首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we investigate the interplanetary consequences and travel time details of 58 coronal mass ejections (CMEs) in the Sun–Earth distance. The CMEs considered are halo and partial halo events of width \({>}\,120\)°. These CMEs occurred during 2009?–?2013, in the ascending phase of the Solar Cycle 24. Moreover, they are Earth-directed events that originated close to the centre of the solar disk (within about \(\pm30\)° from the Sun’s centre) and propagated approximately along the Sun–Earth line. For each CME, the onset time and the initial speed have been estimated from the white-light images observed by the LASCO coronagraphs onboard the SOHO space mission. These CMEs cover an initial speed range of \({\sim}\,260\,\mbox{--}\,2700~\mbox{km}\,\mbox{s}^{-1}\). For these CMEs, the associated interplanetary shocks (IP shocks) and interplanetary CMEs (ICMEs) at the near-Earth environment have been identified from in-situ solar wind measurements available at the OMNI data base. Most of these events have been associated with moderate to intense IP shocks. However, these events have caused only weak to moderate geomagnetic storms in the Earth’s magnetosphere. The relationship of the travel time with the initial speed of the CME has been compared with the observations made in the previous Cycle 23, during 1996?–?2004. In the present study, for a given initial speed of the CME, the travel time and the speed at 1 AU suggest that the CME was most likely not much affected by the drag caused by the slow-speed dominated heliosphere. Additionally, the weak geomagnetic storms and moderate IP shocks associated with the current set of Earth-directed CMEs indicate magnetically weak CME events of Cycle 24. The magnetic energy that is available to propagate CME and cause geomagnetic storm could be significantly low.  相似文献   

2.
Using in situ observations from the Advanced Composition Explorer (ACE), we have identified 70 Earth-affecting interplanetary coronal mass ejections (ICMEs) in Solar Cycle 24. Because of the unprecedented extent of heliospheric observations in Cycle 24 that has been achieved thanks to the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instruments onboard the Solar Terrestrial Relations Observatory (STEREO), we observe these events throughout the heliosphere from the Sun to the Earth, and we can relate these in situ signatures to remote sensing data. This allows us to completely track the event back to the source of the eruption in the low corona. We present a summary of the Earth-affecting CMEs in Solar Cycle 24 and a statistical study of the properties of these events including the source region. We examine the characteristics of CMEs that are more likely to be strongly geoeffective and examine the effect of the flare strength on in situ properties. We find that Earth-affecting CMEs in the first half of Cycle 24 are more likely to come from the northern hemisphere, but after April 2012, this reverses, and these events are more likely to originate in the southern hemisphere, following the observed magnetic asymmetry in the two hemispheres. We also find that as in past solar cycles, CMEs from the western hemisphere are more likely to reach Earth. We find that Cycle 24 lacks in events driving extreme geomagnetic storms compared to past solar cycles.  相似文献   

3.
The geometric localization technique (Pizzo and Biesecker, Geophys. Res. Lett. 31, 21802, 2004) can readily be used with Solar Terrestrial Relations Observatory (STEREO) Space Weather Beacon data to observe coronal mass ejection (CME) propagation within three-dimensional space in near-real time. This technique is based upon simple triangulation concepts and utilizes a series of lines of sight from two space-based observatories to determine gross characteristics of CMEs, such as location and velocity. Since this work is aimed at space weather applications, the emphasis is on use of COR2 coronagraph data, which has a field of view from 2.5R to 15R ; this spatial coverage allows us to observe the early temporal development of a CME, and hence to calculate its velocity, even for very fast CMEs. We apply this technique to highly-compressed COR2 beacon images for several CMEs at various spacecraft separation angles: 21 August 2007, when the separation angle between the two spacecraft was 26°; 31 December 2007 and 2 January 2008, when the separation angle was 44°; and 17 October 2008, when the spacecraft separation was 79°. We present results on the speed and direction of propagation for these events and discuss the error associated with this technique. We also compare our results to the two-dimensional plane-of-sky speeds calculated from STEREO and SOHO.  相似文献   

