首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The eucritic meteorites are basaltic rocks that originate from the upper part of the crust of some small bodies as exemplified possibly by asteroid 4-Vesta. A few eucrites appear to have been modified by different degrees of a late stage alteration process that caused significant variations in mineralogy. Three distinct alteration stages are identified: (1) Fe-enrichment along the cracks that cross cut the pyroxene crystals (“Fe-metasomatism”); secondary olivine and minute amounts of troilite are found only occasionally in cracks at this stage; (2) deposits of Fe-rich olivine (Fa64-86) and minor amounts of troilite are frequent inside the cracks; sporadic secondary Ca-rich plagioclase (An97-98) is associated with the fayalitic olivine; (3) at this stage, the Fe-enrichment of the pyroxene is accompanied by a marked Al-depletion; moreover, secondary Ca-rich plagioclase is more frequent and partly fills some cracks or rims of the primary plagioclase crystals. The composition of the secondary phases on one hand, the lack of incompatible trace element enrichment in the metasomatized pyroxenes on the other hand, rule out a silicate melt as the metasomatic agent. Although no hydrous phase has been yet identified in the studied samples, aqueous fluids are plausible candidates for explaining the deposits of ferroan olivine and anorthitic plagioclase inside the fractures of the studied unequilibrated eucrites.  相似文献   

2.
Mid-Oceanic Ridge Basalt (MORB) samples collected from southern East Pacific Rise (SEPR) have been investigated. These highly phyric plagioclase basalts (HPPB) and moderately phyric plagioclase basalts (MOPB) show rare cumulate and vitrophyric textures with plagioclase (>10% as phenocryst) and abundant glass (>72%). Electron Probe Micro Analysis (EPMA) showed large compositional variations in the megacrysts as well as microcrysts of plagioclase (An62 to An82), olivine (Fo78 to Fo87), pyroxene (ferroaugite to augite) and iron oxides, mostly titaniferous magnetite. Olivine grains show high Mg# (>80%) and distinctly low in NiO (0.01–0.2%). Ferroan trevorite (NiO =16.22 and FeO(t) =83.06) a characteristic meteoritic mineral has been identified from the olivine megacrysts of MORB, possibly attributed to Ni-enrichment, resulted from heterogeneity of the lower mantle. Wide range of An composition in plagioclase is indicative of large pressure range of crystal nucleation under decompression at a depth of ∼70 km (An82) up to the ocean spreading centre. Absence of zoning observed in all the minerals present in the MORB samples, possibly attributed to unmixing and dominant fractionation process.  相似文献   

3.
Bulk rock major and trace element variations in selected basalts from the Famous area, in conjunction with a detailed study of the chemical compositions of phenocryst minerals and associated melt inclusions are used to place constraints on the genetic relationship among the various lava types. The distribution of NiO in olivine and Cr-spinel phenocrysts distinguishes the picritic basalts, plagioclase phyric basalts and plagioclase-pyroxene basalts from the olivine basalts. For a given Mg/Mg+Fe2+ atomic ratio of the mineral, the NiO content of these phenocrysts in the former three basalt types is low relative to that in the phenocrysts in the olivine basalts. The Zr/Nb ratio of the lavas similarly distinguishes the olivine basalts from the plagioclase phyric and plagioclase pyroxene basalts and, in addition, distinguishes the picritic basalts from the other basalt types. These differences indicate that the different magma groups could not have been processed through the same magma chamber, and preclude any direct inter-relationship via open or closed system fractional crystallization.The Fe-Mg partitioning between olivine and host rock suggests that the picritic basalts represent olivine (±Cr-spinel) enriched magmas, derived from a less MgO rich parental magma. The partitioning of Fe and Mg between olivine, Cr-spinel and coexisting liquid is used to predict a primary magma composition parental to the picritic basalts. This magma is characterized by relatively high MgO (12.3%) and CaO (12.6%) and low FeO* (7.96%) and TiO2 (0.63%).Least squares calculations indicate that the plagioclase phyric basalts are related to the plagioclase-pyroxene basalts by plagioclase and minor clinopyroxene and olivine accumulation. The compositional variations within the olivine basalts can be accounted for by fractionation of plagioclase, clinopyroxene and olivine in an open system, steady state, magma chamber in the average proportions 453223. It is suggested that the most primitive olivine basalts can be derived from a pristine mantle composition by approximately 17% equilibrium partial melting. Although distinguished by its higher Zr/Nb ratio and lower NiO content of phenocryst phases, the magma parental to the picritic basalts can be derived from a similar source composition by approximately 27% equilibrium partial melting. It is suggested that the parental magma to the plagioclase-pyroxene and plagioclase phyric basalts might have been derived from greater depth resulting in the fractionation of the Zr/Nb ratio by equilibration with residual garnet.C.O.B. Contribution No. 722  相似文献   

