首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K-feldspar from the late Miocene Capoas Granite on Palawan in The Philippines appears to contain highly retentive diffusion domains that are closed to argon diffusion at near-solidus temperatures during cooling of this ~7 km-diameter pluton. This is an important result, for K-feldspar is commonly considered not retentive in terms of its ability to retain argon. Closure temperatures for argon diffusion in K-feldspars are routinely claimed to be in the range ~150–400°C but the release of 39Ar from irradiated K-feldspar during furnace step-heating experiments in vacuo yields Arrhenius data that imply the existence of highly retentive core domains, with inferred closure temperatures that can exceed ~500–700°C. These high closure temperatures from the Capoas Granite K-feldspar are consistent with the coincidence of 40Ar/39Ar ages with U–Pb zircon ages at ca 13.5 ± 0.2 Ma. The cooling rate then accelerated, but the rate of change had considerably slowed by ca 12 Ma. Low-temperature (U–Th)/He thermochronology shows that the cooling rate once again accelerated at ca 11 Ma, perhaps owing to renewed tectonic activity.  相似文献   

2.
Argon diffusion domains in K-feldspar II: kinetic properties of MH-10   总被引:2,自引:0,他引:2  
Viewing K-feldspars as containing a discrete distribution of diffusion domain sizes reconciles otherwise disconsonant features common in their 40Ar/39Ar age spectra and Arrhenius plots but raises a fundamental question. What are the features in K-feldspar that endow it with this behavior? We report here the results of two different kinds of experiments that help isolate the nature of the responsible diffusion properties. To assess the thermal stability of the diffusion domains during laboratory treatment, MH-10 K-feldspar was step-heated to 850°C, removed from the furnace and split. One split was reirradiated and the other returned to the furnace and completely degassed. Following re-irradiation, the original heating schedule was used to degas the second aliquot. Apart from the first 5% of gas released, the diffusion properties show little change relative to the original result but, it appears, the physical character of a portion of the smallest domain has been altered. Results of duplicate step-heating experiments of samples treated at 750°C, 950°C and 1100°C prior to irradiation are consistent with the conclusions of the double irradiation experiment. In a second series of experiments, sized aggregates of MH-10 K-feldspar were analyzed by the 40Ar/39Ar step-heating method. The resultant log(r/r o) plots reveal that the largest domain is annihilated when the particle size is reduced to about 50 μm. From this result we infer that the largest diffusion domain size is between 60 and about 130 μm in diameter. This estimate, together with knowledge of the relative domain size distribution obtained from modeling the log(r/r o) plot, sets the size of the smallest domain to be less than about 1 μm. Microstructural examination of MH-10 K-feldspar identifies sub-grain features that correspond in size to our independent estimates for the largest and smallest diffusion domains. These results strongly support the view that low-temperature K-feldspars contain a distribution of diffusion length scales that are well approximated as discrete domain sizes and that laboratory heating below the onset of melting does not significatly affect the ability to obtain thermal reconstructions from the 40Ar/39Ar systematics.  相似文献   

3.
The cooling history of Hercynian calc-alkalic, post-kinematic plutonic intrusions of the Montnegre massif (NE Spain) has been determined by 40Ar/39Ar analysis of two hornblendes, four biotites and eight K-feldspars (Kfs). The hornblendes have 40Ar/39Ar total fusion ages of 291Dž Ma and define the magmatic cooling of the basic and oldest structural intrusions. The biotites from the acid and intermediate rocks have 40Ar/39Ar plateau ages of 285Dž Ma, which date cooling of the intrusions through argon closure in biotite. The 40Ar/39Ar ages of the K-feldspars vary widely, ranging from 276-191 Ma. A correlation between K-feldspar 40Ar/39Ar total fusion age and several other features such as structural state, microstructures indicated by obliquity and, to some degree, optically visible perthites, is consistent with post-crystallisation partial argon loss in the K-feldspars. The 'D values of the biotites also correlate with age and chlorite contents, but this is not so for the '18O values of either feldspar or quartz. We infer that most microtextural changes occurred during cooling of the batholith, but a possibly Mesozoic, late disturbing hydrothermal event of weak intensity and with only minor fluid circulation must have occurred. This event provoked significant argon loss in the most structurally complex K-feldspars and is recorded in the hydrogen, but not oxygen, isotope data.  相似文献   