4.
The Solar TErrestrial RElations Observatory (STEREO) provides high cadence and high resolution images of the structure and morphology of coronal mass ejections (CMEs) in the inner heliosphere. CME directions and propagation speeds have often been estimated through the use of time-elongation maps obtained from the STEREO Heliospheric Imager (HI) data. Many of these CMEs have been identified by citizen scientists working within the SolarStormWatch project ( www.solarstormwatch.com ) as they work towards providing robust real-time identification of Earth-directed CMEs. The wide field of view of HI allows scientists to directly observe the two-dimensional (2D) structures, while the relative simplicity of time-elongation analysis means that it can be easily applied to many such events, thereby enabling a much deeper understanding of how CMEs evolve between the Sun and the Earth. For events with certain orientations, both the rear and front edges of the CME can be monitored at varying heliocentric distances (R) between the Sun and 1?AU. Here we take four example events with measurable position angle widths and identified by the citizen scientists. These events were chosen for the clarity of their structure within the HI cameras and their long track lengths in the time-elongation maps. We show a linear dependency with R for the growth of the radial width (W) and the 2D aspect ratio (??) of these CMEs, which are measured out to ???0.7?AU. We estimated the radial width from a linear best fit for the average of the four CMEs. We obtained the relationships W=0.14R+0.04 for the width and ??=2.5R+0.86 for the aspect ratio (W and R in units of?AU).  相似文献   

5.
The subject of interaction between the Corona Mass Ejections (CMEs) is important in the concept of space-weather studies. In this paper, we analyzed a set of 15 interacting events taken from the list compiled by Manoharan et al. (in J. Geophys. Res. 109:A06109, 2004) and their associated DH type II radio bursts. The pre and primary CMEs, and their associated DH type II bursts are identified using the SOHO/LASCO catalog and Wind/WAVES catalog, respectively. All the primary CMEs are associated with shocks and interplanetary CMEs. These CMEs are found to be preceded by secondary slow CMEs. Most of primary CMEs are halo type CME and much faster (Mean speed = 1205 km?s?1) than the pre CME (Mean speed = 450 km?s?1). The average delay between the pre and primary CMEs, drift rate of DH type IIs and interaction height are found to be 211 min, 0.878 kHz/s and 17.87 Ro, respectively. The final observed distance (FOD) of all pre CMEs are found to be less than 15 Ro and it is seen that many of the pre CMEs got merged with the primary CMEs, and, they were not traced as separate CMEs in the LASCO field of view. Some radio signatures are identified for these events in the DH spectrum around the time of interaction. The interaction height obtained from the height-time plots of pre and primary CMEs is found to have correlations with (i) the time delay between the two CMEs and (ii) the central frequency of emission in the radio signatures in the DH spectrum around the time of interaction. The centre frequency of emission in the DH spectrum around the time of interaction seems to decrease when the interaction height increases. This result is compared with an interplanetary density model of Saito et al. (in Solar Phys. 55:121, 1977).  相似文献   

6.
We study the characteristics of the CMEs and their association with the end-frequency of interplanetary (IP)-type-II bursts by analyzing a set of 138 events (IP-type-II bursts–flares–CMEs) observed during the period 1997–2012. The present analysis consider only the type II bursts having starting frequency \(< 14~\mbox{MHz}\) to avoid the extension of coronal type IIs. The selected events are classified into three groups depending on the end-frequency of type IIs as follows, (A) Higher, (B) Intermediate and (C) Lower end-frequency. We compare characteristics of CMEs, flares and type II burst for the three selected groups of events and report some of the important differences. The observed height of CMEs is compared with the height of IP type IIs estimated using the electron density models. By applying a density multiplier (\(m\)) to this model, the density has been constrained both in the upper corona and in the interplanetary medium, respectively as \(m= 1 \mbox{ to } 10\) and \(m = 1 \mbox{ to } 3\). This study indicates that there is a correlation between the observed CME height and estimated type II height for groups B and C events whereas this correlation is absent in group A. In all the groups (A, B & C), the different heights of CMEs and type II reveal that the type IIs are not only observed at the nose but also at the flank of the CMEs.  相似文献   

7.
N. Lugaz 《Solar physics》2010,267(2):411-429
Using data from the Heliospheric Imagers (HIs) onboard STEREO, it is possible to derive the direction of propagation of coronal mass ejections (CMEs) in addition to their speed with a variety of methods. For CMEs observed by both STEREO spacecraft, it is possible to derive their direction using simultaneous observations from the twin spacecraft and also, using observations from only one spacecraft with fitting methods. This makes it possible to test and compare different analysis techniques. In this article, we propose a new fitting method based on observations from one spacecraft, which we compare to the commonly used fitting method of Sheeley et al. (J. Geophys. Res. 104, 24739, 1999). We also compare the results from these two fitting methods with those from two stereoscopic methods, focusing on 12 CMEs observed simultaneously by the two STEREO spacecraft in 2008 and 2009. We find evidence that the fitting method of Sheeley et al. (J. Geophys. Res. 104, 24739, 1999) may result in significant errors in the determination of the CME direction when the CME propagates outside of 60°±20° from the Sun – spacecraft line. We expect our new fitting method to be better adapted to the analysis of halo or limb CMEs with respect to the observing spacecraft. We also find some evidence that direct triangulation in the HI fields-of-view should only be applied to CMEs propagating approximatively toward Earth (± 20° from the Sun – Earth line). Last, we address one of the possible sources of errors of fitting methods: the assumption of radial propagation. Using stereoscopic methods, we find that at least seven of the 12 studied CMEs had a heliospheric deflection of less than 20° as they propagated in the HI fields-of-view, which, we believe, validates this approximation.  相似文献   

