首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 145 毫秒
1.
We study solar modulation of galactic cosmic rays (GCRs) during the deep solar minimum, including the declining phase, of solar cycle 23 and compare the results of this unusual period with the results obtained during similar phases of the previous solar cycles 20, 21, and 22. These periods consist of two epochs each of negative and positive polarities of the heliospheric magnetic field from the north polar region of the Sun. In addition to cosmic-ray data, we utilize simultaneous solar and interplanetary plasma/field data including the tilt angle of the heliospheric current sheet. We study the relation between simultaneous variations in cosmic ray intensity and solar/interplanetary parameters during the declining and the minimum phases of cycle 23. We compare these relations with those obtained for the same phases in the three previous solar cycles. We observe certain peculiar features in cosmic ray modulation during the minimum of solar cycle 23 including the record high GCR intensity. We find, during this unusual minimum, that the correlation of GCR intensity is poor with sunspot number (correlation coefficient R=?0.41), better with interplanetary magnetic field (R=?0.66), still better with solar wind velocity (R=?0.80) and much better with the tilt angle of the heliospheric current sheet (R=?0.92). In our view, it is not the diffusion or the drift alone, but the solar wind convection that is the most likely additional effect responsible for the record high GCR intensity observed during the deep minimum of solar cycle 23.  相似文献   

2.
Long-term variations of galactic cosmic rays were compared with the behavior of various solar activity indices and heliospheric parameters during the current solar cycle. This study continues previous works where the cosmic-ray intensity for the solar cycles 20, 21, and 22 was well simulated from the linear combination of the sunspot number, the number of grouped solar flares, and the geomagnetic index A p. The application of this model to the current solar cycle characterized by many peculiarities and extreme solar events led us to study more empirical relations between solar-heliospheric variables, such as the interplanetary magnetic field, coronal mass ejections, and the tilt of the heliospheric current sheet, and cosmic-ray modulation. By analyzing monthly cosmic-ray data from the Neutron Monitor Stations of Oulu (cutoff rigidity 0.81 GV) and Moscow (2.42 GV) the contribution of these parameters in the ascending, maximum, and descending phases of the cycle was investigated and it is shown that a combination of these parameters reproduces the majority of the modulation potential variations during this cycle. The approach applied makes it possible to better describe the behavior of cosmic rays in the epochs of the solar maxima, which could not be done before. An extended study of the time profiles, the correlations, and the time lags of the cosmic-ray intensity against these parameters using the method of minimizing RMS over all the considered period 1996 – 2006 determines characteristic properties of this cycle as being an odd cycle. Moreover, the obtained hysteresis curves and a correlative analysis during the positive polarity (qA>0, where q is the particle charge) and during the negative polarity (qA<0) intervals of the cycle result in significantly different behavior between solar and heliospheric parameters. The time lag and the correlation coefficient of the cosmic-ray intensity are higher for the solar indices in comparison to the heliospheric ones. A similar behavior also appears in the case of the intervals with positive and negative polarity of the solar magnetic field.  相似文献   

3.
We study the relationship of the 27-day variations of the galactic cosmic ray intensity with similar variations of the solar wind velocity and the interplanetary magnetic field based on observational data for the Bartels rotation period # 2379 of 23 November 2007 – 19 December 2007. We develop a three-dimensional (3-D) model of the 27-day variation of galactic cosmic ray intensity based on the heliolongitudinally dependent solar wind velocity. A consistent, divergence-free interplanetary magnetic field is derived by solving Maxwell’s equations with a heliolongitudinally dependent 27-day variation of the solar wind velocity reproducing in situ observations. We consider two types of 3-D models of the 27-day variation of galactic cosmic ray intensity, i) with a plane heliospheric neutral sheet, and ii) with the sector structure of the interplanetary magnetic field. The theoretical calculations show that the sector structure does not significantly influence the 27-day variation of galactic cosmic ray intensity, as had been shown before, based on observational data. Furthermore, good agreement is found between the time profiles of the theoretically expected and experimentally obtained first harmonic waves of the 27-day variation of the galactic cosmic ray intensity (with a correlation coefficient of 0.98±0.02). The expected 27-day variation of the galactic cosmic ray intensity is inversely correlated with the modulation parameter ζ (with a correlation coefficient of −0.91±0.05), which is proportional to the product of the solar wind velocity V and the strength of the interplanetary magnetic field B (ζ∼VB). The high anticorrelation between these quantities indicates that the predicted 27-day variation of the galactic cosmic ray intensity mainly is caused by this basic modulation effect.  相似文献   

