate the boron geochemistry in oceanic hydrothermal fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号