首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a picture of star formation around the H  ii region Sh2-235 (S235) based upon data on the spatial distribution of young stellar clusters and the distribution and kinematics of molecular gas around S235. We observed 13CO (1–0) and CS (2–1) emission toward S235 with the Onsala Space Observatory 20-m telescope and analysed the star density distribution with archival data from the Two Micron All-Sky Survey (2MASS). Dense molecular gas forms a shell-like structure at the southeastern part of S235. The young clusters found with 2MASS data are embedded in this shell. The positional relationship of the clusters, the molecular shell and the H  ii region indicates that expansion of S235 is responsible for the formation of the clusters. The gas distribution in the S235 molecular complex is clumpy, which hampers interpretation exclusively on the basis of the morphology of the star-forming region. We use data on kinematics of molecular gas to support the hypothesis of induced star formation, and distinguish three basic types of molecular gas components. The first type is primordial undisturbed gas of the giant molecular cloud, the second type is gas entrained in motion by expansion of the H  ii region (this is where the embedded clusters were formed) and the third type is a fast-moving gas, which might have been accelerated by winds from the newly formed clusters. The clumpy distribution of molecular gas and its kinematics around the H  ii region implies that the picture of triggered star formation around S235 can be a mixture of at least two possibilities: the 'collect-and-collapse' scenario and the compression of pre-existing dense clumps by the shock wave.  相似文献   

2.
We present new radio observations of molecular lines in the region of high mass star formation, namely G122.0-7.1. A large-scale map of the emission observed in the 12CO (J = 1−0) and 13CO (J = 1−0) lines covers the area of 15′ × 9′, revealing two dense regions. The molecular bipolar outflows have been resolved in ASO1 region. It is associated with the known candidate YSO nearby IRAS 0042 + 5530. Also, a new dense region has been discovered in the North-Western part of the G122.0-7.1 at a distance of 5′ from IRAS 0042 + 5530. Its position is close to the peak of 4850 MHz emission. The text was submitted by the authors in English.  相似文献   

3.
We investigate the morphology and kinematics of the interstellar medium in the environs of the open cluster Mrk 50, which includes the Wolf–Rayet star WR 157 and a number of early B-type stars. The analysis was performed using radio continuum images at 408 and 1420 MHz, and H  i 21-cm line data taken from the Canadian Galactic Plane Survey, molecular observations of the 12CO  ( J = 1 → 0)  line at 115 GHz from the Five College Radio Astronomy Observatory and available mid- and far-infrared (FIR) observations obtained with the Midcourse Space Experiment and IRAS satellites, respectively.
This study allowed the identification of the radio continuum and molecular counterpart of the ring nebula SG 13, while no neutral atomic structure was found to be associated. The nebula is also detected in the images in the mid- and FIR, showing the existence of dust well mixed with the ionized gas. We estimate the main physical parameters of the material linked to the nebula.
The interstellar gas distribution in the environs of Mrk 50 is compatible with a stellar wind bubble created by the mass loss from WR 157.
The distribution of young stellar object candidates in the region shows that the stellar formation activity may be present in the molecular shell that encircles the ring nebula.  相似文献   

4.
We present a study of active star-forming regions in the environs of the H  ii region Sh2-205. The analysis is based on data obtained from point source catalogues and images extracted from the Two-Micron All-Sky Survey (2MASS), Midcourse Space Experiment ( MSX ) and IRAS surveys. Complementary data are taken from a CO survey. The identification of primary candidates for star-formation activity is made following colour criteria and a correlation with molecular gas emission.
A number of star-formation tracer candidates are projected on to two substructures of the H  ii region: SH 148.83–0.67 and SH 149.25–0.00. However, the lack of molecular gas related to these structures casts doubt on the nature of the sources. Additional infrared sources may be associated with the H  i shell centred at  ( l , b ) = (149°0', −1°30')  .
The most striking active area was found in connection with the H  ii region LBN 148.11–0.45, where star-formation candidates are projected on to molecular gas. The analytical model of the 'collect and collapse' process shows that star-formation activity could have been triggered by the expansion of this H  ii region.  相似文献   

