首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrogeochemistry of 26 wells belonging to ten different aquifers in the county of Ensenada, Baja California, is studied. These wells are all used to supply the rural communities in the region, which comprise ~37,000 inhabitants, excluding the city of Ensenada. High total dissolved solids (TDS) concentrations (maximum 7.35 g l−1) indicate that salt is a ubiquitous contaminant in the aquifers due to seawater intrusion. The aquifers that support extensive agriculture activities (Maneadero, San Quintín, San Simón and El Rosario) are characterized by higher N–NO3 concentrations (maximum 20 mg l−1) derived from fertilizers. Fluoride concentrations exceed the 1.5 mg l−1 Mexican official limit in only four wells. The enrichments of F in the southern aquifers are thought to be associated to water–rock interactions controlled mainly by Na–Ca equilibrium reactions with fluorite, as suggested from high dissolved Na concentrations in these waters. In the northern aquifer of Maneadero, no enrichment of Na is found and a geothermal source for F is likely. Water is hard to moderately hard, with Ca/Mg ratios >1. Although drinking water directly from the tap is not a common practice in these localities, most sources have concentrations of major ions and TDS that exceed the Mexican official limits.  相似文献   

2.
Twenty-six groundwater samples were collected from the Eastern Thessaly region and analysed by ICP-ES for these elements: Al, As, P, Pb, Zn, Mn, Fe, Cr, Sb, Cu, Na, Br, Cl, Si, Mg, Ag, Be, Bi, Dy, Er, Eu, Au, Ge, Ho, In, Ir, Os, Pt, Re, Rh, Ru, Lu, Hf, Hg, Tm, Zr and Nb. The objectives of the study were to assess the level of water contamination with respect to the EC and the USEPA health-based drinking water criteria. The geology of the studied area includes schists, amphibolites, marbles of Palaeozoic age, ophiolites, limestones of Triassic and Cretaceous age, Neogene and Quaternary deposits. The element ranges for groundwater samples are: Al 7–56 μg l−1, As 1–125 μg l−1, Br 6–60 μg l−1, Cl 500–25,000 μg l−1, Cr 1–6 μg l−1, Cu 1–15 μg l−1, Fe 10–352 μg l−1, Mg 2,940–40,100 μg l−1, Mn 0–8 μg l−1, Na 3,650–13,740 μg l−1, P 20–48 μg l−1, Pb 0–7 μg l−1, Sb 0–21 μg l−1, Si 3,310–13,240 μg l−1 and Zn 7–994 μg l−1. The results of groundwater analyses from the region of Eastern Thessaly showed elevated concentrations of As and Sb. Factor analysis explained 77.8% of the total variance of the data through five factors. Concentration of Br, Cl, Mg, Na and Si is directly related to the presence of saltwater in the aquifer, so grouping of these variables in factor 1 probably reflects the seawater intrusion. Al, As and Sb are known to form complexes in the environment, so grouping of these elements in factor 2 indicates their similar geochemical behaviour in the environment. The high negative loading of Mn in factor 2 indicates the presence of manganese oxides–hydroxides in the study area. Pb and Zn are associated together in sulphide mineralisation; so grouping of these elements in factor 3 reflects the sulphide mineralization paragenesis in the Melivoia area. P and Cu are associated together in phosphate fertilizers; so grouping of these variables in factor 4 could be related to agricultural practices. Cr, Fe, Mn and Mg are associated together in iron and manganese oxides–hydroxides and the weathering products of the olivine of the ultrabasic rocks; so grouping of these elements in factor 5 reflects the lithology of the area. There is a natural contamination of groundwaters with elevated concentrations of As and Sb due to the presence of the arsenopyrite and stibnite mineralisation in the Melivoia, Sotiritsa and Ano Polydendri areas. Contamination over the health-based drinking water guidelines given by EC and EPA has been investigated from nine sampling sites out of 26 of Eastern Thessaly region.  相似文献   