4.
通过龙游晚中生代基性岩岩相学观察、全岩主量、微量元素和Sr-Nd同位素及矿物电子探针分析,对岩石成因、岩浆演化和构造环境进行探讨。龙游基性岩岩性为橄榄辉长岩,Sr-Nd同位素显示为幔源特征;主量、微量元素特征显示其经历了以橄榄石、辉石为主的分离结晶作用,且未发生明显的地壳物质混染。橄榄石颗粒具核-边结构,富Mg贫Fe的核部Fo值为90.1~91.8,指示原始岩浆是软流圈地幔,富Fe贫Mg的边部显示橄榄石Fo值为77.4~85.3,且核-边两部分的Fo值相差较大,显示原始橄榄石形成之后受到地幔熔体/流体的交代作用。辉石斑晶大多属于透辉石,在部分斑晶的边部发育少量霓辉石。透辉石斑晶普遍具有核-幔-边结构,从核部到边部的SiO_2含量降低,TiO_2、Al_2O_3含量升高,结晶温度升高,显示原始辉石形成之后受到温度更高的地幔熔体/流体的交代作用。研究认为,古太平洋板块后撤造成岩石圈地幔拉伸作用并形成赣杭构造带深部断裂后,部分软流圈物质受到地幔流体/熔体的交代作用,并沿这些深部断裂向上侵位,经历了以橄榄石和辉石矿物为主的分离结晶作用和微弱的地壳物质混染,最终形成龙游橄榄辉长岩。  相似文献   

5.
Late Carboniferous (300–290 Ma) calc-alkaline basalts, andesites, and rhyolites typical of volcanic arc settings occur in the intermontane Saar-Nahe basin (SW Germany) within the Variscan orogenic belt. The volcanic rock suite was emplaced under a regime of tensional tectonics during orogenic collapse and its origin has been explained by melting of mantle and crust in the course of limited lithospheric rifting. We report major, trace and rare-earth-element data (REE), and Nd-Pb-Sr-O isotope ratios for a representative sample suite, which are fully consistent with an origin closely related to plate subduction. Major and trace element data define continuous melt differentiation trends from a precursor basaltic magma involving fractional crystallization of olivine, pyroxene, plagioclase, and magnetite typical of magma evolution in a volcanic arc. This finding precludes an origin of the andesitic compositions by mixing of mafic and felsic melts as can be expected in anorogenic settings. The mafic samples have high Mg numbers (Mg# = 65–73), and high Cr (up to 330 ppm) and Ni (up to 200 ppm) contents indicating derivation from a primitive parental melt that was formed in equilibrium with mantle peridotite. We interpret the geochemical characteristics of the near-primary basalts as reflecting their mantle source. The volcanic rocks are characterized by enrichment in the large ion lithophile elements (LILE), negative Nb and Ti, and positive Pb anomalies relative to the neighboring REE, suggesting melting of a subduction-modified mantle. Initial Nd values of −0.7 to −4.6, Pb, and 87Sr/86Sr(t) isotope ratios for mafic and felsic volcanics are similar and indicate partial melting of an isotopically heterogeneous and enriched mantle reservoir. The enrichment in incompatible trace elements and radiogenic isotopes of a precursor depleted mantle may be attributed to addition of an old sedimentary component. The geochemical characteristics of the Saar-Nahe volcanic rocks are distinct from typical post-collisional rock suites and they may be interpreted as geochemical evidence for ongoing plate subduction at the margin of the Variscan orogenic belt not obvious from the regional geologic context. Received: 3 August 1998 / Accepted: 2 January 1999  相似文献   