4.
Galactic cosmic rays (GCRs) encounter an outward-moving solar wind with cyclic magnetic-field fluctuation and turbulence. This causes convection and diffusion in the heliosphere. The GCR counts from the ground-based neutron monitor stations show intensity changes that are anti-correlated with the sunspot numbers with a lag of a few months. GCRs experience various types of modulation from different solar activity features and influence space weather and the terrestrial climate. In this work, we investigate certain aspects of the GCR modulation at low cut-off rigidity (R c≈1 GV) in relation to some solar and geomagnetic indices for the entire solar cycle 23 (1996?–?2008). We separately study the GCR modulation during the ascending phase of cycle 23 including its maximum (1996?–?2002) and the descending phase including its minimum (2003?–?2008). We find that during the descending phase, the GCR recoveries are much faster than those of the solar parameters with negative time-lag. The results are discussed in light of modulation models, including drift effects and previous results.  相似文献   

5.
R. P. Kane 《Solar physics》2006,233(1):107-115
This paper examines the variations of coronal mass ejections (CMEs) and interplanetary CMEs (ICMEs) during solar cycle 23 and compares these with those of several other indices. During cycle 23, solar and interplanetary parameters had an increase from 1996 (sunspot minimum) to ∼2000, but the interval 1998–2002 had short-term fluctuations. Sunspot numbers had peaks in 1998, 1999, 2000 (largest), 2001 (second largest), and 2002. Other solar indices had matching peaks, but the peak in 2000 was larger than the peak in 2001 only for a few indices, and smaller or equal for other solar indices. The solar open magnetic flux had very different characteristics for different solar latitudes. The high solar latitudes (45–90) in both N and S hemispheres had flux evolutions anti-parallel to sunspot activity. Fluxes in low solar latitudes (0–45) evolved roughly parallel to sunspot activity, but the finer structures (peaks etc. during sunspot maximum years) did not match with sunspot peaks. Also, the low latitude fluxes had considerable N–S asymmetry. For CMEs and ICMEs, there were increases similar to sunspots during 1996–2000, and during 2000–2002, there was good matching of peaks. But the peaks in 2000 and 2001 for CMEs and ICMEs had similar sizes, in contrast to the 2000 peak being greater than the 2001 peak for sunspots. Whereas ICMEs started decreasing from 2001 onwards, CMEs continued to remain high in 2002, probably due to extra contribution from high-latitude prominences, which had no equivalent interplanetary ICMEs or shocks. Cosmic ray intensity had features matching with those of sunspots during 2000–2001, with the 2000 peak (on a reverse scale, actually a cosmic ray decrease or trough) larger than the 2001 peak. However, cosmic ray decreases started with a delay and ended with a delay with respect to sunspot activity.  相似文献   

6.
The flux rate of cosmic rays incident on the Earth’s upper atmosphere is modulated by the solar wind and the Earth’s magnetic field. The amount of solar wind is not constant due to changes in solar activity in each solar cycle, and hence the level of cosmic ray modulation varies with solar activity. In this context, we have investigated the variability and the relationship of cosmic ray intensity with solar, interplanetary, and geophysical parameters from January 1982 through December 2008. Simultaneous observations have been made to quantify the exact relationship between the cosmic ray intensity and those parameters during the solar maxima and minima, respectively. It is found that the stronger the interplanetary magnetic field, solar wind plasma velocity, and solar wind plasma temperature, the weaker the cosmic ray intensity. Hence, the lowest cosmic ray intensity has good correlations with simultaneous solar parameters, while the highest cosmic ray intensity does not. Our results show that higher solar activity is responsible for a higher geomagnetic effect and vice versa.  相似文献   