5.
To investigate the kinematics of the neutral material around the Gum nebula, emission from hydroxyl at 1667 MHz was observed at many positions over the region. Fitting models of expanding shells to these data together with previously published molecular line data shows that the diffuse molecular clouds and cometary globules form a single expanding shell centred on G261−2.5. The mean angular radius is 10.5° and its maximum radius is 14°. The models show that the distance range to the expansion centre is from 200 pc to 500 pc.
The path of the runaway O-star ζ Puppis passed within <0.5° of the expansion centre of the neutral shell ∼1.5 Myr ago. The supernova of the erstwhile binary companion of ζ Puppis is the probable origin of the Gum nebula and the swept up expanding neutral shell. The 500-pc distance to the supernova is adopted as the distance to the expansion centre of the neutral shell. At this distance the energy required to produce the observed expansion could have been met with a single supernova. The radii of the front and back faces of the shell are 130 and 70 pc respectively. The front face is expanding faster than the back face, at 14 and 8.5 km s−1 respectively.
The extent of the neutral shell matches the radio continuum and H α emission of the Gum nebula well. The photoionized gas in the nebula is probably primarily ionized by ζ Puppis, which is still within the neutral shell. No evidence was found for the IRAS -Vela shell as a separate expanding shell.  相似文献   

6.
We carried out the first 21-cm line observations of an extended region around the Wolf-Rayet star WR 102 and the associated nebula G2.4+1.4 with the RATAN-600 radio telescope. An irregular H I shell was identified. Its maximum expansion velocity reaches ~50 km s?1, and its outer diameter (at a distance of 3 kpc) is 56 pc. The mechanical luminosity of the stellar wind required to produce the observed shell is estimated to be ~0.8×1038 erg s?1; the age of the shell is ~3.4×105 yr. We compare the inferred parameters of the H I shell with the structure and kinematics of the ionized nebula and with the dust distribution in the region.  相似文献   

7.
A parameterization technique for the low-velocity part of a bipolar outflow is worked out. It is based on the analysis of spectral lines of the 13CO molecule. The mapping of the high-mass star formation region IRAS 05345+3157 is performed in the 13CO line (J = 1-0) at a frequency of 110.2 GHz. As follows from observation data, the bipolar outflow observed earlier in this object in 12CO molecular lines is pronounced in the 13CO molecular line as well (J = 1-0). Main parameters of the bipolar out-flow are determined with the use of the technique worked out.  相似文献   

8.
The well-known shell supernova remnant (SNR) HB3 is part of a feature-rich star-forming region together with the nebulae W3, W4, and W5. We study the HI structure around this SNR using five RATAN-600 drift curves obtained at a wavelength of 21 cm with an angular resolution of 2′ in one coordinate over the radial-velocity range ?183 to +60 km s?1 in a wider region of the sky and with a higher sensitivity than in previous works by other authors. The spatial-kinematic distribution of HI features around the SNR clearly shows two concentric expanding shells of gas that surround the SNR and coincide with it in all three coordinates (α, δ, and V). The outer shell has a radius of 133 pc, a thickness of 24 pc, and an expansion velocity of 48 km s?1. The mass of the gas in it is ≈2.3 × 105M. For the inner shell, these parameters are 78 pc, 36 pc, 24 km s? 1, and 0.9 × 105M, respectively. The inner shell is immediately adjacent to the SNR. Assuming that the outer shell was produced by the stellar wind and the inner shell arose from the shock wave of the SNR proper, we estimated the age of the outer shell, ≈1.7 × 106 yr, and the mechanical luminosity of the stellar wind, 1.5 × 1038 erg s?1. The inner shell has an age of ≈106 yr and corresponds to a total supernova explosion energy of ≈1052 erg.  相似文献   