8.
If all coronal mass ejections (CMEs) have flux ropes, then the CMEs should keep their helicity signs from the Sun to the Earth according to the helicity conservation principle. This study presents an attempt to answer the question from the Coordinated Data Analysis Workshop (CDAW), “Do all CMEs have flux ropes?”, by using a qualitative helicity sign comparison between interplanetary CMEs (ICMEs) and their CME source regions. For this, we select 34 CME–ICME pairs whose source active regions (ARs) have continuous SOHO/MDI magnetogram data covering more than 24 hr without data gap during the passage of the ARs near the solar disk center. The helicity signs in the ARs are determined by estimation of cumulative magnetic helicity injected through the photosphere in the entire source ARs. The helicity signs in the ICMEs are estimated by applying the cylinder model developed by Marubashi (Adv. Space. Res., 26, 55, 2000) to 16 second resolution magnetic field data from the MAG instrument onboard the ACE spacecraft. It is found that 30 out of 34 events (88 %) are helicity sign-consistent events, while four events (12 %) are sign-inconsistent. Through a detailed investigation of the source ARs of the four sign-inconsistent events, we find that those events can be explained by the local helicity sign opposite to that of the entire AR helicity (28 July 2000 ICME), incorrectly reported solar source region in the CDAW list (20 May 2005 ICME), or the helicity sign of the pre-existing coronal magnetic field (13 October 2000 and 20 November 2003 ICMEs). We conclude that the helicity signs of the ICMEs are quite consistent with those of the injected helicities in the AR regions from where the CMEs erupted.  相似文献   

9.
We report on the coronal hole (CH) influence on the 54 magnetic cloud (MC) and non-MC associated coronal mass ejections (CMEs) selected for studies during the Coordinated Data Analysis Workshops (CDAWs) focusing on the question if all CMEs are flux ropes. All selected CMEs originated from source regions located between longitudes 15E?–?15W. Xie, Gopalswamy, and St. Cyr (2013, Solar Phys., doi: 10.1007/s11207-012-0209-0 ) found that these MC and non-MC associated CMEs are on average deflected towards and away from the Sun–Earth line, respectively. We used a CH influence parameter (CHIP) that depends on the CH area, average magnetic field strength, and distance from the CME source region to describe the influence of all on-disk CHs on the erupting CME. We found that for CHIP values larger than 2.6 G the MC and non-MC events separate into two distinct groups where MCs (non-MCs) are deflected towards (away) from the disk center. Division into two groups was also observed when the distance to the nearest CH was less than 3.2×105 km. At CHIP values less than 2.6 G or at distances of the nearest CH larger than 3.2×105 km the deflection distributions of the MC and non-MCs started to overlap, indicating diminishing CH influence. These results give support to the idea that all CMEs are flux ropes, but those observed to be non-MCs at 1 AU could be deflected away from the Sun–Earth line by nearby CHs, making their flux rope structure unobservable at 1 AU.  相似文献   

10.
We have statistically studied the 344 Coronal Mass Ejections (CMEs) associated with flares and DH-type-II radio bursts (1??C?14 MHz) during 1997??C?2008. We found that only 3?% of the total CMEs (344) compared to the general population CMEs (13208) drives DH-type-II radio bursts (Gopalswamy in Solar Eruptions and Energetic Particles, AGU Geophys. Monogr. 165, 207, 2006). Out of 344 events we have selected 236 events for further analysis. We divided the events into two groups: i) disk events (within 45° from the disk center) and ii) limb events (beyond 45° but within 90° from the disk center). We find that the average CME speed of the limb events (1370?km?s?1) is three times, while for the disk events (1055?km?s?1) it is two times the average speed of the general population CMEs (433?km?s?1). The average widths of the limb events (129°) and disk events (116°) are two times greater than the average width of the general population CMEs (58°). We found a better correlation between the CME speed and width (correlation coefficient R=0.56) for the limb events than that of the disk events (R=0.47). The shock speed of the CMEs associated with DH-type-II radio bursts is found by applying Leblanc, Dulk, and Bougeret??s (Solar Phys. 183, 165, 1998) electron density model; the disk events are found to have an average speed of 1190 km?s?1 and that of the limb events is 1275 km?s?1. From this study we compare the CME properties between limb and disk events. The properties like CME speed, width, shock speed, and correlation between CME speed and width are found to be higher for limb events than disk events. The results in disk events are subject to projection effects, and this study stresses the importance of these effects.  相似文献   

