首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three homologous coronal mass ejections (CMEs) occurred on 5, 12 and 16 May 1997 from the single magnetic polarity inversion line (PIL) of AR8038. The three events together provide STEREO-like quadrature views of the 12 May 1997 CME and EIT double dimming. The recurrent CMEs with the nearly identical post-CME potential state and the ‘sigmoid to arcade to sigmoid’ transformations indicate a repeatable store?–?release?–?restore process of the free energy. How was the free magnetic energy re-introduced to the potential state corona after each release in this decaying active region? Making use of the known time interval bounded by the adjacent homologous CMEs, we made the following measures. The unsigned magnetic flux of AR8038, ΦAR, decreased by approximately 18% during 66 h, while the unsigned flux, ΦPIL, in a Gaussian-weighted PIL-region containing the flare site increased by about 50% during 36 hrs prior to the C1.3 flare on 12 May 1997. The significant increase of ΦPIL demonstrates the magnetic gradient increase and the build-up of free energy in the PIL-region during the time leading to the eruption. Fourier local correlation tracking (FLCT) flow speed in AR8038 ranges from 0 to 292.8 m?s?1 with a mean value of 63.2 m?s?1. The flow field contains a persistent converging flow towards the flaring PIL and an effective shear flow distributed in the AR. Minor angular motions were found. An integrated proxy Poynting flux S h estimates the energy input to the corona to be on the order of 1.15×1032 erg during the 66 hrs before the C1.3 flare. It suggests that sufficient energy for a flare/CME can be introduced to the corona on the order of several days by the flows deduced from photospheric magnetic field motions in this small decaying active region.  相似文献   

2.
Based on a topological model for the magnetic field of a solar active region (AR), we suggest a criterion for the existence of magnetic null points on the separators in the corona. With the problem of predicting solar flares in mind, we have revealed a model parameter whose decrease means that the AR evolves toward a major eruptive flare. We analyze the magnetic field evolution for AR 9077 within two days before the Bastille Day flare on July 14, 2000. The coronal conditions are shown to have become more favorable for magnetic reconnection, which led to a 3B/X5.7 eruptive flare.  相似文献   

3.
In earlier works we introduced and tested a nonlinear force-free (NLFF) method designed to self-consistently calculate the coronal free magnetic energy and the relative magnetic helicity budgets of observed solar magnetic structures. In principle, the method requires only a single, photospheric or low-chromospheric, vector magnetogram of a quiet-Sun patch or an active region and performs calculations without three-dimensional magnetic and velocity-field information. In this work we strictly validate this method using three-dimensional coronal magnetic fields. Benchmarking employs both synthetic, three-dimensional magnetohydrodynamic simulations and nonlinear force-free field extrapolations of the active-region solar corona. Our time-efficient NLFF method provides budgets that differ from those of more demanding semi-analytical methods by a factor of approximately three, at most. This difference is expected to come from the physical concept and the construction of the method. Temporal correlations show more discrepancies that are, however, soundly improved for more complex, massive active regions, reaching correlation coefficients on the order of, or exceeding, 0.9. In conclusion, we argue that our NLFF method can be reliably used for a routine and fast calculation of the free magnetic energy and relative magnetic helicity budgets in targeted parts of the solar magnetized corona. As explained in this article and in previous works, this is an asset that can lead to valuable insight into the physics and triggering of solar eruptions.  相似文献   

4.
In this paper, we reconstruct the finite energy force-free magnetic field of the active region NOAA 8100 on 4 November 1997 above the photosphere. In particular, the 3-D magnetic field structures before and after a 2B/X2 flare at 05:58 UT in this region are analyzed. The magnetic field lines were extrapolated in close coincidence with the Yohkoh soft X-ray (SXR) loops accordingly. It is found that the active region is composed of an emerging flux loop, a complex loop system with differential magnetic field shear, and large-scale, or open field lines. Similar magnetic connectivity has been obtained for both instants but apparent changes of the twisting situations of the calculated magnetic field lines can be observed that properly align with the corresponding SXR coronal loops. We conclude that this flare was triggered by the interaction of an emerging flux loop and a large loop system with differential magnetic field shear, as well as large-scale, or open field lines. The onset of the flare was at the common footpoints of several interacting magnetic loops and confined near the footpoints of the emerging flux loop. The sheared configuration remained even after the energetic flare, as demonstrated by calculated values of the twist for the loop system, which means that the active region was relaxed to a lower energy state but not completely to the minimum energy state (two days later another X-class flare occurred in this region).  相似文献   

