首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The coccolithophore Emiliania huxleyi was grown in seawater under different Ba concentrations. The relationship of coccolith Ba/Ca ratio and seawater Ba/Ca ratio was found to be linear. The linear regression yields the apparent Ba exchange coefficient of 0.10. Our data support a recently proposed generic model (Langer G., Gussone N., Nehrke G., Riebesell U., Eisenhauer A., Kuhnert H., Rost B., Trimborn S., and Thoms S. (2006) Coccolith strontium to calcium ratios in Emiliania huxleyi: the dependence on seawater strontium and calcium concentrations. Limnol. Oceanogr.51, 310-320.) developed for explaining apparent exchange coefficients of metabolically inert divalent trace metals, such as Sr, in E. huxleyi. This model represents the first approach combining cell physiological processes and data from inorganic precipitation experiments, which quantitatively explains coccolith apparent Sr and Ba exchange coefficients.  相似文献   

2.
This study was designed to investigate the effect of light and temperature on Sr/Ca and Mg/Ca ratios in the skeleton of the coral Acropora sp. for the purpose of evaluating temperature proxies for paleoceanographic applications. In the first experiment, corals were cultivated under three light levels (100, 200, 400 μmol photons m−2 s−1) and constant temperature (27 °C). In the second experiment, corals were cultivated at five temperatures (21, 23, 25, 27, 29 °C) and constant light (400 μmol photons m−2 s−1). Increasing the water temperature from 21 to 29 °C, induced a 5.7-fold increase in the rate of calcification, which induced a 30% increase in the Mg/Ca ratio. In contrast, by increasing the light level by a factor of 4, the rate of calcification was increased only by a factor of 1.7, with a corresponding 9% increase in the Mg/Ca ratio. Thus, the relative change in the calcification rate in the two experiments (5.7 vs. 1.7) scales with the corresponding relative change in Mg/Ca ratio (30% vs. 9%). We conclude that there is a strong biological control on the incorporation of Mg.For Sr/Ca, good correlations were also observed with water temperature and the calcification rate induced by temperature changes. However, in sharp contrast with the Mg/Ca ratio, a temperature-induced 5.7-fold increase in the calcification rate only induced a 4.5% change (decrease) in the Sr/Ca ratio. An important finding for paleoceanographic applications is that the Sr/Ca ratio did not appear to be sensitive to changes in the light level, or to changes in calcification rate induced by changes in the light level. Thus, in this study, water temperature was found to be the dominant parameter controlling the skeletal Sr/Ca ratio.  相似文献   

3.
The relationship between potential elemental proxies (Mg/Ca, Sr/Ca and Mn/Ca ratios) and environmental factors was investigated for the bivalve Pecten maximus in a detailed field study undertaken in the Menai Strait, Wales, U.K. An age model constructed for each shell by comparison of measured and predicted oxygen-isotope ratios allowed comparison on a calendar time scale of shell elemental data with environmental variables, as well as estimation of shell growth rates. The seasonal variation of shell Mn/Ca ratios followed a similar pattern to one previously described for dissolved Mn2+ in the Menai Strait, although further calibration work is needed to validate such a relationship. Shell Sr/Ca ratios unexpectedly were found to co-vary most significantly with calcification temperature, whilst shell Mg/Ca ratios were the next most significant control. The temporal variation in the factors that control shell Sr/Ca ratios strongly suggest the former observation most likely to be the result of a secondary influence on shell Sr/Ca ratios by kinetic effects, the latter driven by seasonal variation in shell growth rate that is in turn influenced in part by seawater temperature. P. maximus shell Mg/Ca ratio to calcification temperature relationships exhibit an inverse correlation during autumn to early spring (October to March-April) and a positive correlation from late spring through summer (May-June to September). No clear explanation is evident for the former trend, but the similarity of the records from the three shells analysed indicate that it is a real signal and not a spurious observation. These observations confirm that application of the Mg/Ca proxy in P. maximus shells remains problematic, even for seasonal or absolute temperature reconstructions. For the range of calcification temperatures of 5-19 °C, our shell Mg/Ca ratios in P. maximus are approximately one-fourth those in inorganic calcite, half those in the bivalve Pinna nobilis, twice those in the bivalve Mytilus trossulus, and four to five times higher than Mg/Ca ratios in planktonic and benthonic foraminifera. Our findings further support observations that Mg/Ca ratios in bivalve shell calcite are an unreliable temperature proxy, as well as substantial taxon- and species-specific variation in Mg incorporation into bivalves and other calcifying organisms, with profound implications for the application of this geochemical proxy to the bivalve fossil record.  相似文献   

