首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Most of fire severity studies use field measures of composite burn index (CBI) to represent forest fire severity and fit the relationships between CBI and Landsat imagery derived differenced normalized burn ratio (dNBR) to predict and map fire severity at unsampled locations. However, less attention has been paid on the multi-strata forest fire severity, which represents fire activities and ecological responses at different forest layers. In this study, using field measured fire severity across five forest strata of dominant tree, intermediate-sized tree, shrub, herb, substrate layers, and the aggregated measure of CBI as response variables, we fit statistical models with predictors of Landsat TM bands, Landsat derived NBR or dNBR, image differencing, and image ratioing data. We model multi-strata forest fire in the historical recorded largest wildfire in California, the Big Sur Basin Complex fire. We explore the potential contributions of the post-fire Landsat bands, image differencing, image ratioing to fire severity modeling and compare with the widely used NBR and dNBR. Models using combinations of post-fire Landsat bands perform much better than NBR, dNBR, image differencing, and image ratioing. We predict and map multi-strata forest fire severity across the whole Big Sur fire areas, and find that the overall measure CBI is not optimal to represent multi-strata forest fire severity.  相似文献   

2.

Background

Accurate, high-resolution mapping of aboveground carbon density (ACD, Mg C ha-1) could provide insight into human and environmental controls over ecosystem state and functioning, and could support conservation and climate policy development. However, mapping ACD has proven challenging, particularly in spatially complex regions harboring a mosaic of land use activities, or in remote montane areas that are difficult to access and poorly understood ecologically. Using a combination of field measurements, airborne Light Detection and Ranging (LiDAR) and satellite data, we present the first large-scale, high-resolution estimates of aboveground carbon stocks in Madagascar.

Results

We found that elevation and the fraction of photosynthetic vegetation (PV) cover, analyzed throughout forests of widely varying structure and condition, account for 27-67% of the spatial variation in ACD. This finding facilitated spatial extrapolation of LiDAR-based carbon estimates to a total of 2,372,680 ha using satellite data. Remote, humid sub-montane forests harbored the highest carbon densities, while ACD was suppressed in dry spiny forests and in montane humid ecosystems, as well as in most lowland areas with heightened human activity. Independent of human activity, aboveground carbon stocks were subject to strong physiographic controls expressed through variation in tropical forest canopy structure measured using airborne LiDAR.

Conclusions

High-resolution mapping of carbon stocks is possible in remote regions, with or without human activity, and thus carbon monitoring can be brought to highly endangered Malagasy forests as a climate-change mitigation and biological conservation strategy.  相似文献   

3.

Background

Human-caused disturbance to tropical rainforests—such as logging and fire—causes substantial losses of carbon stocks. This is a critical issue to be addressed in the context of policy discussions to implement REDD+. This work reviews current scientific knowledge about the temporal dynamics of degradation-induced carbon emissions to describe common patterns of emissions from logging and fire across tropical forest regions. Using best available information, we: (i) develop short-term emissions factors (per area) for logging and fire degradation scenarios in tropical forests; and (ii) describe the temporal pattern of degradation emissions and recovery trajectory post logging and fire disturbance.

Results

Average emissions from aboveground biomass were 19.9 MgC/ha for logging and 46.0 MgC/ha for fire disturbance, with an average period of study of 3.22 and 2.15 years post-disturbance, respectively. Longer-term studies of post-logging forest recovery suggest that biomass accumulates to pre-disturbance levels within a few decades. Very few studies exist on longer-term (>10 years) effects of fire disturbance in tropical rainforests, and recovery patterns over time are unknown.

Conclusions

This review will aid in understanding whether degradation emissions are a substantial component of country-level emissions portfolios, or whether these emissions would be offset by forest recovery and regeneration.
  相似文献   

4.