7.
Caballero  R.  Valdés-Galicia  J.F. 《Solar physics》2003,212(1):209-223
We analyze the evolution of cosmic ray intensity detected by six neutron monitors located at high altitude from 1990 to 1999, that includes most of solar cycle 22 and the start of cycle 23. This set of neutron monitors covers a wide range of geomagnetic cutoff rigidities. We discuss the most significant characteristics of the cosmic ray modulation during the period as: the extraordinary decreases produced by the events of the first half of 1991, the significant two step evolution of the recovery phase of solar cycle 22 and the start of cycle 23. We also determine the rigidity dependence of the different phases of the modulation cycle. Cosmic ray intensity correlations with several solar activity parameters as sunspots, microwave flux at 10.7 cm and solar flares and with the intensity of the interplanetary magnetic field are studied.  相似文献   

8.
Monthly coronal mass ejection (CME) counts, – for all CMEs and CMEs with widths >?30°, – and monthly averaged speeds for the events in these two groups were compared with both the monthly averaged cosmic ray intensity and the monthly sunspot number. The monthly P i-index, which is a linear combination of monthly CME count rate and average speed, was also compared with the cosmic ray intensity and sunspot number. The main finding is that narrow CMEs, which were numerous during 2007?–?2009, are ineffective for modulation. A cross-correlation analysis, calculating both the Pearson (r) product–moment correlation coefficient and the Spearman (ρ) rank correlation coefficient, has been used. Between all CMEs and cosmic ray intensity we found correlation coefficients r=??0.49 and ρ=??0.46, while between CMEs with widths >?30° and cosmic ray intensity we found r=??0.75 and ρ=??0.77, which implies a significant increase. Finally, the best expression for the P i-index for the examined period was analyzed. The highly anticorrelated behavior among this CME index, the cosmic ray intensity (r=??0.84 and ρ=??0.83), and the sunspot number (r=+?0.82 and ρ=+?0.89) suggests that the first one is a very useful solar–heliospheric parameter for heliospheric and space weather models in general.  相似文献   

9.
A detailed correlative analysis between sunspot numbers (SSN) and tilt angle (TA) with cosmic ray intensity (CRI) in the neutron monitor energy range has been performed for the solar cycles 21, 22 and 23. It is found that solar activity parameters (SSN and TA) are highly (positive) correlated with each other and have inverse correlation with cosmic ray intensity (CRI). The ‘running cross correlation coefficient’ between cosmic ray intensity and tilt angle has also been calculated and it is found that the correlation is positive during the maxima of odd cycles 21 and 23. Moreover, the time lag analysis between CRI and SSN, and between CRI and TA has also been performed and is supported by hysteresis curves, which are wide for odd cycles and narrow for even cycles.  相似文献   

10.
We study galactic cosmic ray (GCR) modulation during solar cycle 24. For this study we utilize neutron monitor data together with sunspot number (SSN) and 10.7 cm solar radio flux (SRF) data. We plot hysteresis curve between the GCR intensity and SSN, and GCR intensity and SRF. We performed time-lag correlation analysis to determine the time lag between GCR intensity and solar activity parameters. The time lag is determined not only for the whole solar cycle, but also during the two polarity states of the heliosphere (A<0 and A>0) in solar cycle 24. We notice differences in time lags during two polarity epochs of the solar cycle. We discuss these differences in the light of existing modulation models. We compare the results of this very weak solar activity cycle with the corresponding results reported for the previous comparatively more active solar cycles.  相似文献   