3.
A geophysical and geochemical study was carried out in the Maneadero aquifer, Baja California, Mexico, with the aim of identifying potential recharge locations for reclaimed water (RW). This coastal aquifer shows a significant decline in water quality, both as a result of salinization and the pollution by nitrates. Total dissolved solids (TDS) in an extreme case increased from 4 g l?1 in 2000 to 27 g l?1 in 2011. Nitrate as N–NO3, reaches 46 mg l?1. Based on their geochemistry and location, four water-quality zones are identified: (a) fresh water with TDS ≈ 1 g l?1 in the upper creeks, (b) mixture between seawater and freshwater in the coast-proximal sections, (c) water significantly enriched in nitrate below and adjacent to the town of Maneadero, and (d) brackish water with no signs of current interaction with freshwater. The 3D geophysics identifies the influence of modern recharge areas and also buried flow-paths down to at least 30 m depth. The locations best suitable for aquifer recharge are those with equal or higher TDS concentrations (>2.5 g l?1) than RW, which are located at the brackish water zone and/or at the coastal limits of the mixing zones.  相似文献   

4.
The chemical quality of groundwater of western Haryana, India was assessed for its suitability for drinking purposes. A total of 275 water samples were collected from deep aquifer based hand-pumps situated in 37 different villages/towns of Bhiwani region. The water samples were analyzed for different physico-chemical properties, e.g., pH, total dissolved solids (TDS), total harness (TH), total alkalinity (TA), calcium, magnesium, carbonate, bicarbonate, sulphate, chloride and fluoride concentrations. In this study, the average TDS content was greater ranging 1,692 (Bhiwani block) to 2,560 mg l−1 (Siwani block), and other important parameters of water, e.g., TA (442–1,232 mg l−1), TH (437–864 mg l−1) and bicarbonate (554–672 mg l−1), were also higher than maximum permissible limit by WHO or BIS. The fluoride appeared as a major problem of safe drinking water in this region. We recorded greater fluoride concentration, i.e., 86.0 mg l−1 from Motipura village that is highest fluoride level ever recorded for Haryana state. The average fluoride concentration ranged between 7.1 and 0.8 mg l−1 in different blocks of western Haryana. On the basis of fluoride concentration, Siwani block showed the maximum number of water samples (84% of total collected samples) unsuitable for drinking purposes (containing fluoride >1.5 mg l−1) followed by Charki Dadri block (58%), Bhiwani block (52%), Bawani Khera block (33%) and Loharu block (14%). This study clearly suggest that some health deteriorating chemicals in drinking water were at dangerous level and; therefore, water quality could be a major health threat for local residents of western Haryana. The high fluoride level in drinking water has posed some serious dental health risks in local residents.  相似文献   

5.
The study was designed to establish the distributions of trace metals, dissolved organic carbon, and inorganic nutrients as well as to assess the extent of anthropogenic inputs into the Narmada and Tapti rivers. Water and sediment qualities are variable in the rivers, and there are major pollution problems at certain locations, mainly associated with urban and industrial centers. The metal concentrations of samples of the aquatic compartments investigated were close to the maximum permissible concentration for the survival of aquatic life, except for higher values of Cu (5–763 μg l−1), Pb (24–376 μg l−1), Zn (24–730 μg l−1), and Cr (70–740 μg l−1) and for drinking water except for elevated concentrations of metals such as Pb, Fe (850–2,060 μg l−1), Cr, and Ni (20–120 μg l−1). In general, the concentrations of trace metals in the rivers vary down stream which may affect the “health” of the aquatic ecosystem and may also affect the health of the rural community that depends on the untreated river water directly for domestic use. The assessment of EF, I geo, and PLI in the sediments reveals overall moderate pollution in the river basins.  相似文献   