6.
Pyroxenes and olivines from the earlier stages of fractionation of the Skaergaard intrusion (Wager and Brown, 1968; Brown, 1957) have been studied using the electron microprobe. The subsolidus trend for both Ca-rich and Ca-poor pyroxenes has been established, from the Mg-rich portion of the quadrilateral to the Hed-Fs join, together with the orientations of the tie-lines joining coexisting pyroxenes. For the Mg-rich Ca-poor pyroxenes, Brown's (1957) solidus trend has been modified slightly. From a study of a previously undescribed drill core, reversals in the cryptic layering have been found in the Lower Zone. The reversals are attributed to existence within the convecting magma chamber of local temperature differences. The Skaergaard magma temperatures are postulated to have passed out of the orthopyroxene stability field into the pigeonite stability field at EnFs ratios of 7228, for Ca-free calculated compositions, and specimen 1849, a perpendicular-feldspar rock, is interpreted as straddling the orthopyroxene-pigeonite transition interval. The cessation of crystallisation of Ca-poor pyroxene and the increase in Wo content of the Ca-rich pyroxene trend have been reexamined, and Muir's (1954) peritectic reaction (pigeonite+liquid=augite) has been confirmed. The composition at which Ca-poor pyroxene starts reacting with the liquid is postulated as Wo10 En36.7Fs53 3. It is suggested that the cessation of crystallisation of Ca-poor pyroxene is sensitive to the amount of plagioclase crystallising from the liquid.A complete series of accurate olivine compositions for the whole Skaergaard sequence is presented for the first time, including the compositions of the Middle Zone olivine reaction rims.  相似文献   

7.
Basalts and basaltic cumulates from Mars (delivered to Earth as meteorites) carry a record of the history of that planet - from accretion to initial differentiation and subsequent volcanism, up to recent times. We provide new microprobe data for plagioclase, olivine, and pyroxene from 19 of the martian meteorites that are representative of the six types of martian rocks. We also provide a comprehensive WDS map dataset for each sample studied, collected at a common magnification for easy comparison of composition and texture. The silicate data shows that plagioclase from each of the rock types shares similar trends in Ca-Na-K, and that K2O/Na2O wt% of plagioclase multiplied by the Al content of the bulk rock can be used to determine whether a rock is “enriched” or “depleted” in nature. Olivine data show that meteorite Y 980459 is a primitive melt from the martian mantle as its olivine crystals are in equilibrium with its bulk rock composition; all other olivine-bearing Shergottites have been affected by fractional crystallization. Pyroxene quadrilateral compositions can be used to isolate the type of melt from which the grains crystallized, and minor element concentrations in pyroxene can lend insight into parent melt compositions.In a comparative planetary mineralogy context, plagioclase from Mars is richer in Na than terrestrial and lunar plagioclase. The two most important factors contributing to this are the low activity of Al in martian melts and the resulting delayed nucleation of plagioclase in the crystallizing rock. Olivine from martian rocks shows distinct trends in Ni-Co and Cr systematics compared with olivine from Earth and Moon. The trends are due to several factors including oxygen fugacity, melt compositions and melt structures, properties which show variability among the planets. Finally, Fe-Mn ratios in both olivine and pyroxene can be used as a fingerprint of planetary parentage, where minerals show distinct planetary trends that may have been set at the time of planetary accretion.Although the silicate mineralogical data alone cannot support one specific model of martian magmatism over another, the data does support the basic igneous reservoirs proposed for Mars, and may also be used to constrain some aspects of specific petrogenetic models. Examples include enriched and depleted reservoirs that can be identified by plagioclase K, Na and Al composition, multivalent element partitioning in olivine and pyroxene (V, Cr) elucidates oxygen fugacity conditions of the reservoirs, and minor element concentrations (i.e., Cr in pyx) show that proposed fractional crystallization models linking Y 980459 to QUE 94201 will not work.  相似文献   

8.
Two suites of felsic eruptives and intrusives are represented in a set of samples from the summit region of the Plio-Pleistocene volcano, Mt. Kenya. Most of the samples are moderately or strongly undersaturated and have 87Sr/86Sr initial ratios in the range 0.70360–0.70368 (mean=0.70362). Members of this phonolitic suite are phonolites, nepheline syenites or kenytes and as a group they show a wide variation in TiO2, FeO, P2O5, Sr, Ba, Zr and Nb. The minor and trace element geochemistry reflect variation in the nature of the parental basaltic magmas from which the phonolitic rocks evolved and variation in the crystal fractionation process in individual cases. Crystal fractionation involving plagioclase, alkali feldspar, clinopyroxene, olivine and magnetite is the process by which most of the phonolitic rocks evolved and variation in the relative proportions of these phases in individual cases has led to a broad spectrum of trace and minor element behaviour. The second suite of felsic samples is critically saturated and consists of trachytes showing either slight oversaturation or slight undersaturation with respect to SiO2. This trachyte suite has lower initial 87Sr/86Sr ratios (mean=0.70355) and is derived from transitional alkalic basalts by low pressure (crustal) crystal fractionation involving feldspar, clinopyroxene, magnetite and olivine. The range in minor and trace element chemistry observed among the felsic rocks is a consequence of variation in the parental basalts which is related to mantle source variation and to the specific nature of the crystal fractionation process.  相似文献   