11.
We present a study of coronal mass ejections (CMEs) which impacted one of the STEREO spacecraft between January 2008 and early 2010. We focus our study on 20 CMEs which were observed remotely by the Heliospheric Imagers (HIs) onboard the other STEREO spacecraft up to large heliocentric distances. We compare the predictions of the Fixed-?? and Harmonic Mean (HM) fitting methods, which only differ by the assumed geometry of the CME. It is possible to use these techniques to determine from remote-sensing observations the CME direction of propagation, arrival time and final speed which are compared to in-situ measurements. We find evidence that for large viewing angles, the HM fitting method predicts the CME direction better. However, this may be due to the fact that only wide CMEs can be successfully observed when the CME propagates more than 100° from the observing spacecraft. Overall eight CMEs, originating from behind the limb as seen by one of the STEREO spacecraft can be tracked and their arrival time at the other STEREO spacecraft can be successfully predicted. This includes CMEs, such as the events on 4 December 2009 and 9 April 2010, which were viewed 130° away from their direction of propagation. Therefore, we predict that some Earth-directed CMEs will be observed by the HIs until early 2013, when the separation between Earth and one of the STEREO spacecraft will be similar to the separation of the two STEREO spacecraft in 2009??C?2010.  相似文献   

12.
We examine solar sources for 20 interplanetary coronal mass ejections (ICMEs) observed in 2009 in the near-Earth solar wind. We performed a detailed analysis of coronagraph and extreme ultraviolet (EUV) observations from the Solar Terrestrial Relations Observatory (STEREO) and Solar and Heliospheric Observatory (SOHO). Our study shows that the coronagraph observations from viewpoints away from the Sun–Earth line are paramount to locate the solar sources of Earth-bound ICMEs during solar minimum. SOHO/LASCO detected only six CMEs in our sample, and only one of these CMEs was wider than 120°. This demonstrates that observing a full or partial halo CME is not necessary to observe the ICME arrival. Although the two STEREO spacecraft had the best possible configuration for observing Earth-bound CMEs in 2009, we failed to find the associated CME for four ICMEs, and identifying the correct CME was not straightforward even for some clear ICMEs. Ten out of 16 (63 %) of the associated CMEs in our study were “stealth” CMEs, i.e. no obvious EUV on-disk activity was associated with them. Most of our stealth CMEs also lacked on-limb EUV signatures. We found that stealth CMEs generally lack the leading bright front in coronagraph images. This is in accordance with previous studies that argued that stealth CMEs form more slowly and at higher coronal altitudes than non-stealth CMEs. We suggest that at solar minimum the slow-rising CMEs do not draw enough coronal plasma around them. These CMEs are hence difficult to discern in the coronagraphic data, even when viewed close to the plane of the sky. The weak ICMEs in our study were related to both intrinsically narrow CMEs and the non-central encounters of larger CMEs. We also demonstrate that narrow CMEs (angular widths ≤?20°) can arrive at Earth and that an unstructured CME may result in a flux rope-type ICME.  相似文献   

13.
Between 13 and 16 February 2011, a series of coronal mass ejections (CMEs) erupted from multiple polarity inversion lines within active region 11158. For seven of these CMEs we employ the graduated cylindrical shell (GCS) flux rope model to determine the CME trajectory using both Solar Terrestrial Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph images. We then use the model called Forecasting a CME’s Altered Trajectory (ForeCAT) for nonradial CME dynamics driven by magnetic forces to simulate the deflection and rotation of the seven CMEs. We find good agreement between ForeCAT results and reconstructed CME positions and orientations. The CME deflections range in magnitude between \(10^{\circ }\) and \(30^{\circ}\). All CMEs are deflected to the north, but we find variations in the direction of the longitudinal deflection. The rotations range between \(5^{\circ}\) and \(50^{\circ}\) with both clockwise and counterclockwise rotations. Three of the CMEs begin with initial positions within \(2^{\circ}\) from one another. These three CMEs are all deflected primarily northward, with some minor eastward deflection, and rotate counterclockwise. Their final positions and orientations, however, differ by \(20^{\circ}\) and \(30^{\circ}\), respectively. This variation in deflection and rotation results from differences in the CME expansion and radial propagation close to the Sun, as well as from the CME mass. Ultimately, only one of these seven CMEs yielded discernible in situ signatures near Earth, although the active region faced toward Earth throughout the eruptions. We suggest that the differences in the deflection and rotation of the CMEs can explain whether each CME impacted or missed Earth.  相似文献   