9.
We present the characteristics of the dust comae of two comets, 126P/IRAS, a member of the Halley family (a near-isotropic comet), and 2P/Encke, an ecliptic comet. We have primarily used mid- and far-infrared data obtained by the ISOPHOT instrument aboard the Infrared Space Observatory (ISO) in 1996 and 1997, and mid-infrared data obtained by the SPIRIT III instrument aboard the Midcourse Space Experiment (MSX) in 1996. We find that the dust grains emitted by the two comets have markedly different thermal and physical properties. P/IRAS's dust grain size distribution appears to be similar to that of fellow family member 1P/Halley, with grains smaller than 5 microns dominating by surface area, whereas P/Encke emits a much higher fraction of big (20 μm and higher) grains, with the grain mass distribution being similar to that which is inferred for the interplanetary dust population. P/Encke's dearth of micron-scale grains accounts for its visible-wavelength classification as a “gassy” comet. These conclusions are based on analyses of both imaging and spectrophotometry of the two comets; this combination provides a powerful way to constrain cometary dust properties. Specifically, P/IRAS was observed preperihelion while 1.71 AU from the Sun, and seen to have a 15-arcmin long mid-infrared dust tail pointing in the antisolar direction. No sunward spike was seen despite the vantage point being nearly in the comet's orbital plane. The tail's total mass at the time was about 8×109 kg. The spectral energy distribution (SED) is best fit by a modified greybody with temperature T=265±15 K and emissivity ε proportional to a steep power law in wavelength λ: ελα, where α=0.50±0.20(2σ). This temperature is elevated with respect to the expected equilibrium temperature for this heliocentric distance. The dust mass loss rate was between 150-600 kg/s (95% confidence), the dust-to-gas mass loss ratio was about 3.3, and the albedo of the dust was 0.15±0.03. Carbonaceous material is depleted in the comet's dust by a factor of 2-3, paralleling the C2 depletion in P/IRAS's gas coma. P/Encke, on the other hand, observed while 1.17 AU from the Sun, had an SED that is best fit by a Planck function with T=270±15 K and no emissivity falloff. The dust mass loss rate was 70-280 kg/s (95% confidence), the dust-to-gas mass loss ratio was about 2.3, and the albedo of the dust was about 0.06±0.02. These conclusions are consistent with the strongly curved dust tail and bright dust trail seen by Reach et al. (2000; Icarus 148, 80) in their ISO 12-μm imaging of P/Encke. The observed differences in the P/IRAS and P/Encke dust are most likely due to the less evolved and insolated state of the P/IRAS nuclear surface. If the dust emission behavior of P/Encke is typical of other ecliptic comets, then comets are the major supplier of the interplanetary dust cloud.  相似文献   

10.
A star formation region connected with SNO 41 is investigated. The observations of this region were carried out in the 12CO (1-0) line and in the 1.2-mm (with SIMBA) with the 15-m SEST mm telescope (Cerro La Silla, Chile). A blue shifted outflow is revealed from the 12CO(1-0) observations, while a bipolar outflow is apparent from the 1.2-mm SIMBA image. In CO it seems that a very faint dust envelope around SNO 41 probably exists, which is expanding with a velocity of ∼10.5 km/s. The distance to SNO 41 is estimated as ∼1500 pc. There are outflows also present in 2MASS images. A spiral jet has a condensation (resembling a HH object) at the end. Another jet has a discontinuity and a bow-shock-like structure on it. In 2MASS images there are also spots resembling HH objects. In this region there is also a rather luminous point source (IRAS 08546-4254), which has IR colors typical for an YSO connected with a water maser. The detection of a strong CS (2-1) line emission toward IRAS 08546-4254, with the same velocity as the CO line, shows the existence of a high density core of molecular gas associated to this source. A methanol maser is also associated with that IRAS source. The existence of CS line emission and a methanol maser (at 6.669 Ghz) is an indication of the presence of a very young massive star. It is not excluded that this IRAS source is the center of outflows mentioned above, because this source coincides with the center of the 1.2-mm SIMBA image and also with the place of origin of the jet with bow-shock-like structure. Published in Astrofizika, Vol. 50, No. 1, pp. 5–15 (February 2007).  相似文献   

11.
We investigated the kinematics of ionized gas in an extended (20°×15°) region containing the X-ray Superbubble in Cygnus with the aim of finding the shell swept up by a strong wind from Cyg OB2. Hα observations were carried out with high angular and spectral resolutions using a Fabry-Perot interferometer attached to the 125-cm telescope at the Crimean Observatory of the Sternberg Astronomical Institute. We detected high-velocity gas motions, which could result from the expansion of the hypothetical shell at a velocity of 25–50 km s?1. Given the number of OB stars increased by Knödlseder (2000) by an order of magnitude, Cyg OB2 is shown to possess a wind that is strong enough [L w ? (1–2) × 1039 erg s?1] to produce a shell comparable in size to the X-ray Superbubble and to a giant system of optical filaments. Based on our measurements and on X-ray and infrared observations, we discuss possible observational manifestations of the shell swept up by the wind.  相似文献   