6.
Large-scale interaction between the Continental Intercalaire and the Djeffara aquifer systems in the southeast of Tunisia has been investigated with the aid of chemical and isotopic tracers. Two distinct groundwater types have been identified: (1) the Continental Intercalaire groundwater characterized by elevated temperatures (50–61.4°C), low δ18O (−8.4 to−7.87) and δ2H (−67.2 to−59) values and negligible radiocarbon content, both testifying its great age dating from the late Pleistocene period, and (2) the Djeffara groundwater with distinctly heavier isotopic composition (δ18O = −8.31 to −5.80, δ2H = −65.9 to −31.9). The Djeffara groundwaters reveal a distinct changes of physico-chemical and isotopic parameters near El Hamma Faults in the northwestern part of the Djeffara basin. These changes could possibly be explained by a vertical leakage from the Continental Intercalaire aquifer through El Hamma Faults. The mixing proportions inferred from stable isotope mass balance prove that the contribution of the Continental Intercalaire to the recharge of Djeffara aquifer is very significant and may reach 100% in the El Hamma region and in the northern part of Gabes. Isotope tracers strongly suggest that recent recharge to the Djeffara aquifer system is very limited. Its current yield, particularly in its central and northern parts can be maintained only thanks to large-scale underground inflow from the Continental Intercalaire aquifer system, which carries late Pleistocene palaeowater. Consequently, current exploitation of groundwater resources of the Djeffara aquifer has non-sustainable character.  相似文献   

7.
Within the KUSTOS program (Coastal Mass and Energy Fluxes-the Land-Sea Transition in the Southeastern North Sea) 28 to 36 German Bight stations were seasonally surveyed (summer 1994, spring 1995, winter 1995–1996) for light conditions, dissolved inorganic nutrient concentrations, chlorophylla (chla), and photosynthesis versus light intensity (P:E) parameters. Combining P:E curve characteristics with irradiance, attenuation, and chlorophyll data resulted in seasonal estimates of the spatial distribution of total primary production. These data were used for an annual estimate of the total primary production in the Bight. In winter 1996 the water throughout the German Bight was well mixed. Dissolved inorganic nutrient concentrations were relatively high (nitrogen [DIN], soluble reactive phosphorus [SRP], and silicate [Si]: 23, 1, and 10 μM, respectively). Chla levels generally were low (< 2 μg l−1) with higher concentrations (4–16 μg l−1) in North Frisian coastal waters. Phytoplankton was limited by light. Total primary production averaged 0.2 g C m−2 d−1. Two surveys in April and May 1995 captured the buildup of a strong seasonal thermo-cline accompained by the development of a typical spring diatom bloom. High nutrient levels in the mixed layer during the first survey (DIN, SRP, and Si: 46, 0.45, and 11 μM, respectively) decreased towards the second survey (DIN, SRP, and Si: 30.5, 0.12, and 1.5 μM, respectively) and average nutrient ratios shifted further towards highly imbalanced values (DIN:SRP: 136 in survey 1, 580 in survey 2; DIN:Si: 13.5 in survey 1, 96 in survey 2). Chla ranged from 2 to 16 μg l−1 for the first survey and rose to 12–50 μg l−1 in the second survey. Phytoplankton in nearshore areas continued to be light limited during the second survey, while data from the stratified regions in the open German Bight indicates SRP and Si limitation. Total primary production ranged from 4.0 to 6.3 g C m−2 d−1. During summer 1994 a strong thermal stratification was present in the German Bight proper and shallow coastal areas showed unusually warm (up to 22°C), mixed waters. Chla concentrations ranged from 2 to 18 μg l−1. P:E characteristics were relatively high despite the low nutrient regime (DIN, SRP, and Si: 2, 0.2, and 1.5 μM, respectively), resulting in overall high total primary production values with an average of 7.7 g C m−2 d−1. Based on the seasonal primary production estimates of the described surveys a budget calculation yielded a total annual production of 430 g C m−2 yr−1 for the German Bight.  相似文献   