4.
Detailed field and microstructural studies have been combined with high spatial resolution ultraviolet laser 40Ar/39Ar dating of naturally deformed K-feldspar to investigate the direct relationship between deformation-related microstructure and Ar isotope systematics. The sample studied is a ~1,000 Ma Torridonian arkose from Skye, Scotland, that contains detrital feldspars previously metamorphosed at amphibolite-facies conditions ~1,700 Ma. The sample was subsequently deformed ~430 Ma ago during Caledonian orogenesis. The form and distribution of deformation-induced microstructures within three different feldspar clasts has been mapped using atomic number contrast and orientation contrast imaging, at a range of scales, to identify intragrain variations in composition and lattice orientation. These variations have been related to thin section and regional structural data to provide a well-constrained deformation history for the feldspar clasts. One hundred and forty-three in-situ 40Ar/39Ar analyses measured using ultraviolet laser ablation record a range of apparent ages (317-1030 Ma). The K-feldspar showing the least strain records the greatest range of apparent ages from 420-1,030 Ma, with the oldest apparent ages being found close to the centre of the feldspar away from fractures and the detrital grain boundary. The most deformed K-feldspar yields the youngest apparent ages (317-453 Ma) but there is no spatial relationship between apparent age and the detrital grain boundary. Within this feldspar, the oldest apparent ages are recorded from orientation domain boundaries and fracture surfaces where an excess or trapped 40Ar component resides. Orientation contrast images at a similar scale to the Ar analyses illustrate a significant deformation-related microstructural difference between the feldspars and we conclude that deformation plays a significant role in controlling Ar systematics of feldspars at both the inter- and intragrain scales even at relatively low 'bulk' strains. The data show that Ar loss and trapping within the deformed K-feldspars reflects the presence of a deformation-induced population of small diffusion domains in combination with 'short-circuit' diffusion along deformation-induced defects. The complex history of microstructures induced in the K-feldspars during their cooling, alteration, erosion and sedimentation do not appear to be as significant as deformation-induced microstructures in controlling the distribution of apparent ages at the grain scale.  相似文献   

5.
An 40Ar/39Ar study on biotite and hornblende from baked tonalite gneiss adjacent to a 14-m-wide Kapuskasing dyke in the Chapleau Block of the Kapuskasing Structural Zone employed resistance-furnace step-heating, of bulk-mineral separates, single-grain laser step-heating, and laser spot dating of individual grains in thick section. All three methods yielded concordant results for the biotite, indicating that it has been uniformly overprinted at ca. 2.05 Ga. This date is probably a close estimate of the age of the dyke intrusion. The argon data from the hornblende are more difficult to interpret. All three methods suggest that the hornblende was partially overprinted and then affected by a later influx of excess argon from the external environment. Laser spot dates record an apparent age gradient, extending radially outward from 2.25 Ga in the grain cores to 2.4–2.7 Ga in the grain rims. Corresponding 37Ar/39Ar values show no systematic variation across the hornblende, although 38Ar/39Ar ratios display a similar pattern to the age distribution, with lower values in the cores than in the rims. The bulk separate and single grain step-heating spectra mimic a volume diffusion Ar-loss profile that would appear to be inconsistent with the laser-spot dates. Three possible interpretations to explain this apparent discrepancy may involve either experimental difficulties, an effective radius of diffusion which is much smaller than the actual grain radius, or an effective radius of diffusion that is of the order of the grain radius. It is clear that for the 40Ar/39Ar dating of samples that have experienced complex geologic histories, it is important to utilize both resistance-furnace and laser techniques.  相似文献   

6.
Diffusion parameters have been estimated for K-feldspar in and adjacent to mylonite shear zones in the Wyangala Batholith. The parameters obtained suggest that deformation during mylonitisation would have caused argon systematics to reset because diffusion distances were reduced by cataclasis, deformation and/or recrystallisation. However, the mineral lattice remained sufficiently retentive to allow subsequently produced radiogenic argon to be retained. 40Ar/39Ar geochronology is thus able to constrain operation of these biotite-grade ductile shear zones to the period from ca 380 Ma to ca 360 Ma, at the end of the Tabberabberan Orogeny.  相似文献   