4.
颗石藻元素地球化学研究进展   总被引:2,自引:0,他引:2  
颗石藻元素地球化学研究在古海洋学研究中有着重要意义。目前开始研究的主要有Sr/Ca和Mg/Ca比值。研究发现,颗石的Sr/Ca比值主要受颗石藻生长和钙化速度控制,其次受温度影响;而Mg/Ca比值主要与温度有关,属种间受影响程度有差别。样品清洗和单种分离是颗石藻元素地球化学分析的重点和难点。倒置显微镜挑出单种颗石是目前最为方便且准确的分析方法。颗石Sr/Ca比值可以用来反映古生产力,Mg/Ca比值可以用来重建古温度。  相似文献   

5.
Over the last decade, sea surface temperature (SST) reconstructed from the Mg/Ca ratio of foraminiferal calcite has increasingly been used, in combination with the δ18O signal measured on the same material, to calculate the δ18Ow, a proxy for sea surface salinity (SSS). A number of studies, however, have shown that the Mg/Ca ratio is also sensitive to other parameters, such as pH or , and salinity. To increase the reliability of foraminiferal Mg/Ca ratios as temperature proxies, these effects should be quantified in isolation. Individuals of the benthic foraminifera Ammonia tepida were cultured at three different salinities (20, 33 and 40 psu) and two temperatures (10-15 °C). The Mg/Ca and Sr/Ca ratios of newly formed calcite were analyzed by Laser Ablation ICP-MS and demonstrate that the Mg concentration in A. tepida is overall relatively low (mean value per experimental condition between 0.5 and 1.3 mmol/mol) when compared to other foraminiferal species, Sr being similar to other foraminiferal species. The Mg and Sr incorporation are both enhanced with increasing temperatures. However, the temperature dependency for Sr disappears when the distribution factor DSr is plotted as a function of calcite saturation state (Ω). This suggests that a kinetic process related to Ω is responsible for the observed dependency of Sr incorporation on sea water temperature. The inferred relative increase in DMg per unit salinity is 2.8% at 10 °C and 3.3% at 15 °C, for the salinity interval 20-40 psu. This implies that a salinity increase of 2 psu results in enhanced Mg incorporation equivalent to 1 °C temperature increase. The DSr increase per unit salinity is 0.8% at 10 °C and 1.3% at 15 °C, for the salinity interval 20-40 psu.  相似文献   

6.
In order to investigate the incorporation of Sr, Mg, and U into coral skeletons and its temperature dependency, we performed a culture experiment in which specimens of the branching coral (Porites cylindrica) were grown for 1 month at three seawater temperatures (22, 26, and 30 °C). The results of this study showed that the linear extension rate of P. cylindrica has little effect on the skeletal Sr/Ca, Mg/Ca, and U/Ca ratios. The following temperature equations were derived: Sr/Ca (mmol/mol) = 10.214(±0.229) − 0.0642(±0.00897) × T (°C) (r2 = 0.59, p < 0.05); Mg/Ca (mmol/mol) = 1.973(±0.302) + 0.1002(±0.0118) × T (°C) (r2 = 0.67, p < 0.05); and U/Ca (μmol/mol) = 1.488(±0.0484) − 0.0212(±0.00189) × T (°C) (r2 = 0.78, p < 0.05). We calculated the distribution coefficient (D) of Sr, Mg, and U relative to seawater temperature and compared the results with previous data from massive Porites corals. The seawater temperature proxies based on D calibrations of P. cylindrica established in this study are generally similar to those for massive Porites corals, despite a difference in the slope of DU calibration. The calibration sensitivity of DSr, DMg, and DU to seawater temperature change during the experiment was 0.64%/°C, 1.93%/°C, and 1.97%/°C, respectively. These results suggest that the skeletal Sr/Ca ratio (and possibly the Mg/Ca and/or U/Ca ratio) of the branching coral P. cylindrica can be used as a potential paleothermometer.  相似文献   