8.
Arsenic and Antimony in Groundwater Flow Systems: A Comparative Study   总被引:3,自引:0,他引:3  
Arsenic (As) and antimony (Sb) concentrations and speciation were determined along flow paths in three groundwater flow systems, the Carrizo Sand aquifer in southeastern Texas, the Upper Floridan aquifer in south-central Florida, and the Aquia aquifer of coastal Maryland, and subsequently compared and contrasted. Previously reported hydrogeochemical parameters for all three aquifer were used to demonstrate how changes in oxidation–reduction conditions and solution chemistry along the flow paths in each of the aquifers affected the concentrations of As and Sb. Total Sb concentrations (SbT) of groundwaters from the Carrizo Sand aquifer range from 16 to 198 pmol kg−1; in the Upper Floridan aquifer, SbT concentrations range from 8.1 to 1,462 pmol kg−1; and for the Aquia aquifer, SbT concentrations range between 23 and 512 pmol kg−1. In each aquifer, As and Sb (except for the Carrizo Sand aquifer) concentrations are highest in the regions where Fe(III) reduction predominates and lower where SO4 reduction buffers redox conditions. Groundwater data and sequential analysis of the aquifer sediments indicate that reductive dissolution of Fe(III) oxides/oxyhydroxides and subsequent release of sorbed As and Sb are the principal mechanism by which these metalloids are mobilized. Increases in pH along the flow path in the Carrizo Sand and Aquia aquifer also likely promote desorption of As and Sb from mineral surfaces, whereas pyrite oxidation mobilizes As and Sb within oxic groundwaters from the recharge zone of the Upper Floridan aquifer. Both metalloids are subsequently removed from solution by readsorption and/or coprecipitation onto Fe(III) oxides/oxyhydroxides and mixed Fe(II)/Fe(III) oxides, clay minerals, and pyrite. Speciation modeling using measured and computed Eh values predicts that Sb(III) predominate in Carrizo Sand and Upper Floridan aquifer groundwaters, occurring as the Sb(OH)30 species in solution. In oxic groundwaters from the recharge zones of these aquifers, the speciation model suggests that Sb(V) occurs as the negatively charged Sb(OH)6 species, whereas in sufidic groundwaters from both aquifers, the thioantimonite species, HSb2S4 and Sb2S4 2−, are predicted to be important dissolved forms of Sb. The measured As and Sb speciation in the Aquia aquifer indicates that As(III) and Sb(III) predominate. Comparison of the speciation model results based on measured Eh values, and those computed with the Fe(II)/Fe(III), S(-II)/SO4, As(III)/As(V), and Sb(III)/Sb(V) couples, to the analytically determined As and Sb speciation suggests that the Fe(II)/Fe(III), S(-II)/SO4 couples exert more control on the in situ redox condition of these groundwaters than either metalloid redox couple.  相似文献   

9.
Analysis of 6 yr of monthly water quality data was performed on three distinct zones of Florida Bay: the eastern bay, central bay, and western bay. Each zone was analyzed for trends at intra-annual (seasonal), interannual (oscillation), and long-term (monotonic) scales. the variables TON, TOC, temperature, and TN∶TP ratio had seasonal maxima in the summer rainy season; APA and Chla, indicators of the size and activity of the microplankton tended to have maxima in the fall. In contrast, NO3 , NO2 , NH4 +, turbidity, and DOsat, were highest in the winter dry season. There were large changes in some of the water quality variables of Florida Bay over the study period. Salinity and TP concentrations declined baywide while turbidity increased dramatically. Salinity declined in the eastern, central, and western Florida Bay by 13.6‰, 11.6‰, and 5.6‰, respectively. Some of the decrease in the eastern bay could be accounted for by increased freshwater flows from the Everglades. In contrast to most other estuarine systems, increased runoff may have been partially responsible for the decrease in TP concentrations as input concentrations were 0.3–0.5 μM. Turbidity in the eastern bay increased twofold from 1991 to 1996, while in the central and western bays it increased by factors of 20 and 4, respectively. Chla concentrations were particularly dynamic and spatially heterogeneous. In the eastern bay, which makes up roughly half of the surface area of Florida Bay, Chla declined by 0.9 μg l−1 (63%). The hydrographically isolated central bay zone underwent a fivefold increase in phytoplankton biomass from 1989 to 1994, then rapidly declined to previous levels by 1996. In western Florida Bay there was a significant increase in Chla, yet median concentrations of Chla in the water column remained modest (∼2 μg l−1) by most estuarine standards. Only in the central bay did the DIN pool increase substantially (threefold to sixfold). Notably, these changes in turbidity and phytoplankton biomass occurred after the poorly-understood seagrass die-off in 1987. It is likely the death and decomposition of large amounts of seagrass biomass can at least partially explain some of the changes in water quality of Florida Bay, but the connections are temporally disjoint and the process indirect and not well understood.  相似文献   