Background

Forests play an important role in mitigating global climate change by capturing and sequestering atmospheric carbon. Quantitative estimation of the temporal and spatial pattern of carbon storage in forest ecosystems is critical for formulating forest management policies to combat climate change. This study explored the effects of land cover change on carbon stock dynamics in the Wujig Mahgo Waren forest, a dry Afromontane forest that covers an area of 17,000 ha in northern Ethiopia.

Results

The total carbon stocks of the Wujig Mahgo Waren forest ecosystems estimated using a multi-disciplinary approach that combined remote sensing with a ground survey were 1951, 1999, and 1955 GgC in 1985, 2000 and 2016 years respectively. The mean carbon stocks in the dense forests, open forests, grasslands, cultivated lands and bare lands were estimated at 181.78?±?27.06, 104.83?±?12.35, 108.77?±?6.77, 76.54?±?7.84 and 83.11?±?8.53 MgC ha?1 respectively. The aboveground vegetation parameters (tree density, DBH and height) explain 59% of the variance in soil organic carbon.

Conclusions

The obtained estimates of mean carbon stocks in ecosystems representing the major land cover types are of importance in the development of forest management plan aimed at enhancing mitigation potential of dry Afromontane forests in northern Ethiopia.
  相似文献   

5.

Background

Forest resources supply a wide range of environmental services like mitigation of increasing levels of atmospheric carbon dioxide (CO2). As climate is changing, forest managers have added pressure to obtain forest resources by following stand management alternatives that are biologically sustainable and economically profitable. The goal of this study is to project the effect of typical forest management actions on forest C levels, given a changing climate, in the Moscow Mountain area of north-central Idaho, USA. Harvest and prescribed fire management treatments followed by plantings of one of four regionally important commercial tree species were simulated, using the climate-sensitive version of the Forest Vegetation Simulator, to estimate the biomass of four different planted species and their C sequestration response to three climate change scenarios.

Results

Results show that anticipated climate change induces a substantial decrease in C sequestration potential regardless of which of the four tree species tested are planted. It was also found that Pinus monticola has the highest capacity to sequester C by 2110, followed by Pinus ponderosa, then Pseudotsuga menziesii, and lastly Larix occidentalis.

Conclusions

Variability in the growth responses to climate change exhibited by the four planted species considered in this study points to the importance to forest managers of considering how well adapted seedlings may be to predicted climate change, before the seedlings are planted, and particularly if maximizing C sequestration is the management goal.  相似文献   

6.

Background  

Forests can sequester carbon dioxide, thereby reducing atmospheric concentrations and slowing global warming. In the U.S., forest carbon stocks have increased as a result of regrowth following land abandonment and in-growth due to fire suppression, and they currently sequester approximately 10% of annual US emissions. This ecosystem service is recognized in greenhouse gas protocols and cap-and-trade mechanisms, yet forest carbon is valued equally regardless of forest type, an approach that fails to account for risk of carbon loss from disturbance.  相似文献   

7.
Forest fires are one of the most important causes of environmental alteration in Mediterranean countries. Discrimination of different degrees of burn severity is critical for improving management of fire-affected areas. This paper aims to evaluate the usefulness of land surface temperature (LST) as potential indicator of burn severity. We used a large convention-dominated wildfire, which occurred on 19–21 September, 2012 in Northwestern Spain. From this area, a 1-year series of six LST images were generated from Landsat 7 Enhanced Thematic Mapper (ETM+) data using a single channel algorithm. Further, the Composite Burn Index (CBI) was measured in 111 field plots to identify the burn severity level (low, moderate, and high). Evaluation of the potential relationship between post-fire LST and ground measured CBI was performed by both correlation analysis and regression models. Correlation coefficients were higher in the immediate post-fire LST images, but decreased during the fall of 2012 and increased again with a second maximum value in summer, 2013. A linear regression model between post-fire LST and CBI allowed us to represent spatially predicted CBI (R-squaredadj > 85%). After performing an analysis of variance (ANOVA) between post-fire LST and CBI, a Fisher's least significant difference test determined that two burn severity levels (low-moderate and high) could be statistically distinguished. The identification of such burn severity levels is sufficient and useful to forest managers. We conclude that summer post-fire LST from moderate resolution satellite data may be considered as a valuable indicator of burn severity for large fires in Mediterranean forest ecosytems.  相似文献   

8.