7.
Specimens of two species of planktic foraminifera, Globigerinoides ruber and Globigerinella siphonifera, were grown under controlled laboratory conditions at a range of temperatures (18-31 °C), salinities (32-44 psu) and pH levels (7.9-8.4). The shells were examined for their calcium isotope compositions (δ44/40Ca) and strontium to calcium ratios (Sr/Ca) using Thermal Ionization Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry. Although the total variation in δ44/40Ca (∼0.3‰) in the studied species is on the same order as the external reproducibility, the data set reveals some apparent trends that are controlled by more than one environmental parameter. There is a well-defined inverse linear relationship between δ44/40Ca and Sr/Ca in all experiments, suggesting similar controls on these proxies in foraminiferal calcite independent of species. Analogous to recent results from inorganically precipitated calcite, we suggest that Ca isotope fractionation and Sr partitioning in planktic foraminifera are mainly controlled by precipitation kinetics. This postulation provides us with a unique tool to calculate precipitation rates and draws support from the observation that Sr/Ca ratios are positively correlated with average growth rates. At 25 °C water temperature, precipitation rates in G. siphonifera and G. ruber are calculated to be on the order of 2000 and 3000 μmol/m2/h, respectively. The lower δ44/40Ca observed at ?29 °C in both species is consistent with increased precipitation rates at high water temperatures. Salinity response of δ44/40Ca (and Sr/Ca) in G. siphonifera implies that this species has the highest precipitation rates at the salinity of its natural habitat, whereas increasing salinities appear to trigger higher precipitation rates in G. ruber. Isotope effects that cannot be explained by precipitation rate in planktic foraminifera can be explained by a biological control, related to a vacuolar pathway for supply of ions during biomineralization and a pH regulation mechanism in these vacuoles. In case of an additional pathway via cross-membrane transport, supplying light Ca for calcification, the δ44/40Ca of the reservoir is constrained as −0.2‰ relative to seawater. Using a Rayleigh distillation model, we calculate that calcification occurs in a semi-open system, where less than half of the Ca supplied by vacuolization is utilized for calcite precipitation. Our findings are relevant for interpreting paleo-proxy data on δ44/40Ca and Sr/Ca in foraminifera as well as understanding their biomineralization processes.  相似文献   

8.
The n-alkane C31/(C29 + C31) ratios from surface sediments in the eastern equatorial Pacific (EEP) exhibit higher values to the north and lower values to the south across the southern edge (2–4°N) of the Intertropical Convergence Zone (ITCZ). Since plants tend to synthesize longer chain length n-alkanes in response to elevated temperature and/or aridity, the higher C31/(C29 + C31) ratios at northern sites suggest a higher contribution of vegetation under hot and/or dry conditions. This is consistent with the observation that northern sites receive higher levels of plant waxes transported by northeasterly trade winds from northern South America, where hot and dry conditions prevail. Furthermore, from a sediment core covering the past 750 ka (core HY04; 4°N, 95°W) we found that C31/(C29 + C31) ratios exhibit a long-term decrease from MIS (marine oxygen isotope stage) 17 to 13. During this period, the zonal SST (sea-surface temperature) gradient in the equatorial Pacific increased, suggesting an increase in Walker circulation. Such intensified Walker circulation may have enhanced moisture advection from the equatorial Atlantic warm pool to the adjacent northern South America, causing arid regions in northern South America to contract, which may explain long-term decrease in n-alkane chain lengths.  相似文献   