7.
In the case of volume diffusion, the closure temperature of a mineral is function of, among other factors, the characteristic diffusion dimension, which can be approximated by the grain size of the mineral analysed for grains smaller than or similar in size to the diffusion domains. The theoretical possibility of single mineral grain size thermochronology had been demonstrated empirically in earlier studies, mostly using biotite. In order to examine the potential of this method, it was tested alongside the widely used multi-mineral 40Ar/39Ar thermochronology. The sample comes from the granitic McLean pluton, in the south section of the Grenville orogeny. Seven grain size separates of biotite (ranging between 90 and 1000 μm), eight size fractions of amphibole (between 63 and 1000 μm), and three size fractions of K-feldspar (250-600 μm) were extracted and dated by the laser step-heating 40Ar/39Ar method. The total gas ages obtained behave as theoretically predicted, with increasing ages for increasing grain sizes, including for K-feldspar, but with the exception of the smallest and the largest grains for biotite and amphibole. The calculated cooling rates are ca. 0.7 °C/Ma for K-feldspar, ca. 2.5 °C/Ma for biotite, and ca. 11 °C/Ma for amphibole, corresponding very well to a monotonic cooling of the McLean pluton. A quick initial thermal re-equilibration with the cooler host-rocks is followed by a much slower cooling on a thermal path parallel to that of the Frontenac Terrain situated immediately to the southeast. The validity of the single mineral grain size thermochronology is demonstrated by comparison with the thermal evolution of the adjacent units and with the cooling history derived from a multi-mineral thermochronology, suggesting that it can be routinely used. The application of this method can be hampered by insufficiently low analytical uncertainties.  相似文献   

8.
Muscovite and biotite from a crustal-scale mylonite zone (Pogallo Shear Zone, southern Alps) were investigated using furnace step-heating and in-situ UV-laser ablation 40Ar/39Ar geochronology. Undeformed muscovite porphyroclasts yield 40Ar/39Ar plateau ages of 182.0ǃ.6 Ma, whereas in-situ UV-laser ablation 40Ar/39Ar dating and furnace step-heating of strongly deformed muscovite and biotite grains display a range of apparent ages that are systematically younger. The range of 40Ar/39Ar ages measured in the deformed muscovite and biotite is consistent with protracted cooling through argon closure in minerals that exhibit variably developed segmentation on the intra-grain scale. These microstructurally controlled segments are bound by either first-order lattice discontinuities, sub-microscopic structural defects and/or zones of high defect density, which create variable length-scales for intragranular argon diffusion. The observed deformational microstructures within muscovite and biotite acted as intra-grain fast diffusion pathways in the slowly cooled mylonitic rocks. Therefore, the high-spatial resolution 40Ar/39Ar data record the initial and final closure to argon diffusion over a time span of about 60 Ma.  相似文献   

9.
Four K-feldspar samples from the Yidun Arc, eastern Tibetan Plateau, were analysed by the 40Ar/39Ar method with the aim of recovering information on their thermal history using multiple diffusion domain (MDD) theory. Arrhenius plots for each of the samples reveal low retentivity early in the heating experiments, a property that is attributed to their recrystallised nature. This low argon retentivity appears to violate the MDD assumption that volume diffusion is the only mechanism for argon transport within the crystals, thus the thermal histories derived from these analyses are considered suspect. Nevertheless, the age spectra themselves suggest that the majority of samples had cooled below ∼200 °C prior to the Eocene collision of India with Asia. Thermal history modelling from apatite fission track analyses from the same and nearby samples shows slow cooling through the apatite fission track partial annealing zone during the Cenozoic in samples from the high elevation, low relief areas of the Yidun Arc, while samples from the major Jinsha River valley show rapid cooling through the partial annealing zone beginning in the Miocene. These results suggest that significant Cenozoic denudation has been localised and that most parts of the Yidun Arc have experienced very little denudation during the Cenozoic.  相似文献   