11.
R. P. Kane 《Solar physics》2006,236(1):207-226
After increasing almost monotonically from sunspot minimum, sunspot activity near maximum falters and remains in a narrow grove for several tens of months. During the 2–3 years of turmoil near sunspot maximum, sunspots depict several peaks (Gnevyshev peaks). The spaces between successive peaks are termed as Gnevyshev Gaps (GG). An examination showed that the depths of the troughs varied considerably from one GG to the next in the same cycle, with magnitudes varying in a wide range (<1% to ∼20%). In any cycle, the sunspot patterns were dissimilar to those of other solar parameters, qualitatively as well as quantitatively, indicating a general turbulence, affecting different solar parameters differently. The solar polar magnetic field reversal does not occur at the beginning of the general turmoil; it occurs much later. For cosmic ray (CR) modulation which occurs deep in the heliosphere, one would have thought that the solar open magnetic field flux would play a crucial role, but observations show that the sunspot GGs are not reflected well in the solar open magnetic flux, where sometimes only one peak occurred (hence no GG at all), not matching with any sunspot peak and with different peaks in the northern and southern hemispheres (north – south asymmetry). Gaps are seen in interplanetary parameters but these do not match exactly with sunspot GGs. For CR data available only for five cycles (19 – 23), there are CR gaps in some cycles, but the CR gaps do not match perfectly with gaps in the solar open magnetic field flux or in interplanetary parameters or with sunspot GGs. Durations are different and/or there are variable delays, and magnitudes of the sunspot GGs and CR gaps are not proportional. Solar polar magnetic field reversal intervals do not coincide with either sunspot GGs or CR gaps, and some CR gaps start before magnetic field reversals, which should not happen if the magnetic field reversals are the cause of the CR gaps.  相似文献   

12.
Several studies show that temporal variations in the Galactic cosmic ray (GCR) intensity display a distinct 11-year periodicity due to solar modulation of the galactic cosmic rays in the heliosphere. The 11-year periodicity of GCRs is inversely proportional to, but out of phase with, the 11-year solar cycle, implying that there is a time lag between actual solar cycle and the GCR intensity, which is known as the hysteresis effect. In this study, we use the hysteresis effect to model the relationship between neutron counting rates (NCRs), an indicator of the GCR intensity, and sunspot numbers (SSNs) over the period that covers the last four solar cycles (20, 21, 22, and 23). Both linear and ellipse models were applied to SSNs during odd and even cycles in order to calculate temporal variations of NCRs. We find that ellipse modeling provides higher correlation coefficients for odd cycles compared to linear models, e.g. 0.97, 0.97, 0.92, and 0.97 compared to 0.69, 0.72, 0.53, and 0.68 for data from McMurdo, Swarthmore, South Pole, and Thule neutron monitors, respectively, during solar cycle 21 with overall improvement of 31 % for odd cycles. When combined to a continuous model, the better correlation observed for the odd cycles increases the overall correlation between observed and modeled NCRs. The new empirical model therefore provides a better representation of the relationship between NCRs and SSNs. A major goal of the ongoing research is to use the new non-linear empirical model to reconstruct SSNs on annual time scales prior to 1610, where we do not have observational records of SSNs, based on changes in NCRs reconstructed from 10Be in ice cores.  相似文献   

13.
To investigate the long-term modulation of galactic cosmic rays at the ground-based detector energies, the monthly values of the neutron monitor (Climax, Mt. Washington, Deep River, and Huancayo) and ionization chamber (Cheltenham/Fredericksburg, Huancayo, and Yakutsk) intensities have been correlated with the sunspot numbers (used as a proxy index for transient solar activity) for each phase of sunspot cycles 18 to 22. Systematic differences are found for results concerning odd and even sunspot cycles. During odd cycles (19 and 21) the onset time of cosmic-ray modulation is delayed when compared with the onset time of the sunspot cycle, while they are more similar during even (18, 20, and 22) cycles. Checking the green corona data, on a half-year basis, we found typical heliolatitudinal differences during ascending phases of consecutive sunspot cycles. This finding suggests a significant role of the latitudinal coronal behaviour in the heliospherical dynamics during a Hale cycle. Such effectiveness concerns not only the transient interplanetary perturbations but also the recurrent ones. In fact, when lag between cosmic-ray data and sunspot numbers is considered, the anticorrelation between both parameters is very high (correlation coefficient |r| > 0.9) for all the phases considered, except for the declining ones of cycles 20 and 21, when high-speed solar wind streams coming from coronal holes affect the cosmic-ray propagation, and theRz parameter is no longer the right proxy index for solar-induced effects in the interplanetary medium.  相似文献   