9.
Calcium and magnesium concentrations in seawater have varied over geological time scales. On short time scales, variations in the major ion composition of seawater influences coccolithophorid physiology and the chemistry of biogenically produced coccoliths. Validation of those changes via controlled laboratory experiments is a crucial step in applying coccolithophorid based paleoproxies for the reconstruction of past environmental conditions. Therefore, we examined the response of two species of coccolithophores, Emiliania huxleyi and Coccolithus braarudii, to changes in the seawater Mg/Ca ratio (≈0.5 to 10 mol/mol) by either manipulating the magnesium or calcium concentration under controlled laboratory conditions. Concurrently, seawater Sr/Ca ratios were also modified (≈2 to 40 mmol/mol), while keeping salinity constant at 35. The physiological response was monitored by measurements of the cell growth rate as well as the production rates of particulate inorganic and organic carbon, and chlorophyll a. Additionally, coccolithophorid calcite was analyzed for its elemental composition (Sr/Ca and Mg/Ca) as well as isotope fractionation of calcium and magnesium (Δ44/40Ca and Δ26/24Mg). Our results reveal that physiological rates were substantially influenced by changes in seawater calcium rather than magnesium concentration within the range estimated to have occurred over the past 250 million years when coccolithophores appear in the fossil record. All physiological rates of E. huxleyi decreased at a calcium concentration above 25 mmol L−1, whereas C. braarudii displayed a higher tolerance to increased seawater calcium concentrations. Partition coefficient of Sr was calculated as 0.36 ± 0.04 (±2σ) independent of species. Partition coefficient of Mg2+ increased with increasing seawater Ca2+ concentrations in both coccolithophore species. Calcium isotope fractionation was constant at 1.1 ± 0.1‰ (±2σ) and not altered by changes in seawater Mg/Ca ratio. There is a well-defined inverse linear relationship between calcium isotope fractionation and partition coefficient of Sr2+ in all experiments, suggesting similar controls on both proxies in the investigated species. Magnesium isotope ratios were relatively stable for seawater Mg/Ca ratios ranging from 1 to 5, with a higher degree of fractionation in Emiliania huxleyi (by ≈0.2‰ in Δ26/24Mg). Although Mg/Ca ratios in the calcite of coccolithophores and foraminifera are similar, the former have considerably higher Δ26/24Mg (by >+3‰), presumably due to differences in calcification mechanisms between the two taxa. These observations suggest, a physiological control over magnesium elemental and isotopic fractionation during the process of calcification in coccolithophores.  相似文献   

10.
Coral proxy records of sea surface temperature (SST) and hydrological balance have become important tools in the field of tropical paleoclimatology. However, coral aragonite is subject to post-depositional diagenetic alteration in both the marine and vadose environments. To understand the impact of diagenesis on coral climate proxies, two mid-Holocene Porites corals from raised reefs on Muschu Island, Papua New Guinea, were analysed for Sr/Ca, δ18O, and δ13C along transects from 100% aragonite to 100% calcite. Thin-section analysis showed a characteristic vadose zone diagenetic sequence, beginning with leaching of primary aragonite and fine calcite overgrowths, transitional to calcite void filling and neomorphic, fabric selective replacement of the coral skeleton. Average calcite Sr/Ca and δ18O values were lower than those for coral aragonite, decreasing from 0.0088 to 0.0021 and −5.2 to −8.1‰, respectively. The relatively low Sr/Ca of the secondary calcite reflects the Sr/Ca of dissolving phases and the large difference between aragonite and calcite Sr/Ca partition coefficients. The decrease in δ18O of calcite relative to coral aragonite is a function of the δ18O of precipitation. Carbon-isotope ratios in secondary calcite are variable, though generally lower relative to aragonite, ranging from −2.5 to −10.4%. The variability of δ13C in secondary calcite reflects the amount of soil CO2 contributing 13C-depleted carbon to the precipitating fluids. Diagenesis has a greater impact on Sr/Ca than on δ18O; the calcite compositions reported here convert to SST anomalies of 115°C and 14°C, respectively. Based on calcite Sr/Ca compositions in this study and in the literature, the sensitivity of coral Sr/Ca-SST to vadose-zone calcite diagenesis is 1.1 to 1.5°C per percent calcite. In contrast, the rate of change in coral δ18O-SST is relatively small (−0.2 to 0.2°C per percent calcite). We show that large shifts in δ18O, reported for mid-Holocene and Last Interglacial corals with warmer than present Sr/Ca-SSTs, cannot be caused by calcite diagenesis. Low-level calcite diagenesis can be detected through X-ray diffraction techniques, thin section analysis, and high spatial resolution sampling of the coral skeleton and thus should not impede the production of accurate coral paleoclimate reconstructions.  相似文献   