9.
MORB suites display variations in their chemical differentiation trends which are closely related to the incompatible element enrichment of the basalts. We examine suites of primitive to evolved basalts from the Pacific-Nazca Ridge at 28° S (mostly depleted); from the Juan Fernandez microplate region (depleted) and from the Explorer Ridge, northeast Pacific (mostly enriched). Trends for incompatible element enriched MORBs consistently show less depletion of Al2O3 and less enrichment of FeO when plotted on MgO variation diagrams.Least squares modeling indicates that enriched basalts have undergone less plagioclase crystallization than depleted basalts especially in the early stages of differentiation. Using thermodynamic modelling, we show that variations between MORB differentiation trends result largely from differences in the major element chemistry and H2O content of primary magmas. Our chosen enriched and depleted near-primary magmas are similar in major element chemistry but the enriched near-primary magma has higher H2O and lower Al2O3 than the depleted near-primary magma. The MORB crystallization sequence is: olivineolivine+plagioclase olivine+plagioclase+high-Ca pyroxene; and the separate and combined effects of lower Al2O3 and higher H2O are to cause plagioclase to crystallize later (lower temperature), and to make the interval of olivine+plagioclase crystallization shorter. As a result, enriched differentiates have higher Al2O3 and lower FeO than depleted MORBs at a given MgO content, even though their parents' Al2O3 is lower. Crystallization of enriched basalts at higher pressure than depleted basalts is not able to account for differences between the differentiation trends because the proportion of plagioclase is higher during three-phase crystallization at high pressure.The variations in trends do not depend on geographic location and thus are superimposed on any regional variations in MORB chemistry or mantle source. Nor are they related to spreading rate. Depleted basalts from the fast-spreading 28° S and Juan Fernandez ridges have differentiation trends similar to depleted basalts from the medium-spreading Galapagos Spreading Center, whereas differentiation trends for enriched basalts from the medium-spreading Explorer Ridge are quite different. Fe3+/Fetotal is similar (and quite low) for enriched and depleted basalts, indicating that neither oxidation state nor early magnetite crystallization are important.  相似文献   

10.
Rodrigues Island is composed of a differentiated series of transitional-mildly alkaline olivine basalts. The lavas contain phenocrysts of olivine (Fo88–68)±plagioclase (An73–50), together with a megacryst suite involving olivine, plagioclase, kaersutite, clinopyroxene, apatite, magnetite and hercynite-rich spinels. Troctolitic-anorthositic gabbro xenoliths are widely dispersed throughout the lavas and are probably derived from the upper parts of an underlying layered complex: the megacrysts may originate from coarse, easily disaggregated differentiates near the top of this body.Modelling of major and trace element data suggests that the majority of chemical variation in the lavas results from up to 45% fractionation of olivine, clinopyroxene, plagioclase and magnetite at low pressures, in the ratio 2035396. The clinopyroxene-rich nature of this extract assemblage is significantly different to that of the xenoliths, and suggests that clinopyroxene-rich gabbros and/or ultrabasic rocks may lie at greater depth.Sr and Nd isotopic data (87Sr/86Sr 0.70357–070406,143Nd/144Nd 0.51283–0.51289) indicate a mantle source with relative LREE depletion, and emphasise an unusual degree of uniformity in Indian Ocean island sources. A small group of lavas with strong HREE enrichment suggest a garnet-poor source for these, while high overall Al2O3/ CaO ratios imply high clinopyroxene/garnet ratios in refractory residua.  相似文献   