Background

Several previous global REDD+ cost studies have been conducted, demonstrating that payments for maintaining forest carbon stocks have significant potential to be a cost-effective mechanism for climate change mitigation. These studies have mostly followed highly aggregated top-down approaches without estimating the full range of REDD+ costs elements, thus underestimating the actual costs of REDD+. Based on three REDD+ pilot projects in Tanzania, representing an area of 327,825 ha, this study explicitly adopts a bottom-up approach to data assessment. By estimating opportunity, implementation, transaction and institutional costs of REDD+ we develop a practical and replicable methodological framework to consistently assess REDD+ cost elements.

Results

Based on historical land use change patterns, current region-specific economic conditions and carbon stocks, project-specific opportunity costs ranged between US$ -7.8 and 28.8 tCOxxxx for deforestation and forest degradation drivers such as agriculture, fuel wood production, unsustainable timber extraction and pasture expansion. The mean opportunity costs for the three projects ranged between US$ 10.1 ?C 12.5 tCO2. Implementation costs comprised between 89% and 95% of total project costs (excluding opportunity costs) ranging between US$ 4.5 - 12.2 tCO2 for a period of 30 years. Transaction costs for measurement, reporting, verification (MRV), and other carbon market related compliance costs comprised a minor share, between US$ 0.21 - 1.46 tCO2. Similarly, the institutional costs comprised around 1% of total REDD+ costs in a range of US$ 0.06 ?C 0.11 tCO2.

Conclusions

The use of bottom-up approaches to estimate REDD+ economics by considering regional variations in economic conditions and carbon stocks has been shown to be an appropriate approach to provide policy and decision-makers robust economic information on REDD+. The assessment of opportunity costs is a crucial first step to provide information on the economic baseline situation of deforestation and forest degradation agents and on the economic incentives required to halt unsustainable land use. Since performance based REDD+ carbon payments decrease over time (as deforestation rates drop and for each saved ha of forest payments occur once), investments in REDD+ implementation have a crucial role in triggering sustainable land use systems by investing in the underlying assets and the generation of sustainable revenue streams to compensate for opportunity costs of land use change. With a potential increase in the land value due to effective REDD+ investments, expenditures in an enabling institutional environment for REDD+ policies are crucial to avoid higher deforestation pressure on natural forests.  相似文献   

9.
针对目前森林防灭火事前、事中和事后的监测需求,本文综合利用测绘地理信息技术,构建了测绘地理信息服务森林防灭火的综合性智能化监测技术体系。通过获取多源地理信息数据,构建森林防灭火数据库,面向日常防灭火能力评估、灾前常态化监测、灾中动态监测、灾后评估及灾后长期植被恢复监测,提供了一系列的智能化监测服务。通过在小珠山森林火灾中的实践检验了该体系的实用性,结果显示该监测体系可以为森林防灭火工作提供可靠、精准的智能化地理信息解决方案。  相似文献   

10.
Forest disturbances such as harvesting, wildfire and insect infestation are critical ecosystem processes affecting the carbon cycle. Because carbon dynamics are related to time since disturbance, forest stand age that can be used as a surrogate for major clear-cut/fire disturbance information has recently been recognized as an important input to forest carbon cycle models for improving prediction accuracy. In this study, forest disturbances in the USA for the period of ∼1990–2000 were mapped using 400+ pairs of re-sampled Landsat TM/ETM scenes in 500m resolution, which were provided by the Landsat Ecosystem Disturbance Adaptive Processing System project. The detected disturbances were then separated into two five-year age groups, facilitated by Forest Inventory and Analysis (FIA) data, which was used to calculate the area of forest regeneration for each county in the USA.  相似文献   