11.
Three planktonic foraminiferal species Globigerina bulloides, Neogloboquadrina pachyderma (d), and Globorotalia inflata collected from core-tops spanning 35° to 65°N in the North Atlantic were used for U/Ca and Mg/Ca and foraminiferal shell weight analyses. Except for U/Ca in G. bulloides calcified under warm conditions (>∼13 °C), U/Ca ratios in all three studied species increase with decreasing latitude and show strong positive correlations with Mg/Ca ratios. A dissolution effect on planktonic U/Ca is suggested by decreased shell weight and U/Ca and Mg/Ca ratios for shells from very deep water depth (>4.4 km) along the latitudinal transect. G. bulloides from down core samples in the North Atlantic show low U/Ca ratios during the last glacial and high ratios during the Holocene, similar to the Mg/Ca evolution trend. In general, our data indicate that the U incorporation into planktonic foraminiferal carbonates is strongly influenced by calcification temperature, although U/Ca in G. bulloides may be affected by seawater carbonate ion concentration under warm conditions and/or other factors.  相似文献   

12.
The high precision measurement of the Sr/Ca ratio in corals has the potential for measuring past sea surface temperatures at very high accuracy. However, the veracity of the technique has been questioned on the basis that there is both a spatial and temporal variation in the Sr/Ca ratio of seawater, and that kinetic effects, such as the calcification rate, can affect the Sr/Ca ratio of corals, and produce inaccuracies of the order of 2-4 °C. In the present study, a number of cores of the massive hermatypic scleractinian coral Porites, from the central Great Barrier Reef, have been analyzed for Sr/Ca at weekly to monthly resolution. Results from a 24 year record from Myrmidon Reef show an overall variation from 22.7 °C to 30.4 °C. The record shows a warming/cooling trend with maximum warming centred on the 1986-1987 summer. While some bleaching was reported to have occurred at Myrmidon Reef in 1982, the Sr/Ca record indicates that subsequent summer temperatures were much higher. The 4.5 year record from Stanley Reef shows a maximum SST of 30 °C during the 1997-1998 El Niño event. The calibrations from Myrmidon and Stanley Reefs are in excellent agreement with previously published calibrations from nearby reefs. While corals do not calcify in equilibrium with seawater due to physiological control on the uptake of Sr and Ca into the lattice of coralline aragonite, it can be argued that, provided only a single genus such as Porites sp. is used, and that the coral is sampled along a major vertical growth axis, then the Sr/Ca ratio should vary uniformly with temperature. Similarly, objections based on the spatial and temporal variability of the Sr/Ca activity ratio of seawater can be countered on the basis that in most areas where coral reefs grow there is a uniformity in the Sr/Ca activity ratio, and there does not appear to be a change in this ratio over the growth period of the coral. Evidence from several corals in this study suggest that stress can be a major cause of the breakdown in the Sr/Ca-SST relationship. Thermal stress, resulting from either extremely warm or cool temperatures, can produce anomalously low Sr/Ca derived SSTs as a result of the breakdown of the biological control on Sr/Ca fractionation. It is considered that other stresses, such as increased nutrients and changes in light intensity, can also lead to a breakdown in the Sr/Ca-SST relationship. Two of the main issues affecting the reliability of the Sr/Ca method are the calibration of the Sr/Ca ratio with measured SST and the estimation of tropical last glacial maximum (LGM) palaeotemperatures. Instead of producing a constant calibration, just about every one published so far is different from the others. What is obvious is that for most calibrations while the slope of the calibration equation is similar, the intercepts are not. While the cause for this variation is still unknown, it would appear that corals from different localities around the world are responding to their own particular environment or that certain types of environments exert a control on the corals’ physiology. Sr/Ca derived SST estimates for the LGM and deglaciation of 5 °C-6 °C cooler than present are at odds with estimates of 2 °C-3 °C cooling by other climate proxies. The apparent lack of reef growth during the LGM suggests that SSTs were too cold in many parts of the tropics for reefs to develop. This would lend support to the idea that tropical SSTs were much cooler than what the CLIMAP data suggests.  相似文献   