14.
The heliosphere is the region filled with magnetized plasma of mainly solar origin. It extends from the solar corona to well beyond the planets, and is separated from the interstellar medium by the heliopause. The latter is embedded in a complex and still unexplored boundary region. The characteristics of heliospheric plasma, fields, and energetic particles depend on highly variable internal boundary conditions, and also on quasi-stationary external ones. Both galactic cosmic rays and energetic particles of solar and heliospheric origin are subject to intensity variations over individual solar cycles and also from cycle to cycle. Particle propagation is controlled by spatially and temporally varying interplanetary magnetic fields, frozen into the solar wind. An overview is presented of the main heliospheric components and processes, and also of the relevant missions and data sets. Particular attention is given to flux variations over the last few solar cycles, and to extrapolated effects on the terrestrial environment.  相似文献   

15.
The purpose of the present communication is to identify the short-term (few tens of months) periodicities of several solar indices (sunspot number, Caii area and K index, Lyman , 2800 MHz radio emission, coronal green-line index, solar magnetic field). The procedure used was: from the 3-month running means (3m) the 37-month running means (37m) were subtracted, and the factor (3m – 37m) was examined for several parameters. For solar indices, considerable fluctuations were seen during the ± 4 years around sunspot maxima of cycles 18–23, and virtually no fluctuations were seen in the ± 2 years around sunspot minima. The spacings between successive peaks were irregular but common for various solar indices. Assuming that there are stationary periodicities, a spectral analysis was carried out which indicated periodicities of months: 5.1–5.7, 6.2–7.0, 7.6–7.9, 8.9–9.6, 10.4–12.0, 12.8–13.4, 14.5–17.5, 22–25, 28 (QBO), 31–36 (QBO), 41–47 (QTO). The periodicities of 1.3 year (15.6 months) and 1.7 years (20.4 months) often mentioned in the literature were seen neither often nor prominently. Other periodicities occurred more often and more prominently. For the open magnetic flux estimated by Wang, Lean, and Sheeley (2000) and Wang and Sheeley (2002), it was noticed that the variations were radically different at different solar latitudes. The open flux for < 45 solar latitudes had variations very similar (parallel) to the sunspot cycle, while open flux for > 45 solar latitudes had variations anti-parallel to the sunspot cycle. The open fluxes, interplanetary magnetic field and cosmic rays, all showed periodicities similar to those of solar indices. Many peaks (but not all) matched, indicating that the open flux for < 45 solar latitudes was at least partially an adequate carrier of the solar characteristics to the interplanetary space and thence for galactic cosmic ray modulation.  相似文献   