12.
The Infra-Red Astronomical Satellite (IRAS) observations of the zodiacal dust emission are used to fit the dust grain composition and distribution in the ecliptical plane. We obtain a good fit to the data for a density distribution of black-body grains given by p = pr 0.66/log(1.7r/R) for r < 0.87R and r < 3oR  相似文献   

13.
We present a fully sampled C18O (1–0) map towards the southern giant molecular cloud (GMC) associated with the H  ii region RCW 106, and use it in combination with previous 13CO (1–0) mapping to estimate the gas column density as a function of position and velocity. We find localized regions of significant 13CO optical depth in the northern part of the cloud, with several of the high-opacity clouds in this region likely associated with a limb-brightened shell around the H  ii region G333.6−0.2. Optical depth corrections broaden the distribution of column densities in the cloud, yielding a lognormal distribution as predicted by simulations of turbulence. Decomposing the 13CO and C18O data cubes into clumps, we find relatively weak correlations between size and linewidth, and a more sensitive dependence of luminosity on size than would be predicted by a constant average column density. The clump mass spectrum has a slope near −1.7, consistent with previous studies. The most massive clumps appear to have gravitational binding energies well in excess of virial equilibrium; we discuss possible explanations, which include magnetic support and neglect of time-varying surface terms in the virial theorem. Unlike molecular clouds as a whole, the clumps within the RCW 106 GMC, while elongated, appear to show random orientations with respect to the Galactic plane.  相似文献   

14.
In order to investigate the differences between the molecular clouds which are associated with the massive star forming regions and those which are not, we have performed the single-dish simultaneous observations of 12CO J=2-1 and J=3-2 lines toward a sample of 59 Spitzer Extended Green Objects (EGOs) as the massive star forming regions in the northern sky. Combining our results with the data of the 12CO J=1-0 observations toward the same sample EGOs in the literature, we have made the statistical comparisons on the intensities and linewidths of multiple 12CO lines between the molecular clouds associated with EGOs (EGO molecular clouds, in brief) and other non-EGO molecular clouds. On this basis, we have discussed the effects of the gas temperature, density, and velocity field distributions on the statistical characteristics of the two kinds of molecular clouds. It is found that both the EGO molecular clouds and non-EGO molecular clouds have similar mass ranges, hence we conclude that for the formation of massive stars, the key-important factor is probably not the total mass of a giant molecular cloud (GMC), but the volume filling factor of the molecular clumps in the GMC (or the compression extent of the molecular gas in the cloud).  相似文献   

15.
Based on RATAN-600 21-cm H I line observations with an angular resolution of 2.4', we studied the neutral-hydrogen distribution in the region of the supernova remnant (SNR) S 147 (G180.0-1.7). We detected a rotating shell of neutral gas immediately adjacent to the SNR that is expanding at a velocity of 20 km s?1. The H I shell is less distinct in the southeastern part and at negative radial velocities. The outer shell diameter is 90 pc; the H I mass in the shell is 2.2 × 104M. These data allowed us to estimate the SNR age, 6.5×105 yr, and the initial explosion energy, 2.2×1051 erg.  相似文献   

16.
Based on our Hα interferometric observations and CO data, we analyze the structure and kinematics of the gas in an extended region of the Cygnus arm around the recently discovered star WR 142a. We have established that WR 142a and the ionized hydrogen in its immediate neighborhood are associated with the complex of molecular clouds observed in a region with l ~ 78°–80°30′, b ~ 2°–3°20′, and V LSR ~ 4–16 km s?1. Traces of the action of the stellar wind from WR 142a on the ambient gas have been found to the northeast of the star in a region devoid of dense absorbing foreground clouds. These include very weak thin gas and dust filaments as well as high-velocity components of the Hα profile, which can be interpreted as a possible expansion of the shell swept up by the wind with a velocity as high as 50–80 km s?1. Giant regions of reduced CO emission dominated by high-velocity motions of ionized hydrogen have been detected. Stars of the Cyg OB2 association and the cluster NGC 6910 can be responsible for these motions.  相似文献   