13.
This study explores the potential of intertidal Protothaca staminea shells as high-resolution geochemical archives of environmental change in a coastal upwelling region. Mg/Ca and Sr/Ca ratios were analyzed by excimer laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) at sub-weekly temporal resolution in shells growing ∼1 mm per month. Growth patterns of a modern P. staminea shell from Humboldt Bay, California, collected in December 1999 made it possible to infer a lifespan from 1993 to 1998. Growth hiatuses in the shell may have excluded records of extreme events. Mg/Ca ratios appeared to be partly controlled by water temperature; the correlation coefficient between temperature and Mg/Ca was r = 0.71 in one of four growth increments. Significant year-to-year differences in the sensitivity of Mg/Ca to temperature in P. staminea could not be explained, however. Sr/Ca ratios appeared to be more closely related to shell growth rate. Oxygen isotopes, measured at 2-week temporal resolution in the same shell, did not show a clear relation to local temperature in summer, possibly because temperatures were higher and less variable at the King Salmon mudflat, where the shell was collected, than in the main channel of Humboldt Bay, where water properties were monitored. Negative shell δ13C values (<−0.5‰) marked spring and summer coastal upwelling events.The Mg contents of P. staminea midden shells dated to ∼3 ka and ∼9 ka were significantly lower than in the modern shell. This may have resulted from degradation of a Mg-rich shell organic matrix and precluded quantitative interpretation of the older high-resolution records. Elevated δ13C values in the ∼3 ka shell suggested that the individual grew in highly productive or stratified environment, such as a shallow coastal embayment or lagoon.  相似文献   

14.
Deep-sea coral geochemistry: Implication for the vital effect   总被引:2,自引:0,他引:2  
Deep-sea corals hold a great potential as a key to important aspects of paleoceanography for at least two reasons, 1) they offer temporal high resolution records of deep-sea environment, because they have growth banding structures, 2) and they are well suited for studying vital effects, because the deep-sea environment does not change over short time scales. However, the relationship between the chemical composition of deep-sea coral skeletons and environmental factors is not well understood. In this study, the chemical composition of deep-sea corals was measured in bulk individuals and along skeletal micro-structures. Among the bulk individuals, δ18O value and Sr / Ca ratio show a negative but weak correlation with ambient temperature. On the other hand, the Mg / Ca ratio has a positive, weak correlation with the temperature. Large variations were found among samples collected from similar temperature. The variation is up to 3.8‰ for δ18O, 0.9 mmol/mol for Sr / Ca ratios, and 0.78 mmol/mol for Mg / Ca ratios among samples with ambient average temperature within 1 °C. This variation may be due to a large vital effect. The centers of calcification (COCs), which were formed at high calcification rate, have lower Sr / Ca, U / Ca and higher Mg / Ca ratios than surrounding fasciculi. This chemical distribution supports the model that elemental incorporation depends on calcification rate. This suggests that calcification rate is a very important factor for the chemical composition in deep-sea corals and is one of the most significant mechanisms of the vital effect. Because of this large vital effect, further investigations are essential to use the deep-sea coral as a temperature proxy.  相似文献   

15.
颗石藻是海洋中广泛分布的超微型浮游藻,经生物矿化作用形成的碳酸钙质颗石,在古海洋学研究中具有重要意义。海洋粘土矿物与有机质的有机-无机相互作用在全球碳循环中扮演着重要角色。本文选取广泛分布于海洋的赫氏颗石藻Emiliania huxleyi与海洋粘土矿物中具有代表性的伊利石和蒙脱石共培养。通过对颗石藻生长曲线和Sr/Ca、Mg/Ca元素比值、颗石藻与粘土矿物样品的紫外可见光吸收光谱、红外吸收光谱和矿物物相等分析,研究海洋粘土矿物与颗石藻的相互作用规律。通过研究表明伊利石对颗石藻的影响较小,蒙脱石因对营养元素的吸附和颗石藻的絮凝作用对颗石藻的生长和Sr/Ca、Mg/Ca元素比值影响较大。颗石藻代谢分泌的生物分子未能通过层间插层作用进入伊利石层间,颗石藻分泌的生物分子可通过插层作用进入并储存于蒙脱石层间,海洋粘土矿物中的蒙脱石与海洋微生物的相互作用值得地球微生物家关注,可能有助于对古海洋环境的认识。  相似文献   