11.
After 110 years of sustained fire suppression, the 2000 Jasper fire consumed about 33,785 ha (83,500 acres), or 12% of the Black Hills National Forest. We mapped the severity of the Jasper fire using Landsat imagery and then investigated post-fire vegetation regeneration conditions using field data, Quickbird imagery, and regression modeling. We found that fire scar and severity could be delineated and mapped accurately based on remotely sensed and field-acquired data. Results also revealed that vegetative recovery relative to burn severity, topography, and soil factors could be modeled effectively using local geographically weighted regression (GWR). Further regeneration assessment revealed that severely or heavily burned areas were more rapidly re-vegetated with grasses, forbs, and woody shrubs in the short term. The field survey showed that prescribed burns retard crown fires and that after eight years ponderosa pine seedlings have not re-established.  相似文献   

12.
Careful evaluation of forest regeneration and vegetation recovery after a fire event provides vital information useful in land management. The use of remotely sensed data is considered to be especially suitable for monitoring ecosystem dynamics after fire. The aim of this work was to map post-fire forest regeneration and vegetation recovery on the Mediterranean island of Thasos by using a combination of very high spatial (VHS) resolution (QuickBird) and hyperspectral (EO-1 Hyperion) imagery and by employing object-based image analysis. More specifically, the work focused on (1) the separation and mapping of three major post-fire classes (forest regeneration, other vegetation recovery, unburned vegetation) existing within the fire perimeter, and (2) the differentiation and mapping of the two main forest regeneration classes, namely, Pinus brutia regeneration, and Pinus nigra regeneration. The data used in this study consisted of satellite images and field observations of homogeneous regenerated and revegetated areas. The methodology followed two main steps: a three-level image segmentation, and, a classification of the segmented images. The process resulted in the separation of classes related to the aforementioned objectives. The overall accuracy assessment revealed very promising results (approximately 83.7% overall accuracy, with a Kappa Index of Agreement of 0.79). The achieved accuracy was 8% higher when compared to the results reported in a previous work in which only the EO-1 Hyperion image was employed in order to map the same classes. Some classification confusions involving the classes of P. brutia regeneration and P. nigra regeneration were observed. This could be attributed to the absence of large and dense homogeneous areas of regenerated pine trees in the study area.  相似文献   

13.

Background  

Coarse and fine woody debris are substantial forest ecosystem carbon stocks; however, there is a lack of understanding how these detrital carbon stocks vary across forested landscapes. Because forest woody detritus production and decay rates may partially depend on climatic conditions, the accumulation of coarse and fine woody debris carbon stocks in forests may be correlated with climate. This study used a nationwide inventory of coarse and fine woody debris in the United States to examine how these carbon stocks vary by climatic regions and variables.  相似文献   

14.
Previous research has shown that forest roads are an important feature in many landscapes and have significant effects on wildfire ignition and cessation. However, forest road effects on burn severity have not been studied at the landscape level. Therefore, the overarching goal of our study is to identify the influences of road edge effects on the spatial patterns of burn severity. We analyzed six fires within the Okanogan–Wenatchee National Forest on the eastern slope of the Cascades mountain range of central Washington.We generated two categories for assessing road variables: (1) Primary Road Effect Zone (area within 150 m of the nearest road) and (2) Secondary Road Effect Zone (area from 150 m to 300 m to the nearest road). A regular sampling grid including one out of every 9 cells was created for each fire.These grids were intersected with burn severity data in the form of the Relative Differenced Normalized Burn Ratio (RdNBR), road distance category, stream distance, elevation, slope, terrain shape index, heat load index, canopy cover, and fuel type. We fit spatial regression models with RdNBR as the dependent variable.We found that high burn severity is less likely to occur in the Primary Road Effect Zone for most fires, although one fire exhibited the opposite relationship. Forest road edge effects were hypothesized to be an important determinant of burn severity because fragmentation created by roads alters the roadside fuel profile and environment and because road corridors create barriers to fire spread. Recognizing roadside effects on burn severity patterns highlights the need for further study of the range of effects that roads have on fuels and the fire environment and the potential for incorporating road effects into landscape-level assessments of fire risk.  相似文献   

15.