16.
The long-term modulation of cosmic ray intensity (CRI) by different solar activity (SA) parameters and an inverse correlation between individual SA parameter and CRI is well known. Earlier, it has been suggested that the concept of multi-parametric modulation of CRI may play an important role in the study of long-term modulation of CRI. In the present study, we have tried to investigate the combined effect of a set of two SA parameters in the long-term modulation of CRI. For this purpose, we have used a new statistical technique called “Running multiple correlation method”, based on the “Running cross correlation method”. The running multiple correlation functions among different sets of two SA parameters (e.g., sunspot numbers and solar flux, sunspot numbers and coronal index, sunspot numbers and grouped solar flares, etc.) and CRI have been correlated separately. It is found that the strength of multiple correlation (among two SA parameters and CRI) and cross correlation (between individual SA parameter and CRI) is almost similar throughout the period of investigation (1955–2005). It is also found that the multiple correlations among various SA parameters and CRI is stronger during ascending and descending phases of the solar cycles and it becomes weaker during maxima and minima of the solar cycles, which is in accordance with the linear relationship between SA parameters and CRI. The values of multiple correlation functions among different sets of SA parameters and CRI fall well within the 95% confidence interval. In the view of odd-even hypothesis of solar cycles, the strange behaviour of present cycle 23 (odd cycle), as this is characterized by many peculiarities with double peaks and many quiet periods (Gnevyshev gaps) interrupted the solar activity (for example April 2001, October–November 2003 and January 2005), leads us to speculate that the solar cycle 24 (even cycle) might be of exceptional nature.  相似文献   

17.
Based on the monthly sunspot numbers (SSNs), the solar-flare index (SFI), grouped solar flares (GSFs), the tilt angle of heliospheric current sheet (HCS), and cosmic-ray intensity (CRI) for Solar Cycles 21?–?24, a detailed correlation study has been performed using the cycle-wise average correlation (with and without time lag) method as well as by the “running cross-correlation” method. It is found that the slope of regression lines between SSN and SFI, as well as between SSN and GSF, is continuously decreasing from Solar Cycle 21 to 24. The length of regression lines has significantly decreased during Cycles 23 and 24 in comparison to Cycles 21 and 22. The cross-correlation coefficient (without time lag) between SSN–CRI, SFI–CRI, and GSF–CRI has been found to be almost the same during Cycles 21 and 22, while during Cycles 23 and 24 it is significantly higher between SSN–CRI and HCS–CRI than for SFI–CRI and GSF–CRI. Considering time lags of 1 to 20 months, the maximum correlation coefficient (negative) amongst all of the sets of solar parameters is observed with almost the same time lags during Cycles 21?–?23, whereas exceptional behaviour of the time lag has been observed during Cycle 24, as the correlation coefficient attains its maximum value with two time lags (four and ten months) in the case of the SSN–CRI relationship. A remarkably large time lag (22 months) between HCS and CRI has been observed during the odd-numbered Cycle 21, whereas during another odd cycle, Cycle 23, the lag is small (nine months) in comparison to that for other solar/flare parameters (13?–?15 months). On the other hand, the time lag between SSN–CRI and HCS–CRI has been found to be almost the same during even-numbered Solar Cycles 22 and 24. A similar analysis has been performed between SFI and CRI, and it is found that the correlation coefficient is maximum at zero time lag during the present solar cycle. The GSFs have shown better maximum correlation with CRI as compared to SFI during Cycles 21 to 23, indicating that GSF could also be used as a significant solar parameter to study the cosmic-ray modulation. Furthermore, the running cross-correlation coefficient between SSN–CRI and HCS–CRI, as well as between solar-flare activity parameters (SFI and GSF) and CRI is observed to be strong during the ascending and descending phases of solar cycles. The level of cosmic-ray modulation during the period of investigation shows the appropriateness of different parameters in different cycles, and even during the different phases of a particular solar cycle. We have also studied the galactic cosmic-ray modulation in relation to combined solar and heliospheric parameters using the empirical model suggested by Paouris et al. (Solar Phys.280, 255, 2012). The proposed model for the calculation of the modulated cosmic-ray intensity obtained from the combination of solar and heliospheric parameter gives a very satisfactory value of standard deviation as well as \(R^{2}\) (the coefficient of determination) for Solar Cycles 21?–?24.  相似文献   