16.
Apparent partition coefficients of Sr and Ba between calcium phosphate and water were measured experimentally for temperature ranging from 5°C to 60°C. Calcium phosphates were precipitated from an aqueous mixture of Na2HPO4 · 2H2O (10−2 M) and CaCl2 · 2H2O (10−2 M). Spiked solutions of Sr or Ba were introduced into the CaCl2 · 2H2O solution at Sr/Ca and Ba/Ca ratios of 0.1. The experiment consisted in sampling the liquid and solid phases after 1, 6, 48, and 96 h of interaction. The amorphous calcium phosphate (ACP) precipitated early in the experiment was progressively replaced by hydroxylapatite (HAP), except at 5°C where brushite (di-calcium phosphate di-hydrate or DCPD) was formed. We observed that the crystallinity of the solid phase increased with time for a given temperature and increased with temperature for a given time of reaction. With the exception of the experiment at 5°C, yield (R%) and apparent partition coefficients (Ka-wSr/Ca and Ka-wBa/Ca) both decreased with increasing reaction time. After 96 h, R%, Ka-wSr/Ca and Ka-wBa/Ca were observed to be constant, suggesting that the solid phases were at steady-state with respect to the aqueous solutions. The thermodependence of Sr and Ba partitioning between apatite and water at low temperature could therefore be calculated:
  相似文献   

17.
We investigated the characteristics of the alkenones produced by a bloom of Emiliania huxleyi in the eastern Bering Sea in 2000. Alkenones were detected in surface waters between 57°N and 63°N, where phosphate concentrations were low and the ammonium/nitrate ratio was high. The total alkenone content (C37:2, C37:3, and C37:4) ranged from 22.0 to 349 μg g−1 in suspended particles and from 0.109 to 1.42 μg g−1 in surface sediments. This suggests that a large proportion of the particulate alkenones synthesized in the surface water rapidly degraded within the water column and/or at the water-sediment interface of the Bering Shelf. The change in the stable carbon isotopic composition (δ13C) of C37:3 alkenone could not be explained only by variation in [CO2(aq)] in the surface water but also depended on the growth rate of E. huxleyi. The alkenone unsaturation index (UK′37) was converted into an alkenone “temperature” with three equations [Prahl et al 1988], [Sikes et al 1997] and [Müller et al 1998]; Sikes et al.’s (1997) equation gave the best correlation with the observed sea surface temperature (SST) in the eastern Bering Sea. However, some temperatures estimated by Sikes et al.’s (1997) equation from the UK′37 varied from the observed SST, possibly because of the rapidly changing rate of alkenone synthesis in the logarithmic growth stage or the low rate of alkenone synthesis when nutrients were limiting. Temperatures estimated from UK′37 in the surface sediments (6.8-8.2°C) matched the observed SST in September (7-8°C) but differed from the annual average SST of 4 to 5°C, suggesting that most of the alkenone in the eastern Bering Sea was synthesized during limited periods, for instance, in September. The relative amounts of C37:4 alkenone as proportions of the total alkenones (referred to as C37:4%) were high, ranging from 18.3 to 41.4%. Low-salinity water (<32 psu) within the study area would have contributed to the high C37:4% because a negative linear relationship between C37:4% and salinity was found in this study.  相似文献   