14.
In this paper, ten CME events viewed by the STEREO twin spacecraft are analyzed to study the deflections of CMEs during their propagation in the corona. Based on the three-dimensional information of the CMEs derived by the graduated cylindrical shell (GCS) model (Thernisien, Howard, and Vourlidas in Astrophys. J. 652, 1305, 2006), it is found that the propagation directions of eight CMEs had changed. By applying the theoretical method proposed by Shen et?al. (Solar Phys. 269, 389, 2011) to all the CMEs, we found that the deflections are consistent, in strength and direction, with the gradient of the magnetic energy density. There is a positive correlation between the deflection rate and the strength of the magnetic energy density gradient and a weak anti-correlation between the deflection rate and the CME speed. Our results suggest that the deflections of CMEs are mainly controlled by the background magnetic field and can be quantitatively described by the magnetic energy density gradient (MEDG) model.  相似文献   

15.
We report on the kinematics of two interacting CMEs observed on 13 and 14 June 2012. The two CMEs originated from the same active region NOAA 11504. After their launches which were separated by several hours, they were observed to interact at a distance of \(100~R_{\odot}\) from the Sun. The interaction led to a moderate geomagnetic storm at the Earth with minimum \(\mathrm{D}_{\mathrm{st}}\) index of approximately ?86 nT. The kinematics of the two CMEs is estimated using data from the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instrument onboard the Solar Terrestrial Relations Observatory (STEREO). Assuming a head-on collision scenario, we find that the collision is inelastic in nature. Further, the signatures of their interaction are examined using the in situ observations obtained by Wind and the Advance Composition Explorer (ACE) spacecraft. It is also found that this interaction event led to the strongest sudden storm commencement (SSC) (\({\approx\,}150\) nT) of the present Solar Cycle 24. The SSC was of long duration, approximately 20 hours. The role of interacting CMEs in enhancing the geoeffectiveness is examined.  相似文献   

16.
We have estimated the speed and direction of propagation of a number of Coronal Mass Ejections (CMEs) using single-spacecraft data from the STEREO Heliospheric Imager (HI) wide-field cameras. In general, these values are in good agreement with those predicted by Thernisien, Vourlidas, and Howard in Solar Phys. 256, 111?–?130 (2009) using a forward modelling method to fit CMEs imaged by the STEREO COR2 coronagraphs. The directions of the CMEs predicted by both techniques are in good agreement despite the fact that many of the CMEs under study travel in directions that cause them to fade rapidly in the HI images. The velocities estimated from both techniques are in general agreement although there are some interesting differences that may provide evidence for the influence of the ambient solar wind on the speed of CMEs. The majority of CMEs with a velocity estimated to be below 400 km?s?1 in the COR2 field of view have higher estimated velocities in the HI field of view, while, conversely, those with COR2 velocities estimated to be above 400 km?s?1 have lower estimated HI velocities. We interpret this as evidence for the deceleration of fast CMEs and the acceleration of slower CMEs by interaction with the ambient solar wind beyond the COR2 field of view. We also show that the uncertainties in our derived parameters are influenced by the range of elongations over which each CME can be tracked. In order to reduce the uncertainty in the predicted arrival time of a CME at 1 Astronomical Unit (AU) to within six hours, the CME needs to be tracked out to at least 30 degrees elongation. This is in good agreement with predictions of the accuracy of our technique based on Monte Carlo simulations. Within the set of studied CMEs, there are two clear events that were predicted from the HI data to travel over another spacecraft; in-situ measurements at these other spacecraft confirm the accuracy of these predictions. The ability of the HI cameras to image Corotating Interaction Region (CIR)-entrained transients as well as CMEs can result in some ambiguity when trying to distinguishing individual signatures.  相似文献   