18.
In this work an analysis of a series of complex cosmic ray events that occurred between 17 January 2005 and 23 January 2005 using solar, interplanetary and ground based cosmic ray data is being performed. The investigated period was characterized both by significant galactic cosmic ray (GCR) and solar cosmic ray (SCR) variations with highlighted cases such as the noticeable series of Forbush effects (FEs) from 17 January 2005 to 20 January 2005, the Forbush decrease (FD) on 21 January 2005 and the ground level enhancement (GLE) of the cosmic ray counter measurements on 20 January 2005. The analysis is focusing on the aforementioned FE cases, with special attention drawn on the 21 January 2005, FD event, which demonstrated several exceptional features testifying its uniqueness. Data from the ACE spacecraft, together with GOES X-ray recordings and LASCO CME coronagraph images were used in conjunction to the ground based recordings of the Worldwide Neutron Monitor Network, the interplanetary data of OMNI database and the geomagnetic activity manifestations denoted by K p and D st indices. More than that, cosmic ray characteristics as density, anisotropy and density gradients were also calculated. The results illustrate the state of the interplanetary space that cosmic rays crossed and their corresponding modulation with respect to the multiple extreme solar events of this period. In addition, the western location of the 21 January 2005 solar source indicates a new cosmic ray feature, which connects the position of the solar source to the cosmic ray anisotropy variations. In the future, this feature could serve as an indicator of the solar source and can prove to be a valuable asset, especially when satellite data are unavailable.  相似文献   

19.
The ability to predict times of greater galactic cosmic ray (GCR) fluxes is important for reducing the hazards caused by these particles to satellite communications, aviation, or astronauts. The 11-year solar-cycle variation in cosmic rays is highly correlated with the strength of the heliospheric magnetic field. Differences in GCR flux during alternate solar cycles yield a 22-year cycle, known as the Hale Cycle, which is thought to be due to different particle drift patterns when the northern solar pole has predominantly positive (denoted as qA>0 cycle) or negative (qA<0) polarities. This results in the onset of the peak cosmic-ray flux at Earth occurring earlier during qA>0 cycles than for qA<0 cycles, which in turn causes the peak to be more dome-shaped for qA>0 and more sharply peaked for qA<0. In this study, we demonstrate that properties of the large-scale heliospheric magnetic field are different during the declining phase of the qA<0 and qA>0 solar cycles, when the difference in GCR flux is most apparent. This suggests that particle drifts may not be the sole mechanism responsible for the Hale Cycle in GCR flux at Earth. However, we also demonstrate that these polarity-dependent heliospheric differences are evident during the space-age but are much less clear in earlier data: using geomagnetic reconstructions, we show that for the period of 1905?–?1965, alternate polarities do not give as significant a difference during the declining phase of the solar cycle. Thus we suggest that the 22-year cycle in cosmic-ray flux is at least partly the result of direct modulation by the heliospheric magnetic field and that this effect may be primarily limited to the grand solar maximum of the space-age.  相似文献   

20.
The existence of the 22-year modulation of cosmic ray intensity is pointed out, using data of the ion chamber at Huancayo and the neutron monitors at Ottawa and Deep River for about four solar cycles. The modulation consists of two discrete states (high and low intensities), corresponding respectively to those of the polarity of the polar magnetic field of the Sun. This can be interpreted on the basis of the following hypothesis; when the polar magnetic field of the Sun is nearly parallel to the galactic magnetic field, they could easily connect with each other, so that galactic cosmic rays could intrude more easily into the heliomagnetosphere along the magnetic line of force, as compared with those in the anti-parallel state of the magnetic fields. The observed intensity difference between two states is about 4.3 ± 0.2% for neutron monitor (Pc = 1.5GV). The abnormal increase in proton (0.28–0.42 GV) and electron (0.41-3.24 GV) fluxes in the 20th solar cycle and the sudden appearance of anomalous components (He+, etc.) since 1972 can be also explained on the basis of the present hypothesis. The transition between the two states has a time lag behind the polarity reversal, depending on the cosmic ray rigidity, such as about 1 year for the neutron monitor (Pc = 1.5 GV) and about 3.5 years for low rigidity components (P < 1 GV). These time lags could be explained on the basis of the generalized Simpson's coasting solar wind model and the general diffusion-convection theory on some assumptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号