10.
Ecological processes driving the oxygen budget were investigated in the downstream part of the Seine River and its estuary. Phytoplankton and bacterioplankton production were measured along longitudinal profiles (11 to 17 stations) in a range of low discharges from 300 m3 s−1 in 1993 and 1995 to 140 m3 s−1 in 1996. Values representative of the water column were based on investigations carried out during two tidal cycles. Net primary production was invariably greatest in the freshwater estuary, from Poses to Rouen (from 500 to 1,000 μg C l−1 d−1 between PK 202 and 240) and decreased sharply downstream (from 10 to 25 μg c l−1 d−1 between PK 250 and 310). This decrease was mainly due to the deterioration of the light conditions with the increase in depth and suspended matter concentrations. Heterotrophic activity was maximum in the reach where primary production declined. Judging by the production:respiration ratio (P:R), the system appeared clearly heterotrophic in the Seine River immediately downstream of the Paris region due to high allochthonous organic pollution by the incompletely treated Parisian effluents and in the part of the estuary characterized by intense degradation of autochthonous material. Because the effluents are not treated by a nitrification step, the oxygen consumption due to nitrification was much higher than expected from the P:R ratio. Oxidation of ammonium represented an oxygen consumption of between 1 and 14 g O2 m−2 d−1, almost equalling the sum of heterotrophic respirations that were barely balanced by photosynthesis. The reaeration flux at the water-atmosphere interface was deduced from the calculations and a reaeration coefficient was estimated.  相似文献   

11.
Among several salt lakes in the Thar Desert of western India, the Sambhar is the largest lake producing about 2 × 105 tons of salt (NaCl) annually. The “lake system” (lake waters, inflowing river waters, and sub-surface brines) provides a unique setting to study the geo-chemical behavior of uranium isotopes (238U, 234U) in conjunction with the evolution of brines over the annual wetting and evaporation cycles. The concentration of 238U and the total dissolved solids (TDS) in lake water increase from ~8 μg L−1 and ~8 g L−1 in monsoon to ~1,400 μg L−1 and 370 g L−1, respectively, during summer time. The U/TDS ratio (~1 μg g−1 salt) and the 234U/238U activity ratio (1.65 ± 0.05), however, remain almost unchanged throughout the year, except when U/TDS ratio approaches to 3.8 at/or beyond halite crystallization. These observations suggest that uranium behaves conservatively in the lake waters during the annual cycle of evaporation. Also, uranium and salt content (TDS) are intimately coupled, which has been used to infer the origin and source of salt in the lake basin. Furthermore, near uniform ratios in evaporating lake waters, when compared to the ratio in seawater (~0.1 μg g−1 salt and 1.14 ± 0.02, respectively), imply that aeolian transport of marine salts is unlikely to be significant source of salt to the lake in the present-day hydrologic conditions. This inference is further consistent with the chemical composition of wet-precipitation occurring in and around the Sambhar lake. The seasonal streams feeding the lake and groundwaters (within the lake’s periphery) have distinctly different ratios of U/TDS (2–69 μg g−1 salt) and 234U/238U (1.15–2.26) compared to those in the lake. The average U/TDS ratio of ~1 μg g−1 salt in lake waters and ~19 μg g−1 salt in river waters suggest dilution of the uranium content by the recycled salt and/or removal processes presently operating in the lake during the extraction of salt for commercial use. Based on mass-balance calculations, a conservative estimate of "uranium sink" (in the form of bittern crust) accounts for ~5 tons year−1 from the lake basin, an estimate similar to its input flux from rivers, i.e., 4.4 tons year−1.  相似文献   