18.
In order to investigate the interindividual and ontogenetic effects on Mg and Sr incorporation, magnesium/calcium (Mg/Ca) and strontium/calcium (Sr/Ca) ratios of cultured planktonic foraminifera have been determined. Specimens of Globigerinoides sacculifer were grown under controlled physical and chemical seawater conditions in the laboratory. By using this approach, we minimised the effect of potential environmental variability on Mg/Ca and Sr/Ca ratios. Whereas temperature is the overriding control of Mg/Ca ratios, the interindividual variability observed in the Mg/Ca values contributes 2-3 °C to the apparent temperature variance. Interindividual variability in Sr/Ca ratios is much smaller than that observed in Mg/Ca values. The variability due to ontogeny corresponds to −0.43 mmol/mol of Mg/Ca ratio per chamber added. This translates into an apparent decrease of ∼1 °C in Mg/Ca-based temperature per ontogenetic (chamber) stage. No significant ontogenetic effect is observed on Sr incorporation. We conclude that the presence of a significant ontogenetic effect on Mg incorporation can potentially offset Mg/Ca-based temperature reconstructions. We propose two new empirical Mg/Ca-temperature equation based on Mg/Ca measurements of the last four ontogenetic (chamber) stages and whole foraminiferal test: Mg/Ca = (0.55(±0.03) − 0.0002(±4 × 10−5) MSD) e0.089T and, Mg/Ca = (0.55(±0.03) − 0.0001(±2 × 10−5) MSD) e0.089T, respectively, where MSD corresponds to the maximum shell diameter of the individual.  相似文献   

19.
The Sr/Ca of aragonitic coral skeletons is a commonly used palaeothermometer. However skeletal Sr/Ca is typically dominated by weekly-monthly oscillations which do not reflect temperature or seawater composition and the origins of which are currently unknown. To test the impact of transcellular Ca2+ transport processes on skeletal Sr/Ca, colonies of the branching coral, Pocillopora damicornis, were cultured in the presence of inhibitors of Ca-ATPase (ruthenium red) and Ca channels (verapamil hydrochloride). The photosynthesis, respiration and calcification rates of the colonies were monitored throughout the experiment. The skeleton deposited in the presence of the inhibitors was identified (by 42Ca spike) and analysed for Sr/Ca and Mg/Ca by secondary ion mass spectrometry. The Sr/Ca of the aragonite deposited in the presence of either of the inhibitors was not significantly different from that of the solvent (dimethyl sulfoxide) control, although the coral calcification rate was reduced by up to 66% and 73% in the ruthenium red and verapamil treatments, respectively. The typical precision (95% confidence limits) of mean Sr/Ca determinations within any treatment was <±1% and differences in skeletal Sr/Ca between treatments were correspondingly small. Either Ca-ATPase and Ca channels transport Sr2+ and Ca2+ in virtually the same ratio in which they are present in seawater or transcellular processes contribute little Ca2+ to the skeleton and most Ca is derived from seawater transported directly to the calcification site. Variations in the activities of Ca-ATPase and Ca-channels are not responsible for the weekly-monthly Sr/Ca oscillations observed in skeletal chronologies, assuming that the specificities of Ca transcellular transport processes are similar between coral genera.  相似文献   

20.
The trace elemental composition of calcified larval hard parts may serve as useful tags of natal origin for invertebrate population studies. We examine whether the trace metal barium (Ba) deposits into the calcium carbonate matrix of molluscan larval statolith and protoconch in proportion to seawater Ba concentration at two temperatures (11.5 and 17°C). We also examine strontium (Sr) uptake as a function of temperature. Using encapsulated larvae of the marine gastropod, Kelletia kelletii, reared in the laboratory under controlled conditions, we demonstrate a significant inverse effect of temperature and a positive effect of seawater Ba/Ca ratio on Ba incorporation into larval carbonates. Ba/Ca partition coefficients (DBa) in protoconch were 1.13 at 11.4°C and 0.88 at 17.1°C, while DBa in larval statolith measured 1.58 at 11.4°C and 1.29 at 17.1°C. Strontium incorporation into statoliths is also inversely affected by temperature, but there was a significant positive effect of temperature on Sr incorporation into protoconch. These data suggest larval statoliths and protoconchs can meaningfully record variation in seawater physical and chemical properties, and, hence, have potential as natural tags of natal origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号