Background  

Historic carbon emissions are an important foundation for proposed efforts to Reduce Emissions from Deforestation and forest Degradation and enhance forest carbon stocks through conservation and sustainable forest management (REDD+). The level of uncertainty in historic carbon emissions estimates is also critical for REDD+, since high uncertainties could limit climate benefits from credited mitigation actions. Here, we analyzed source data uncertainties based on the range of available deforestation, forest degradation, and forest carbon stock estimates for the Brazilian state of Mato Grosso during 1990-2008.  相似文献   

16.

Background

Quantification of ecosystem services, such as carbon (C) storage, can demonstrate the benefits of managing for both production and habitat conservation in agricultural landscapes. In this study, we evaluated C stocks and woody plant diversity across vineyard blocks and adjoining woodland ecosystems (wildlands) for an organic vineyard in northern California. Carbon was measured in soil from 44 one m deep pits, and in aboveground woody biomass from 93 vegetation plots. These data were combined with physical landscape variables to model C stocks using a geographic information system and multivariate linear regression.

Results

Field data showed wildlands to be heterogeneous in both C stocks and woody tree diversity, reflecting the mosaic of several different vegetation types, and storing on average 36.8 Mg C/ha in aboveground woody biomass and 89.3 Mg C/ha in soil. Not surprisingly, vineyard blocks showed less variation in above- and belowground C, with an average of 3.0 and 84.1 Mg C/ha, respectively.

Conclusions

This research demonstrates that vineyards managed with practices that conserve some fraction of adjoining wildlands yield benefits for increasing overall C stocks and species and habitat diversity in integrated agricultural landscapes. For such complex landscapes, high resolution spatial modeling is challenging and requires accurate characterization of the landscape by vegetation type, physical structure, sufficient sampling, and allometric equations that relate tree species to each landscape. Geographic information systems and remote sensing techniques are useful for integrating the above variables into an analysis platform to estimate C stocks in these working landscapes, thereby helping land managers qualify for greenhouse gas mitigation credits. Carbon policy in California, however, shows a lack of focus on C stocks compared to emissions, and on agriculture compared to other sectors. Correcting these policy shortcomings could create incentives for ecosystem service provision, including C storage, as well as encourage better farm stewardship and habitat conservation.
  相似文献   

17.
The knowledge of biomass stocks in tropical forests is critical for climate change and ecosystem services studies. This research was conducted in a tropical rain forest located near the city of Libreville (the capital of Gabon), in the Akanda Peninsula. The forest cover was stratified in terms of mature, secondary and mangrove forests using Landsat-ETM data. A field inventory was conducted to measure the required basic forest parameters and estimate the aboveground biomass (AGB) and carbon over the different forest classes. The Shuttle Radar Topography Mission (SRTM) data were used in combination with ground-based GPS measurements to derive forest heights. Finally, the relationships between the estimated heights and AGB were established and validated. Highest biomass stocks were found in the mature stands (223 ± 37 MgC/ha), followed by the secondary forests (116 ± 17 MgC/ha) and finally the mangrove forests (36 ± 19 MgC/ha). Strong relationships were found between AGB and forest heights (R2 > 0.85).  相似文献   

18.

Background

Urban forests reduce greenhouse gas emissions by storing and sequestering considerable amounts of carbon. However, few studies have considered the local scale of urban forests to effectively evaluate their potential long-term carbon offset. The lack of precise, consistent and up-to-date forest details is challenging for long-term prognoses. Therefore, this review aims to identify uncertainties in urban forest carbon offset assessment and discuss the extent to which such uncertainties can be reduced by recent progress in high resolution remote sensing. We do this by performing an extensive literature review and a case study combining remote sensing and life cycle assessment of urban forest carbon offset in Berlin, Germany.