12.
Groundwater in Palnad sub-basin is alkaline in nature and Na+-Cl-HCO3 type around Macherla-Karempudi area in Guntur district, Andhra Pradesh. Total dissolved solids (TDS) show strong positive correlation with Cl, Na+, Ca2+ and Mg2+, and positive correlation with SO42−, K+ and HCO3. Calcareous Narji Formation is the dominant aquifer lithology, and water-rock interaction controls the groundwater chemistry of the area. Chloro-alkaline indices (CAI) are positive at Miriyala, Adigopula, Mutukuru, Macherla and Durgi suggesting replacement of Na+ and K+ ions from water by Mg++ and Ca++ ions from country rock through base exchange reactions. Negative CAI values are recorded at Terala, Rayavaram and Nehrunagar, which indicate exchange of Na+ and K+ from the rock as cation-anion exchange reaction (chloro-alkaline disequilibrium). TDS range from 91 to 7100 ppm (Avg. 835 ppm) and exceed the prescribed limit of drinking water around Mutukuru, Durgi, Rayavaram, Khambampadu and Ammanizamalmadaka areas. Scanty rainfall and insufficient groundwater recharge are the prime factors responsible for high salinity in the area. Fluoride content ranges from <1 to 3.8 ppm and contaminated areas were identified around Macherla (1 sq km; 3.8ppm), Mandadi (1 sq km, 2.1ppm) and Adigopula (2 sq km, <1 to 3.7 ppm). The % Na+ content varies from 17 to 85 with the mean value of 57, and eighty (80) samples showed higher %Na+ in comparison to the prescribed limit of 60 for irrigation water. Sodium Adsorption Ratio (SAR) and % Na+ in relation to total salt concentration indicate that groundwater (51%) mostly falls under doubtful to poor quality for irrigation purpose. Groundwater of Adigopula village is fluoride contaminated and remedial measures are suggested to improve the water quality.  相似文献   

13.
A long mining history and unscientific exploitation of Jharia coalfield caused many environmental problems including water resource depletion and contamination. A geochemical study of mine water in the Jharia coalfield has been undertaken to assess its quality and suitability for domestic, industrial and irrigation uses. For this purpose, 92 mine water samples collected from different mining areas of Jharia coalfield were analysed for pH, electrical conductivity (EC), major cations (Ca2+, Mg2+, Na+, K+), anions (F, Cl, HCO3 , SO4 2−, NO3 ), dissolved silica (H4SiO4) and trace metals. The pH of the analysed mine water samples varied from 6.2 to 8.6, indicating mildly acidic to alkaline nature. Concentration of TDS varied from 437 to 1,593 mg L−1 and spatial differences in TDS values reflect the variation in lithology, surface activities and hydrological regime prevailing in the region. SO4 2− and HCO3 are dominant in the anion and Mg2+ and Ca2+ in the cation chemistry of mine water. High concentrations of SO4 2− in the mine water of the area are attributed to the oxidative weathering of pyrites. Ca–Mg–SO4 and Ca–Mg–HCO3 are the dominant hydrochemical facies. The drinking water quality assessment indicates that number of mine water samples have high TDS, total hardness and SO4 2− concentrations and needs treatment before its utilization. Concentrations of some trace metals (Fe, Mn, Ni, Pb) were also found to be above the desirable levels recommended for drinking water. The mine water is good to permissible quality and suitable for irrigation in most cases. However, higher salinity, residual sodium carbonate and Mg-ratio restrict its suitability for irrigation at some sites.  相似文献   

14.
Benthic oxygen, dinitrogen, and nutrient fluxes (NH4+, NO3, and PO43−) were measured monthly during a 1-year period at two locations in Weeks Bay, a shallow (1.4 m) and eutrophic estuary in Alabama. Gross primary productivity (GPP), ecosystem respiration (R), and net ecosystem metabolism were determined from high-frequency dissolved oxygen measurements. Peak water column NO3 (55 μM) and chlorophyll a (138 μg/l) concentrations were measured during spring and fall, respectively. Sediments were a net source of NH4+ (102 μmol m−2 h−1) and PO43− (0.9 μmol m−2 h−1) but a sink for NO3 (−30 μmol m−2 h−1). Benthic N2 fluxes indicated net N fixation (12 μmol N m−2 h−1). Sediment oxygen demand (0.55 g O2 m−2 day−1) accounted for <10% of R (7.3 g O2 m−2 day−1). Despite high GPP rates (4.7 g O2 m−2 day−1), the estuary was net heterotrophic. Benthic regeneration supplied, on average, 7.5% and 4% of primary productivity N and P demands, respectively. These results contrast with the conventional view that benthic regeneration accounts for a large fraction of phytoplankton nutrient demand in shallow estuaries.  相似文献   