17.
As dust emission in the far infrared (FIR) is a characteristic property of planetary nebulae we searched the Infrared Astronomical Satellite (IRAS) point-source catalogue for confirmatory evidence on the two new possible planetary nebulae S 68 and 248 - 5 identified by Fesen, Gull & Heckathorn (1983) and the high-excitation planetary nebula 76 + 36 detected by Sanduleak (1983). We identify the nebulae 248 - 5 and 76 + 36 with IRAS sources 07404 - 3240 and 17125 + 4919, respectively and have determined their dust temperature, total FIR emission and optical depth. We also set a lower limit ranging in value from 1.2 × 10-6 to 3.7 × 10-5 forM dust /M bd of the nebula 248 - 5 depending on whether its grain material is silicate or graphite. S 68 could not be identified with an IRAS source.  相似文献   

18.
We present our long-term photometric and spectroscopic observations of a high-latitude B supergiant with an infrared excess—the protoplanetary nebula IRAS 18062+2410. OurU BV observations in 2000–2006 have confirmed the rapid irregular photometric variability of the star with a maximum amplitude as high as 0 . m 4 in V that we found previously. The BV and UB color indices vary with amplitudes as high as 0 . m 10 and 0 . m 25, respectively, and show no clear correlation with the brightness. Our V-band CCD observations on 11 nights in 2006 have revealed brightness trends during the night. The variability of IRAS18062+2410 is similar in pattern to the light variations in other hot post-AGB objects and some of the nuclei of young planetary nebulae. We assume that pulsations and a variable stellar wind can be responsible for the variability of these stars. In addition to the rapid variability, our 12-year-long observations have revealed a systematic decline in the mean brightness of IRAS 18062+2410. This may be related to a rise in the temperature of the star at constant luminosity as a result of its evolution. Low-resolution spectroscopic observations have shown a systematic increase in the equivalent widths of the Hα, Hβ, [NII]λ6584 Å, OI λ8446 Å, and [OII] λ7320–7330 Å emission lines. The changes in the star’s emission line spectrum are probably caused by an increase in the degree of ionization of the gas shell due to a rise in the temperature of the ionizing star. Our photometric and spectroscopic observations of IRAS 18062+2410 confirm the previously made assumptions that the star evolves very rapidly to the region of planetary nebulae.  相似文献   

19.
Investigations of the zodiacal dust cloud give evidence for a significant contribution of asteroidal dust to the interplanetary dust cloud, a result which can now be compared to measurements of the ULYSSES dust detector during its passage of the asteroid belt. Especially we discuss the ULYSSES data with respect to the IRAS dust bands and consider geometric selection effects for the detector. From calculations of radiation pressure forces, we conclude that particles in the IRAS dust bands with massesm≥ 10−12g will stay in bound orbits after their release from asteroid fragmentation. This is already in the mass range (10−16–10−7g) of particles detectable with the dust detector onboard ULYSSES. The absence of these particles in the ULYSSES data cannot be explained exclusively in terms of their small detection probability. Thus we conclude that the size distribution of particles in the IRAS dust bands most probably cannot be continued to the submicrometer range. Concerning the global structure of the inner zodiacal cloud (i.e., about solar distancer< 3.5 AU) the ULYSSES data are not inconsistent with present models. Recent estimates of the total mass of the interplanetary cloud require a dust production rate of about 1014g/year of which a significant amount is assumed to result from the asteroids. Our estimate for the production of dust particles in an IRAS dust band, based on the assumption that the dust band results from a single destruction of an asteroid of 100 km size, yields a production rate of 1010g/year. Other models of the IRAS dust bands suggest production rates up to 1012g/year and also cannot provide a significant source of the dust cloud.  相似文献   

20.
Millimetre observations of three southern carbon stars, IRAS 07454-7112, IRAS 15082-4808 and IRAS 15194-5115 detected 14 molecular species and some of their isotopomers. The12C/13C ratio was found to vary between sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号