10.
The Yanshan Orogenic Belt is located in the northern part of the North China Craton (NCC), which lost ∼120 km of lithospheric mantle during Phanerozoic tectonic reactivation. Mesozoic magmatism in the Yanshan fold-and-thrust belt began at 195–185 Ma (Early Jurassic), with most of the granitic plutons being Cretaceous in age (138–113 Ma). Along with this magmatism, multi-phase deformational structures, including multiple generations of folds, thrust and reverse faults, extensional faults, and strike-slip faults are present in this belt. Previous investigations have mostly focused on geochemical and isotopic studies of these magmatic rocks, but not on the thermal history of the Mesozoic plutons. We have applied 40Ar/39Ar thermochronology to biotites and K-feldspars from several Lower Cretaceous granitic plutons to decipher the cooling and uplift history of the Yanshan region. The biotite 40Ar/39Ar ages of these plutons range from 107 to 123 Ma, indicating that they cooled through about 350 °C at that time. All the K-feldspar step-heating results modeled using multiple diffusion domain theory yield similarly rapid cooling trends, although beginning at different times. Two rapid cooling phases have been identified at ca. 120–105 and 100–90 Ma. The first phase of rapid cooling occurred synchronously with widespread extensional deformation characterized by the formation of metamorphic core complexes, A-type magmatism, large-scale normal faults, and the development of half-graben basins. This suggests rapid exhumation took place in an extensional regime and was a shallow-crustal-level response to lithospheric thinning of the NCC. The second phase of rapid cooling was probably related to the regional uplift and unroofing of the Yanshan Belt, which is consistent with the lack of Upper Cretaceous sediments in most of the Yanshan region.  相似文献   

11.
White micas are major rock forming minerals in igneous and metamorphic rocks, and their chemical and isotopic variations can be used to determine pressure, temperature and time (P‐T‐t) histories. We apply 40Ar/39Ar multi‐diffusion domain modelling to white micas from blueschists blocks in serpentinite matrix mélange from the exhumed Baja California subduction complex. Thermal history models yielded T‐t paths suggesting that 40Ar* resides within multiple diffusion domains with varying 40Ar* retentivity. Modelled white mica thermal histories and thermobarometric data were used to forward model continuous P‐T‐t paths. P‐T‐t paths are consistent with previous studies and are interpreted to constrain blueschist block exhumation paths within the Baja accretionary wedge. Our P‐T‐t models use temperature controlled 40Ar/39Ar step heat data in which argon loss by volume diffusion can be demonstrated, and for which the white mica petrogenesis is known.  相似文献   

12.
Four K-feldspar samples from the Yidun Arc, eastern Tibetan Plateau, were analysed by the 40Ar/39Ar method with the aim of recovering information on their thermal history using multiple diffusion domain (MDD) theory. Arrhenius plots for each of the samples reveal low retentivity early in the heating experiments, a property that is attributed to their recrystallised nature. This low argon retentivity appears to violate the MDD assumption that volume diffusion is the only mechanism for argon transport within the crystals, thus the thermal histories derived from these analyses are considered suspect. Nevertheless, the age spectra themselves suggest that the majority of samples had cooled below 200 °C prior to the Eocene collision of India with Asia. Thermal history modelling from apatite fission track analyses from the same and nearby samples shows slow cooling through the apatite fission track partial annealing zone during the Cenozoic in samples from the high elevation, low relief areas of the Yidun Arc, while samples from the major Jinsha River valley show rapid cooling through the partial annealing zone beginning in the Miocene. These results suggest that significant Cenozoic denudation has been localised and that most parts of the Yidun Arc have experienced very little denudation during the Cenozoic.  相似文献   