15.
Nitrogen budget of a typical subterranean river in peak cluster karst area   总被引:2,自引:0,他引:2  
Karst groundwater is one of the important water resources for people in the world. There is an estimate that by 2028 karst groundwater will supply more than 80% of people in the world. However, several areas in the world are characterized by high nitrate concentrations in karst aquifers. In China, karst groundwater is also threatened by extensive use of fertilizer and pesticides, industry waste, septic systems and poultry, hog or cattle manure. In order to understand the water quality of a subterranean river in south China, especially the dynamic variation of nitrate, nitrogen input and output were determined via auto-monitored apparatus, manual observation and samples from 2004 to 2008 in Guancun subterranean river drainage area. Land use and anthropogenic activities were also investigated frequently. The results showed the range of nitrate variation was 2.56–15.40 mg l−1, with an average value of 6.60 mg l−1. Spatial variation of nitrate concentrations showed nitrate rose where there were villages and agriculture distribution. Long series of nitrate and discharge monitoring revealed there was a nitrate peak in spring just before the beginning of rainy season. Three rainfall events were selected for analysis of relations among hydrological process, water chemistry, and nitrate of the spring. The flood processes of the spring were divided into three or four phases according to change of water level and water chemistry. They were dominated by initial condition of aquifer, piston flow in soil and vadose, piston flow in conduit, diffuse recharge, and bypass recharge. The original condition of aquifer and rainfall pulse controlled recharge flow and changes of nitrate and hydro-chemical graphs of the spring. The quantity of nitrogen input in a year was 66.61 t, and the output was 21.24 t. Nitrogen leaching loss in base flow accounted for 76.11% in a year. Some measures should be taken to protect karst water in the very near future, so that health risks to the local people can be decreased.  相似文献   

16.
Measurements of low-level dissolved-sulfide concentrations in estuarine water from San Francisco Bay have been made using the sulfide-specific electrode after preservation, separation, and preconcentration of the sulfide species. The separation and preconcentration were acheived by coprecipitation of ZnS with Zn(OH)2 followed by collection and dissolution of the precipitate, giving concentration factors up to 160-fold Preconcentration provided sulfide solutions that were adequately measurable within the practical working range of the specific-ion electrode The sulfide detection limit with the preconcentration step is 0 02 μg/l Spike recoveries in the range of 81 to 10 1% have been achieved for laboratory-prepared samples having S2− concentrations as low as 0 6 μg/l and 84 to 100% for an estuarine sample spiked in the field with 2 μg/l (S(−II) Positive correlations have been found between dissolved S(−II) concentrations and concentrations of dissolved Cd, Cu, and Ni, negative correlations have been found between bisulfide (HS) activity and activities of Cd2+, Cu2+, and Ag+ species  相似文献   

17.
Nitrate pollution of groundwater in Toyserkan,western Iran   总被引:5,自引:2,他引:3  
A total of 95 groundwater samples were collected from Toyserkan, western Iran to assess the chemical composition and nitrate (NO3 ) status of groundwater. The most prevalent water type is Ca–HCO3 followed by water types Ca–Mg–HCO3. In comparison with the World Health Organization (WHO) drinking water guideline of 50 mg l−1 for NO3 , a total of nine wells (9.5%) showed higher concentrations. In 36% of samples (34) NO3 concentration was low (<20 mg l−1), and in 53.7% of samples (51), in the range of 20–50 mg l−1. The samples were classified into four groups based on NO3 and chloride (Cl) concentrations. Of the samples, 40% were classified as group 4 and were relatively high in Cl and NO3 (Cl > 47 mg l−1, NO3  > 27 mg l−1). The high correlation between NO3 and Cl (r = 0.86, p < 0.01) is consistent with a manure source, resulting from the practice of adding salt to animal feed. Pollution of groundwaters appeared to be affected by the application of inorganic fertilizer at greater than agronomic rates, Cl-salt inputs, and irrigation practice.  相似文献   