11.
There are two types of white, coarse-grained, Ca-Al-rich inclusions in Allende. Type A inclusions contain 80–85 per cent melilite, 15–20 per cent spinel, 1–2 per cent perovskite and rare plagioclase, hibonite, wollastonite and grossularite. Clinopyroxene, if present, is restricted to thin rims around inclusions or cavities in their interiors. Type B inclusions contain 35–60 per cent pyroxene, 15–30 per cent spinel, 5–25 per cent plagioclase and 5–20 per cent melilite. The coarse pyroxene crystals in Type B's contain >15 per cent Al2O3 and >1.8 per cent Ti, some of which is trivalent. Type A pyroxenes contain <9 per cent Al2O3 and <0.7 per cent Ti.Electron microprobe analyses of 600 melilite, 39 pyroxene, 35 plagioelase, 33 spinel and 20 perovskite grains were performed in 16 Type A, 1 intermediate and 9 Type B inclusions in Allende and 1 Type A in Grosnaja. Melilite composition histograms from individual Type A inclusions are usually peaked between Ak10 and Ak30 and are 15–20 mole % wide while those from Type B inclusions are broader, unpeaked and displaced to higher åkermanite contents. Most pyroxenes contain < 1 per cent FeO. All plagioclase is An 98 to An 100. Spinel is almost pure MgAl2O4. Perovskite contains small (< 1 per cent) but significant amounts of Mg, Al, Fe, Y, Zr and Nb.Inferred bulk chemical compositions of Type A inclusions are rather close to those expected for high-temperature condensates. Those of Type B inclusions suggest slightly lower temperatures but their Ca/Al ratio seems less than the Type A's, indicating that the Type B's may not be their direct descendants. Some textural features suggest that the inclusions are primordial solid condensetes while others indicate that they may have been melted after condensation. Fragmentation and metamorphism may have also occurred after condensation.  相似文献   

12.
Deccan volcanism with a tremendous burst of volcanic activity marks a unique episode in Indian geological history and covers nearly two third of Peninsular India. Occurrences of mafic sill in the continental basalts are rather rare throughout the flood basalt provinces and only few sporadic reports have been described from different Continental Flood Basalts of the world. In the present article, petrology of mafic sill from the Narshingpur-Lakhnadon section of Eastern Deccan province of India has been presented. The mafic sill in the field is found to occur in a relatively deep valley amidst Gondwana rocks, which occur as the basement of the extrusion. The sill is spatially associated with three initial flows viz. flow I, II and III of adjacent Narshingpur-Harrai-Amarwara section. The sill in its central part is a medium grained rock and petrographically corresponds to dolerite containing augite, plagioclase and rare olivine grains; the chilled facies of the sill is characterized by phenocrysts of olivine, plagioclase and augite that are set in groundmass consisting predominantly of plagioclase, olivine and glass. Mineral chemistry indicates that olivine phenocrystal phase is magnesian (Fo61). Plagioclase phenocrystal composition ranges from An 51 to An 71 whereas the same variation of the groundmass plagioclase composition corresponds to An 31 to An 62. The overlap in the compositions for groundmass and phenocrystal plagioclase may be explained due to fluctuating PH2O condition. The pyroxene compositions (both groundmass and phenocryst) in majority of the cases are clubbed well within the augite field, however, in a few cases, groundmass compositions are found to fall in the sub-calcic augite and pigeonite field. Some zoned pyroxene phenocrysts, characteristically display different types of zoning patterns. Opaque minerals in the mafic sill are found to be magnetite and ilmenite and this coexisting iron-oxide composition helps to constrain the prevalent fO2 condition in the parent magma. The geochemistry of the mafic sill and associated basaltic lava flows indicates close genetic link amongst them. Critical consideration of trace elements indicates a distinct enriched mantle source (EM-I/EM-II/HIMU) for the parental magma. Trace element modeling indicates that equilibrium batch-melting of plume source followed by fractionation of olivine, clinopyroxene and plagioclase and subsequent heterogeneous mixing of melt and settled crystals can very well explain the genesis of the mafic sill and the associated basaltic flows.  相似文献   