13.
Clinopyroxene inclusions in diamond contain elevated potassium contents and can potentially be dated by 40Ar/39Ar techniques. Previous 40Ar/39Ar studies of clinopyroxene inclusions contained in cleaved diamonds have suggested that argon, produced from the decay of potassium prior to eruption of the host kimberlite magma, diffuses to the diamond/clinopyroxene interface under mantle conditions. After intrusion and cooling below the closure temperature for argon diffusion, radiogenic argon is retained by the clinopyroxene inclusions. This behaviour complicates efforts to date diamond crystallisation events; however, extraction of inclusions from their host diamond should induce loss of all interface argon, thus raising the possibility of determining kimberlite emplacement ages. This possibility has important implications for constraining the source localities of detrital diamond deposits worldwide, with concomitant benefits to diamond exploration. To investigate this premise, 40Ar/39Ar laser probe results are presented for single clinopyroxene inclusions extracted from a total of fifteen gem-quality diamonds from the Mbuji-Mayi kimberlite in the Democratic Republic of Congo, and the Jwaneng and Orapa kimberlites in Botswana.Initial fusion analyses of clinopyroxene inclusions from Mbuji-Mayi diamonds yielded ages older than the time of host kimberlite intrusion, indicating partial retention of extraneous argon by the clinopyroxene inclusions themselves. Step-heating analyses of clinopyroxene inclusions from Orapa and Jwaneng diamonds produced older apparent ages from lower temperature steps and the ‘rim’ fragment of one Orapa inclusion. High temperature (fusion) analyses yielded younger apparent ages, commonly approaching the times of host kimberlite eruption. Total-gas integrated 40Ar/39Ar ages are mostly intermediate between the times of inferred diamond crystallisation and kimberlite eruption. Ca/K ratios for each sample are uniform across step-heating increments, indicating that age variations are not due to compositional, mineralogical or alteration effects. The favoured explanation for these results is partial retention of extraneous argon in primary and/or secondary fluid inclusions. This component is then preferentially outgassed in lower temperature heating steps, yielding older apparent ages.The partial retention of extraneous argon by clinopyroxene inclusions clearly restricts efforts to determine source ages for detrital diamond deposits. Results from individual samples must necessarily be interpreted as maximum source emplacement ages. Nonetheless, step-heating analyses of several clinopyroxene inclusions from a detrital diamond deposit may provide reasonable constraints on the ages of source kimberlites/lamproites; however minor age populations as well as those closely spaced in time, may be difficult to resolve.It is argued that the majority of older 40Ar/39Ar ages can be explained in terms of the partial retention of inherited argon, produced between the times of diamond crystallisation and kimberlite eruption. Although the presence of excess argon in some clinopyroxene inclusions cannot be excluded, available evidence (e.g. no excess argon in Premier eclogitic inclusions or potassium-poor inclusions) suggests that this is not a factor for most samples. Three possible mechanistic models are forwarded to account for the uptake of inherited (± excess) argon in fluid inclusions. The first envisages negligible interface porosity and diffusion of extraneous argon exclusively to primary fluid inclusions, which subsequently partially decrepitated during eruption, causing accumulation of argon at the diamond/clinopyroxene interface. The second model permits diffusive loss of extraneous argon to both the interface region and primary fluid inclusions. The third involves diffusion of extraneous argon to the interface region, with later entrapment of some interface argon in secondary fluid inclusions, produced by fracture/annealing processes active during eruption. The first model can account for all 40Ar/39Ar results, whereas the latter two mechanisms require the presence of an excess argon component to explain older integrated ages (up to 2.9 Ga) from two Jwaneng samples. Excess argon contamination would compromise efforts to determine diamond genesis ages using the 40Ar/39Ar dating technique. However, if the first model is valid, then the older 40Ar/39Ar integrated ages support previous Re-Os age results for the crystallisation of Jwaneng diamonds.  相似文献   

14.
 Ultra-high pressure eclogite/amphibolite grade metamorphism of the Dora Maira Massif in the western Alps is a well established and intensively studied event. However, the age of peak metamorphism and early cooling remains controversial. The 40Ar-39Ar step-heating and laser spot ages from high pressure phengites yield plateau ages as old as 110 Ma which have been interpreted as the time of early cooling after the high pressure event. Recent U/Pb and Sm/Nd results challenge this assertion, indicating a much younger age for the event, around 45 Ma, and hence a radically different timing for the tectonic evolution of the western Alps. In a new approach to the problem, samples from the undeformed Hercynian metagranite, Brossasco, were studied using an ultra-violet laser ablation microprobe technique for 40Ar-39Ar dating. The new technique allowed selective in situ analysis, at a spatial resolution of 50 μm, of quartz, phengite, biotite and K-feldspar. The results demonstrate the frequent occurrence of excess argon with high 40Ar-36Ar ratios (1000–10000) and a strong relationship between apparent ages and metamorphic textures. The highest excess argon ratios are always associated with high closure temperature minerals or large diffusion domains within single mineral phases. The best interpretation of this relationship seems to be that excess argon was incorporated in all phases during the high pressure event, then mixed with an atmospheric component during rapid cooling and retrogression, producing a wide range of argon concentrations and 40Ar/36Ar ratios. Step-heating analysis of minerals with this mixture would produce linear arrays on a 36Ar/40Ar versus 39Ar/40Ar correlation diagram, leading to geologically meaningless plateau ages, older than the true closure age. In the present case, some ages in the range 60–110 Ma could be explained by the presence of excess argon incorporated around 40–50 Ma ago. Similar results found in other high pressure terrains in the Alps may reconcile the argon geochronometer with other systems such as Rb/Sr, U/Pb or Sm/Nd. This study therefore calls for an increasing use of high resolution in situ sampling techniques to clarify the meaning of 40Ar/39Ar ages in many high pressure terrains. Received: 6 January 1994/Accepted: 4 April 1995  相似文献   