18.
Industrial wastewater is characterised by the presence of a great quantity of metallic micro-pollutants, among which chromium by its mobility, contaminates the surface and groundwater. The study of different aquifers within the area of Annaba (Algeria) shows extremely variable chromium concentrations in the unconfined aquifer (0–0.22 mg l−1), which becomes practically null in dry period; on the other hand, they remain relatively constant in the deep confined aquifer (about 0.04 mg l−1). To specify the mechanisms of chromium migration in the aquifer system, a study of space–time evolution of chromium concentrations in unconfined aquifer was undertaken, while considering the kinetics of diffusion in the deeper aquifer. Chromium, indirectly reduced microbiologically by sulphate-reducer bacteria in the upper aquifer, is likely to anticipate the auto-depuration capacity of the ground and to reduce the quality of groundwater.  相似文献   

19.
The present work was conducted in the Sinai Peninsula (1) to identify the recharge and flow characteristics and to evaluate the continuity of the Lower Cretaceous Nubian Sandstone aquifer; and (2) to provide information for the aquifer's rational appraisal. Isotopic and hydrochemical compositions combined with the geological and hydrogeological settings were used for this purpose. A considerable depletion in isotopic content (oxygen-18 and deuterium) and low d-excess values exist in the studied groundwater, reflecting the contribution of old meteoric water that recharged the aquifer in pluvial times. Modern recharge also occurs from precipitation that falls on the aquifer outcrops. The wide scatter of the data points around the two meteoric lines, the global meteoric water line (GMWL) and Mediterranean meteoric water line (MMWL), in the δ18O–δD diagram indicates considerable variation in recharge conditions (amount, altitude, temperature, air masses, distances from catchment, overland flow, etc.). The isotopic composition in the El-Bruk area is minimum (18O=–9.53‰), very close to the average value of the Western Desert Nubian Sandstone (18O=–10‰), where the local structural and lithologic conditions retard groundwater flow and the main bulk of water becomes noncyclic. The continuity of the aquifer in northern and central Sinai is evidenced by the isotopic similarity between samples taken from above and below the central Sinai Ragabet El-Naam fault, the distribution of potentiometric head, and hydrogeological cross sections. The combination of isotopic composition in terms of 18O and chemical composition in terms of TDS and salt contents is the basis for separating the studied groundwater into groups that reflect the recharge sources and isotopic and chemical modifications during flow. Electronic Publication  相似文献   

20.
In this paper, we analysed the monitored data from nine groundwater-monitoring transects in the lower reaches of Tarim River during the five times of stream water deliveries to the river transect where the stream flow ceased. The results showed that the groundwater depth in the lower reaches of Tarim River rose from −9.30 m before the conveyances to −8.17 and −6.50 m after the first and second conveyances, −5.81 and −6.00 m after the third and fourth the conveyance, and −4.73 m after the fifth. The horizontal extent of groundwater recharge was gradually enlarged along both sides of the channel of conveyance, i.e., from 250 m in width after the first conveyance to 1,050 m away from the channel after the fourth delivery. With the rising groundwater level, the concentrations of major anions Cl, SO42− and cations Ca2+, Mg2+, Na+, as well as total dissolved solids (TDS) in groundwater underwent a significant change. The spatial variations in groundwater chemistry indicated that the groundwater chemistry at the transect near Daxihaizi Reservoir changed earlier than that farther from it. In the same transect, the chemical variations were earlier in the monitoring well close to watercourse than that farther away from the stream. In general, the concentration of the major ions and TDS at each monitoring well increased remarkably when the water delivery started, and decreased with the continued water delivery, and then increased once again at the end of the study period. Hence, the whole study period may be divided into three stages: the initial stage, the intermediate stage and the later stage. According to the three stages of groundwater chemistry reaction to water delivery and the relationships between groundwater chemical properties and groundwater depths, we educe that under the situation of water delivery, the optimum groundwater depth in the lower reaches of the Tarim River should be −5 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号