13.
The rhyolite of Little Glass Mountain (73–74% SiO2) is a single eruptive unit that contains inclusions of quenched andesite liquid (54–61% SiO2) and partially crystalline cumulate hornblende gabbro (53–55% SiO2). Based on previous studies, the quenched andesite inclusions and host rhyolite lava are related to one another through fractional crystallization and represent an example of a fractionation-generated composition gap. The hornblende gabbros represent the cumulate residue associated with the rhyolite-producing and composition gap-forming fractionation event. This study combines textural (Nomarski Differential Interference Contrast, NDIC, imaging), major element (An content) and trace element (Mg, Fe, Sr, K, Ti, Ba) data on the style of zonation of plagioclase crystals from representative andesite and gabbro inclusions, to assess the physical environment in which the fractionation event and composition gap formation took place. The andesite inclusions (54–61% SiO2) are sparsely phyric with phenocrysts of plagioclase, augite and Fe-oxide±olivine, +/–orthopyroxene, +/–hornblende set within a glassy to crystalline matrix. The gabbro cumulates (53–55% SiO2) consist of an interconnected framework of plagioclase, augite, olivine, orthopyroxene, hornblende and Fe-oxide along with highly vesicular interstitial glass (70–74% SiO2). The gabbros record a two-stage crystallization history of plagioclase+olivine+augite (Stage I) followed by plagioclase+orthopyroxene+ hornblende+Fe-oxide (Stage II). Texturally, the plagioclase crystals in the andesite inclusions are characterized by complex, fine-scale oscillatory zonation and abundant dissolution surfaces. Compositionally (An content) the crystals are essentially unzoned from core-to-rim. These features indicate growth within a dynamic (convecting?), reservoir of andesite magma. In contrast, the plagioclase crystals in the gabbros are texturally smooth and featureless with strong normal zonation from An74 at the core to around An30. K, and Ba abundances increase and Mg abundances decrease steadily towards the rim. Ti, Fe, and Sr abundances increase and then decrease towards the rim. The trace element variations are fully consistent with the two-stage crystallization sequence inferred from the gabbro mineralogy. These results indicate progressive closed-system in situ crystallization in a quiescent magmatic boundary layer environment located along the margins of the andesite magma body. The fractional crystallization that generated the host rhyolite lava is one of inward solidification of a crystallizing boundary layer followed by melt extraction and accumulation of highly evolved interstitial liquid. This mechanism explains the formation of the composition gap between parental andesite and rhyolite magma compositions.  相似文献   

14.
15.
Cenozoic(Miocene to Pleistocene) basaltic rocks in Jiangsu province of eastern China include olivine tholeiite and alkali basalt.We present major,trace element and Sr-Nd isotopic data as well as Ar-Ar dating of these basalts to discuss the petrogenesis of the basalts and identify the geological processes beneath the study area.On the basis of chemical compisitions and Ar-Ar dating of Cenonoic basaltic rocks from Jiangsu province,we suggest that these basalts may belong to the same magmatic system.The alkali basalts found in Jiangsu province have higherΣFeO,MgO,CaO,Na2O, TiO2 and P2O5 and incompatible elements,but lower Al2O3 and compatible elements contents than olivine tholeiite which may be caused by fractional crystallization of olivine,pyroxene and minor plagioclase.In Jiangsu basaltic rocks the incompatible elements increase with decreasing MgO/ΣFeO ratios.The primitive mantle-normalized incompatible elements and chondrite-normalized REE patterns of basaltic rocks found in Jiangsu province are similar to those of OIB.Partial loss of the mantle lithosphere accompanied by rising of asthenospheric mantle may accelerate the generation of the basaltic magma.The 143Nd/144Nd vs.87Sr/86Sr plot indicates a mixing of a depleted asthenospheric mantle source and an EMI component in the study area.According to Shaw’s equation,the basalts from Jiangsu province may be formed by l%-5%partial melting of a depleted asthenospheric mantle source.On the basis of Ar-Ar ages of this study and the fractional crystallization model proposed by Brooks and Nielsen(1982),we suggest that basalts from Jiangsu province may belong to a magmatic system with JF-2 as the primitive magma which has undergone fractional crystallization and evolved progressively to produce other types of basalts.  相似文献   

16.
Miller Range (MIL) 05035 is a lunar gabbroic meteorite. The mineralogy, Fe/Mn ratios in olivine and pyroxene, bulk-rock chemical composition and the bulk oxygen isotope values (δ17O = 2.86-2.97‰ and δ18O = 5.47-5.71‰) are similar to those of other mare basalts, and are taken as supporting evidence for a lunar origin for this meteorite. The sample is dominated by pyroxene grains (54-61% by area mode of thin section) along with large plagioclase feldspar (25-36% by mode) and accessory quartz, ilmenite, spinel, apatite and troilite. The bulk-rock major element composition of MIL 05035 indicates that the sample has a very low-Ti (VLT) to low-Ti lunar heritage (we measure bulk TiO2 to be 0.9 Wt.%) and has low bulk incompatible trace element (ITE) concentrations, akin to samples from the VLT mare basalt suite. To account for these geochemical characteristics we hypothesize that MIL 05035’s parental melt was derived from a mantle region dominated by early cumulates of the magma ocean (comprised principally of olivine and orthopyroxene). MIL 05035 is likely launch paired with the Asuka-881757 and Yamato-793169 basaltic lunar meteorites and the basaltic regolith breccia MET 01210. This group of meteorites (Y/A/M/M) therefore may be a part of a stratigraphic column consisting of an upper regolith environment underlain by a coarsening downwards basalt lava flow.  相似文献   