15.
(U-Th)/He chronometry of zircon has a wide range of potential applications including thermochronometry, provided the temperature sensitivity (e.g., closure temperature) of the system be accurately constrained. We have examined the characteristics of He loss from zircon in a series of step-heating diffusion experiments, and compared zircon (U-Th)/He ages with other thermochronometric constraints from plutonic rocks. Diffusion experiments on zircons with varying ages and U-Th contents yield Arrhenius relationships which, after about 5% He release, indicate Ea = 163-173 kJ/mol (39-41 kcal/mol), and D0 = 0.09-1.5 cm2/s, with an average Ea of 169 ± 3.8 kJ/mol (40.4 ± 0.9 kcal/mol) and average D0 of 0.46+0.87−0.30 cm2/s. The experiments also suggest a correspondence between diffusion domain size and grain size. For effective grain radius of 60 μm and cooling rate of 10°C/myr, the diffusion data yield closure temperatures, Tc, of 171-196°C, with an average of 183°C. The early stages of step heating experiments show complications in the form of decreasing apparent diffusivity with successive heating steps, but these are essentially absent in later stages, after about 5-10% He release. These effects are independent of radiation dosage and are also unlikely to be due to intracrystalline He zonation. Regardless of the physical origin, this non-Arrhenius behavior is similar to predictions based on degassing of multiple diffusion domains, with only a small proportion (<2-4%) of gas residing in domains with a lower diffusivity than the bulk zircon crystal. Thus the features of zircon responsible for these non-Arrhenius trends in the early stages of diffusion experiments would have a negligible effect on the bulk thermal sensitivity and closure temperature of a zircon crystal.We have also measured single-grain zircon (U-Th)/He ages and obtained 40Ar/39Ar ages for several minerals, including K-feldspar, for a suite of slowly cooled samples with other thermochronologic constraints. Zircon He ages from most samples have 1 σ reproducibilities of about 1-5%, and agree well with K-feldspar 40Ar/39Ar multidomain cooling models for sample-specific closure temperatures (170-189°C). One sample has a relatively poor reproducibility of ∼24%, however, and a mean that falls to older ages than predicted by the K-feldspar model. Microimaging shows that trace element zonation of a variety of styles is most pronounced in this sample, which probably leads to poor reproducibility via inaccurate α-ejection corrections. We present preliminary results of a new method for characterizing U-Th zonation in dated grains by laser-ablation, which significantly improves zircon He age accuracy.In summary, the zircon (U-Th)/He thermochronometer has a closure temperature of 170-190°C for typical plutonic cooling rates and crystal sizes, it is not significantly affected by radiation damage except in relatively rare cases of high radiation dosage with long-term low-temperature histories, and most ages agree well with constraints provided by K-spar 40Ar/39Ar cooling models. In some cases, intracrystalline U-Th zonation can result in inaccurate ages, but depth-profiling characterization of zonation in dated grains can significantly improve accuracy and precision of single-grain ages.  相似文献   

16.
《International Geology Review》2012,54(12):1114-1124
Because of a complicated metamorphic history, the isotopic systematics of the ultrahigh-pressure (UHP) metamorphic rocks in the Dabie-Sulu belt, east China, appear to be rather different from what were expected. Depending on the degree of retrograde metamorphism and on the retentivity of isotopes, the radiogenic isotopic systematics in the UHP metamorphic rocks yielded a wide range of radiometric ages. Some of these ages are geologically meaningful, but others may not be. In some fine-grained UHP metamorphic rocks, Sm/Nd isotopic systematics appear to be in equilibrium among the UHP phases, showing the best estimate for the age of peak metamorphism at 226 ± 3 Ma. On the other hand, retrograde overprinting often makes the interpretation of isotopic data more difficult. It is common to find that the Sm/Nd and Rb/Sr isotopic systematics among the UHP phases and retrograde phases are not in equilibrium. Regression of isotopic data involving both UHP and retrograde minerals in isotopic correlation diagrams often yields geologically meaningless ages. Although 40Ar/39Ar dating of UHP metamorphic rocks has been reported not to be very helpful in establishing the thermal history because of the presence of excess argon, a good correlation between excess argon and rock type in the Dabie-Sulu belt would provide a criterion in identifying the possible sources of excess argon. By taking all the possible effects into consideration, a T-t path with two rapid cooling stages for UHP metamorphic rocks from the Dabie-Sulu belt can be postulated. An initial rapid cooling stage in the period from 226 to 219 Ma may have resulted from rapid exhumation of UHP metamorphic rocks immediately after the peak metamorphism. The second rapid cooling stage, from 450°C to 300°C, may have been caused by the exhumation of the entire terrane, including UHP metamorphic units and their host gneisses, during the period from 180 to 167 Ma.  相似文献   