17.
We investigate multi-spacecraft observations of the 17 January 2010 solar energetic particle event. Energetic electrons and protons have been observed over a remarkable large longitudinal range at the two STEREO spacecraft and SOHO, suggesting a longitudinal spread of nearly 360 degrees at 1?AU. The flaring active region, which was on the backside of the Sun as seen from Earth, was separated by more than 100 degrees in longitude from the magnetic footpoints of each of the three spacecraft. The event is characterized by strongly delayed energetic particle onsets with respect to the flare and only small or no anisotropies in the intensity measurements at all three locations. The presence of a coronal shock is evidenced by the observation of a type II radio burst from the Earth and STEREO-B. In order to describe the observations in terms of particle transport in the interplanetary medium, including perpendicular diffusion, a 1D model describing the propagation along a magnetic field line (model 1) (Dr?ge, Astrophys. J. 589, 1027??C?1039, 2003) and the 3D propagation model (model 2) by Dr?ge et?al. (Astrophys. J. 709, 912??C?919, 2010) including perpendicular diffusion in the interplanetary medium have been applied. While both models are capable of reproducing the observations, model 1 requires injection functions at the Sun of several hours. Model 2, which includes lateral transport in the solar wind, reveals high values for the ratio of perpendicular to parallel diffusion. Because we do not find evidence for unusual long injection functions at the Sun, we favor a scenario with strong perpendicular transport in the interplanetary medium as an explanation for the observations.  相似文献   

18.
We identify 565 coronal mass ejections (CMEs) between January 2007 and December 2010 in observations from the twin STEREO/SECCHI/COR2 coronagraphs aboard the STEREO mission. Our list is in full agreement with the corresponding SOHO/LASCO CME Catalog ( http://cdaw.gsfc.nasa.gov/CME_list/ ) for events with angular widths of 45° and up. The monthly event rates behave similarly to sunspot rates showing a three- to fourfold rise between September 2009 and March 2010. We select 51 events with well-defined white-light structure and model them as three-dimensional (3D) flux ropes using a forward-modeling technique developed by Thernisien, Howard and Vourlidas (Astrophys. J. 652, 763??C?773, 2006). We derive their 3D properties and identify their source regions. We find that the majority of the CME flux ropes (82?%) lie within 30° of the solar equator. Also, 82?% of the events are displaced from their source region, to a lower latitude, by 25° or less. These findings provide strong support for the deflection of CMEs towards the solar equator reported in earlier observations, e.g. by Cremades and Bothmer (Astron. Astrophys. 422, 307??C?322, 2004).  相似文献   

19.
We are investigating the geometric and kinematic characteristics of interplanetary coronal mass ejections (ICMEs) using data obtained by the LASCO coronagraphs, the Solar Mass Ejection Imager (SMEI), and the SECCHI imaging experiments on the STEREO spacecraft. The early evolution of CMEs can be tracked by the LASCO C2 and C3 and SECCHI COR1 and COR2 coronagraphs, and the HI and SMEI instruments can track their ICME counterparts through the inner heliosphere. The HI fields of view (4?–?90°) overlap with the SMEI field of view (>?20° to all sky) and, thus, both instrument sets can observe the same ICME. In this paper we present results for ICMEs observed on 24?–?29 January 2007, when the STEREO spacecraft were still near Earth so that both the SMEI and STEREO views of large ICMEs in the inner heliosphere coincided. These results include measurements of the structural and kinematic evolution of two ICMEs and comparisons with drive/drag kinematic, 3D tomographic reconstruction, the HAFv2 kinematic, and the ENLIL MHD models. We find it encouraging that the four model runs generally were in agreement on both the kinematic evolution and appearance of the events. Because it is essential to understand the effects of projection across large distances, that are not generally crucial for events observed closer to the Sun, we discuss our analysis procedure in some detail.  相似文献   

20.
Coronal mass ejections (CMEs) and their interplanetary counterparts (interplanetary coronal mass ejections, ICMEs) are responsible for large solar energetic particle events and severe geomagnetic storms. They can modulate the intensity of Galactic cosmic rays, resulting in non-recurrent Forbush decreases (FDs). We investigate the connection between CME manifestations and FDs. We used specially processed data from the worldwide neutron monitor network to pinpoint the characteristics of the recorded FDs together with CME-related data from the detailed online catalog based upon the Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) data. We report on the correlations of the FD magnitude to the CME initial speed, the ICME transit speed, and the maximum solar wind speed. Comparisons between the features of CMEs (mass, width, velocity) and the characteristics of FDs are also discussed. FD features for halo, partial halo, and non-halo CMEs are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号