17.
Trace element systematics throughout the cal-calkaline high alumina basalt — basaltic andesite — andesite — dacite — rhyodacite lavas and dyke rocks of the Main Volcanic Series of Santorini volcano, Greece are consistent with the crystal fractionation of observed phenocryst phases from a parental basaltic magma as the dominant mechanism involved in generating the range of magmatic compositions. Marked inflection points in several variation trends correspond to changes in phenocryst mineralogy and divide the Main Series into two distinct crystallisation intervals — an early basalt to andesite stage characterised by calcic plagioclase+augite+olivine separation and a later andesite to rhyodacite stage generated by plagioclase augite+hypersthene+magnetite+apatite crystallisation. Percent solidification values derived from ratios of highly incompatible trace elements agree with previous values derived from major element data using addition-subtraction diagrams and indicate that basaltic andesites represent 47–69%; andesites 70–76%; dacites ca. 80% and rhyodacite ca. 84% crystallisation of the initial basalt magma. Least squares major element mixing calculations also confirm that crystal fractionation of the least fractionated basalts could generate derivative Main Series lavas, though the details of the least squares solutions differ significantly from those derived from highly incompatible element and addition-subtraction techniques. Main Series basalts may result from partial melting of the mantle asthenosphere wedge followed by limited olivine+pyroxene+Cr-spinel crystallisation on ascent through the sub-Aegean mantle and may fractionate to more evolved compositions at pressures close to the base of the Aegean crust. Residual andesitic to rhyodacite magmas may stagnate within the upper regions of the sialic Aegean crust and form relatively high level magma chambers beneath the southern volcanic centres of Santorini. The eruption of large volumes of basic lavas and silicic pyroclastics from Santorini may have a volcanological rather than petrological explanation.  相似文献   

18.
Petrology of the Upper Border Series of the Skaergaard Intrusion   总被引:3,自引:3,他引:3  
The Upper Border Series of the Skaergaard intrusion consistsof a 960 m thick sequence of rocks that crystallized againstthe roof of the magma chamber. The texture and composition ofthe unit vary systematically from top to bottom as a resultof changes that occurred in the magma during the solidificationof the intrusion. The order of crystallization of primocrystminerals in the Upper Border Series was: olivine; + plagioclase;+ apatite; + ilmenite; + magnetite; + Ca-rich pyroxene;—olivine;+ olivine; + ferrobustamite. The major silicate phases varyfrom high-temperature compositions to low-temperature compositionswith increasing distance from the upper contact. Post-crystallizationre-equilibration has affected the compositions of the oxideminerals and to a lesser extent the compositions of olivineand Ca-rich pyroxene. The Upper Border Series differentiationsequence differs from the Layered Series sequence, in that:(1) apatite appears much earlier; (2) magnetite precipitatedbefore Ca-rich pyroxene rather than after it; (3) orthopyroxeneis much less common; (4) the plagioclase is systematically poorerin K2O; and (5) the rocks are systematically richer in K2O andSiO2. The upper part of the Skaergaard magma appears to havebeen enriched in H2O, K2O, SiO2, and P2O5 relative to the partthat was parental to the Layered Series.  相似文献   