17.
18.
《Gondwana Research》2001,4(3):541-550
Since the late 1980s, it has been hypothesized that the wide range of apparent argon ages seen within single K-feldspar samples might be due to a distribution of diffusion domain sizes within the mineral. To test and apply this idea, an analytical technique that combines conventional laboratory degassing experiments (resistance heating) with numerical inversion procedures has been developed to extract cooling history information from feldspars. A key part of the method involves careful control of temperature in the laboratory to constrain the diffusion parameters of the feldspar samples. In our study, we have K-feldspar data from single crystals that mimic the types of data seen in classic resistance heater fusion experiments. Our step-heating data are based on using a continuous argon-ion laser with no direct control on temperature. However, with only a single added free parameter in the model, we show that it is possible to analyze this data in the multi-domain style, and make some simple inferences on the nature of the cooling history of the Carion pluton in central Madagascar. The Carion granitic pluton in central Madagascar was intruded into warm continental crust following orogenic events related to the final amalgamation of Gondwana. U-Pb SHRIMP dating of the pluton yields an emplacement age of 532.1 ± 5.2 Ma followed by relatively slow cooling as constrained by 40Ar/39Ar ages on hornblende, biotite and K-feldspar. Four hornblende samples yielded a mean 40Ar/39Ar age of 512.7 ± 2.6 Ma. A biotite sample yielded an age of 478.9 ± 1.0 Ma and modeled K-feldspar ages show cooling from 350° C at 466 Ma to 100° C by 410 Ma. Collectively, the data suggest that the pluton cooled from 850° C at 532.1 ± 5.2 (U-Pb zircon) Ma to 500° C at 512.7 ± 2.6 Ma (40Ar/39Ar hornblende), or approximately 18 °C/Ma slowing to ∼4 °C/Ma between 512 Ma and 478 Ma and finally to about 3°C/Ma between 478 and 410 Ma.  相似文献   

19.
From the experimental data on stepwise thermal release of neutron induced 39Ar (39K (n, p) 39Ar) from rocks and minerals, Arrhenius plots were constructed, which gave activation energies for the thermal release process. The activation energies for DSDP Leg 58 and Leg 60 submarine volcanic rocks range from 12 to 20 kcal/mol, whereas those for granodiorites and the K-feldspar separates have activation energies ranging from 37 to 48 kcal/mol. The smaller activation energies for the submarine volcanic rocks reflect the grain boundary diffusion process, while the thermal diffusion of 39Ar from granodiorites and K-feldspar is essentially controlled by a volume diffusion. The grain boundary diffusion for the submarine volcanic rocks suggests that K resides essentially in the grain boundaries.  相似文献   

20.
Authigenic sedimentary low-temperature K-feldspar separated from Albian-Turonian carbonates in Israel was dated by the step-heating 40Ar-39Ar method. In contrast to high-temperature K-feldspars, ca. 90% of the radiogenic Ar was released at temperatures lower than 600 °C and fusion mostly occurred below 750 °C. Though formed under low temperature, Ar loss in all but one sample is estimated to be less than 2%. Nevertheless, the effect of 39Ar recoil is evident in some separates, probably due to their very fine size (4-10 μm). The plateau age of one sample with the highest content of authigenic K-feldspar (93%, 96 Ma) is slightly younger than the assumed stratigraphic age and thus defines the timing of an early diagenetic event within a few million years after deposition. Other samples where a plateau age could be determined yield ages slightly older. Strong acid etching (7 N HNO3, 85 °C) of the K-feldspar-enriched fraction may have improved the 39Ar-40Ar spectra but did not eliminate the presence of minute quantities of detrital K-bearing minerals. Though the present set of data is insufficient for a clear-cut conclusion, the activation energy of the authigenic K-feldspar is in the range of 14-26 kcal mol− 1 s− 1, much lower than that of magmatic and hydrothermal K-feldspars and can probably be attributed to the heating schedule and the small crystal size. It is not clear whether the formation at low temperatures (< 50 °C) has any effect on the activation energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号