Main text

Recent progress in high resolution remote sensing and methods is adequate for delivering more precise details on the urban tree canopy, individual tree metrics, species, and age structures compared to conventional land use/cover class approaches. These area-wide consistent details can update life cycle inventories for more precise future prognoses. Additional improvements in classification accuracy can be achieved by a higher number of features derived from remote sensing data of increasing resolution, but first studies on this subject indicated that a smart selection of features already provides sufficient data that avoids redundancies and enables more efficient data processing. Our case study from Berlin could use remotely sensed individual tree species as consistent inventory of a life cycle assessment. However, a lack of growth, mortality and planting data forced us to make assumptions, therefore creating uncertainty in the long-term prognoses. Regarding temporal changes and reliable long-term estimates, more attention is required to detect changes of gradual growth, pruning and abrupt changes in tree planting and mortality. As such, precise long-term urban ecological monitoring using high resolution remote sensing should be intensified, especially due to increasing climate change effects. This is important for calibrating and validating recent prognoses of urban forest carbon offset, which have so far scarcely addressed longer timeframes. Additionally, higher resolution remote sensing of urban forest carbon estimates can improve upscaling approaches, which should be extended to reach a more precise global estimate for the first time.

Conclusions

Urban forest carbon offset can be made more relevant by making more standardized assessments available for science and professional practitioners, and the increasing availability of high resolution remote sensing data and the progress in data processing allows for precisely that.
  相似文献   

19.

Background  

Standing dead trees are one component of forest ecosystem dead wood carbon (C) pools, whose national stock is estimated by the U.S. as required by the United Nations Framework Convention on Climate Change. Historically, standing dead tree C has been estimated as a function of live tree growing stock volume in the U.S.'s National Greenhouse Gas Inventory. Initiated in 1998, the USDA Forest Service's Forest Inventory and Analysis program (responsible for compiling the Nation's forest C estimates) began consistent nationwide sampling of standing dead trees, which may now supplant previous purely model-based approaches to standing dead biomass and C stock estimation. A substantial hurdle to estimating standing dead tree biomass and C attributes is that traditional estimation procedures are based on merchantability paradigms that may not reflect density reductions or structural loss due to decomposition common in standing dead trees. The goal of this study was to incorporate standing dead tree adjustments into the current estimation procedures and assess how biomass and C stocks change at multiple spatial scales.  相似文献   

20.
植被冠层可燃物含水率FMC(Fuel Moisture Content)是评估野火风险及估算火灾蔓延速率的重要指标。以中国西部6个典型研究区为例,基于辐射传输模型,利用Landsat 5 TM及Landsat 8 OLI遥感数据,开展草原、森林冠层FMC定量反演研究。为克服基于物理模型的病态反演问题、FMC自身的弱敏感性问题及西南森林多具复杂的双层冠层结构问题,研究中考虑了模型参数之间的相关特征,使用多波段遥感数据及耦合辐射传输模型等方法。反演结果显示,总体植被冠层FMC反演精度R~2为0.64,RMSE为44.86%,其中草地冠层FMC的反演精度(R~2=0.64,RMSE=47.57%)略低于森林冠层FMC的反演精度(R~2=0.71,RMSE=30.82%)。为进一步论证该反演结果对野火风险评估的有效性,研究中选取并分析了2011年3月2日于云南大理白族自治州剑川县金华镇金和村森林火灾爆发前、爆发时及灾后该区域植被冠层FMC的变化特征。结果显示,火灾爆发时该地区植被冠层FMC明显低于火灾发生前后(约一月时间)植被冠层FMC,证明了本文FMC反演结果对野火风险评估的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号