19.
We report on the petrography and geochemistry of the newly discovered olivine-phyric shergottite Larkman Nunatak (LAR) 06319. The meteorite is porphyritic, consisting of megacrysts of olivine (?2.5 mm in length, Fo77-52) and prismatic zoned pyroxene crystals with Wo3En71 in the cores to Wo8-30En23-45 at the rims. The groundmass is composed of finer grained olivine (<0.25 mm, Fo62-46), Fe-rich augite and pigeonite, maskelynite and minor quantities of chromite, ulvöspinel, magnetite, ilmenite, phosphates, sulfides and glass. Oxygen fugacity estimates, derived from the olivine-pyroxene-spinel geo-barometer, indicate that LAR 06319 formed under more oxidizing conditions (QFM -1.7) than for depleted shergottites. The whole-rock composition of LAR 06319 is also enriched in incompatible trace elements relative to depleted shergottites, with a trace-element pattern that is nearly identical to that of olivine-phyric shergottite NWA 1068. The oxygen isotope composition of LAR 06319 (Δ17O = 0.29 ±0.03) confirms its martian origin.Olivine megacrysts in LAR 06319 are phenocrystic, with the most Mg-rich megacryst olivine being close to equilibrium with the bulk rock. A notable feature of LAR 06319 is that its olivine megacryst grains contain abundant melt inclusions hosted within the forsterite cores. These early-trapped melt inclusions have similar trace element abundances and patterns to that of the whole-rock, providing powerful evidence for closed-system magmatic behavior for LAR 06319. Calculation of the parental melt trace element composition indicates a whole-rock composition for LAR 06319 that was controlled by pigeonite and augite during the earliest stages of crystallization and by apatite in the latest stages. Crystal size distribution and spatial distribution pattern analyses of olivine indicate at least two different crystal populations. This is most simply interpreted as crystallization of megacryst olivine in magma conduits, followed by eruption and subsequent crystallization of groundmass olivine.LAR 06319 shows close affinity in mineral and whole-rock chemistry to olivine-phyric shergottite, NWA 1068 and the basaltic shergottite NWA 4468. The remarkable features of these meteorites are that they have relatively similar quantities of mafic minerals compared with olivine-phyric shergottites (e.g., Y-980459, Dho 019), but flat and elevated rare earth element patterns more consistent with the LREE-enriched basaltic shergottites (e.g., Shergotty, Los Angeles). This relationship can be interpreted as arising from partial melting of an enriched mantle source and subsequent crystal-liquid fractionation to form the enriched olivine-phyric and basaltic shergottites, or by assimilation of incompatible-element enriched martian crust. The similarity in the composition of early-trapped melt inclusions and the whole-rock for LAR 06319 indicates that any crustal assimilation must have occurred prior to crystallization of megacryst olivine, restricting such processes to the deeper portions of the crust. Thus, we favor LAR06319 forming from partial melting of an “enriched” and oxidized mantle reservoir, with fractional crystallization of the parent melt upon leaving the mantle.  相似文献   

20.
The major element composition of plagioclase, pyroxene, olivine,and magnetite, and whole-rock 87Sr/86Sr data are presented forthe uppermost 2·1 km of the layered mafic rocks (upperMain Zone and Upper Zone) at Bierkraal in the western BushveldComplex. Initial 87Sr/86Sr ratios are near-constant (0·7073± 0·0001) for 24 samples and imply crystallizationfrom a homogeneous magma sheet without major magma rechargeor assimilation. The 2125 m thick section investigated in drillcore comprises 26 magnetitite and six nelsonite (magnetite–ilmenite–apatite)layers and changes up-section from gabbronorite (An72 plagioclase;Mg# 74 clinopyroxene) to magnetite–ilmenite–apatite–fayaliteferrodiorite (An43; Mg# 5 clinopyroxene; Fo1 olivine). The overallfractionation trend is, however, interrupted by reversals characterizedby higher An% of plagioclase, higher Mg# of pyroxene and olivine,and higher V2O5 of magnetite. In the upper half of the successionthere is also the intermittent presence of cumulus olivine andapatite. These reversals in normal fractionation trends definethe bases of at least nine major cycles. We have calculateda plausible composition for the magma from which this entiresuccession formed. Forward fractional crystallization modelingof this composition predicts an initial increase in total iron,near-constant SiO2 and an increasing density of the residualmagma before magnetite crystallizes. After magnetite beginsto crystallize the residual magma shows a near-constant totaliron, an increase in SiO2 and decrease in density. We explainthe observed cyclicity by bottom crystallization. Initiallymagma stratification developed during crystallization of thebasal gabbronorites. Once magnetite began to crystallize, periodicdensity inversion led to mixing with the overlying magma layer,producing mineralogical breaks between fractionation cycles.The magnetitite and nelsonite layers mainly occur within fractionationcycles, not at their bases. In at least two cases, crystallizationof thick magnetitite layers may have lowered the density ofthe basal layer of melt dramatically, and triggered the proposeddensity inversion, resulting in close, but not perfect, coincidenceof mineralogical breaks and packages of magnetitite layers. KEY WORDS: layered intrusion; mineral chemistry; isotopes; magma; convection; differentiation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号