5.
Numerical three-dimensional MHD simulations demonstrated that a current sheet (CS) was formed over active region AR 0365 before the flare of May 27, 2003, and the energy was accumulated in its magnetic field. Maps of the photospheric magnetic field in its preflare state were used in the simulations to define the boundary conditions instead of the usually applied approximation of the field in an active region by dipoles or magnetic charges. The CS was formed in the vicinity of a singular line as a result of focusing the magnetic field disturbances observed before the flare. The calculated CS position corresponded to the maximum brightness temperature of the flare detected by the Siberian Solar Radio Telescope SSRT (Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Siberian Branch, Irkutsk). This testifies that the flare could result from the dissipation of energy accumulated in the field of the CS, which arose over the active region.  相似文献   

6.
With SDO observations and a data-constrained magnetohydrodynamics(MHD)model,we identify a confined multi-ribbon flare that occurred on 2010 October 25 in solar active region 11117 as a magnetic bald patch(BP)flare with strong evidence.From the photospheric magnetic field observed by SDO/HMI,we find there are indeed magnetic BPs on the polarity inversion lines(PILs)which match parts of the flare ribbons.From the 3D coronal magnetic field derived from an MHD relaxation model constrained by the vector magnetograms,we find strikingly good agreement of the BP separatrix surface(BPSS)footpoints with the flare ribbons,and the BPSS itself with the hot flaring loop system.Moreover,the triggering of the BP flare can be attributed to a small flux emergence under the lobe of the BPSS,and the relevant change of coronal magnetic field through the flare is reproduced well by the pre-flare and post-flare MHD solutions,which match the corresponding pre-and post-flare AIA observations,respectively.Our work contributes to the study of non-typical flares that constitute the majority of solar flares but which cannot be explained by the standard flare model.  相似文献   

7.
We present and interpret observations of two morphologically homologous flares that occurred in active region (AR) NOAA 10501 on 20 November 2003. Both flares displayed four homologous Hα ribbons and were both accompanied by coronal mass ejections (CMEs). The central flare ribbons were located at the site of an emerging bipole in the centre of the active region. The negative polarity of this bipole fragmented in two main pieces, one rotating around the positive polarity by ≈ 110° within 32 hours. We model the coronal magnetic field and compute its topology, using as boundary condition the magnetogram closest in time to each flare. In particular, we calculate the location of quasi-separatrix layers (QSLs) in order to understand the connectivity between the flare ribbons. Though several polarities were present in AR 10501, the global magnetic field topology corresponds to a quadrupolar magnetic field distribution without magnetic null points. For both flares, the photospheric traces of QSLs are similar and match well the locations of the four Hα ribbons. This globally unchanged topology and the continuous shearing by the rotating bipole are two key factors responsible for the flare homology. However, our analyses also indicate that different magnetic connectivity domains of the quadrupolar configuration become unstable during each flare, so that magnetic reconnection proceeds differently in both events.  相似文献   

8.
A new method for the calculation of coronal magnetic field is proposed and it is shown to reproduce the EUV features in the corona as observed by Skylab experiments satisfactorily well. One of the remarkable points is that it reproduces the loopy threads in the active region corona and also the large scale field lines connecting active regions. The existence of coronal current is expected wherever the present coronal-current-free model fails to represent the feature. A method of calculating the coronal sheet-current is also developed with the purpose of knowing the shape of the current sheet and the amount of magnetic stress energy stored due the the presence of it by comparing the calculated field configuration with the observed local distortion of the EUV threads. This may be used in pinning down the possible site of the flare and in discussing the flare occurrence in terms of the energy stored there.During the preparation of this work, Poletto et al. (1975) calculated the magnetic field shape in Schmidt's method to compare with the soft X-ray feature obtained by Skylab.  相似文献   

9.
We study the magnetic field evolution and topology of the active region NOAA 10486 before the 3B/X1.2 flare of October 26, 2003, using observational data from the French–Italian THEMIS telescope, the Michelson Doppler Imager (MDI) onboard Solar and Heliospheric Observatory (SOHO), the Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observation Station (HSOS), and the Transition Region and Coronal Explorer (TRACE). Three dimensional (3D) extrapolation of photospheric magnetic field, assuming a potential field configuration, reveals the existence of two magnetic null points in the corona above the active region. We look at their role in the triggering of the main flare, by using the bright patches observed in TRACE 1600 Å images as tracers at the solar surface of energy release associated with magnetic reconnection at the null points. All the bright patches observed before the flare correspond to the low-altitude null point. They have no direct relationship with the X1.2 flare because the related separatrix is located far from the eruptive site. No bright patch corresponds to the high-altitude null point before the flare. We conclude that eruptions can be triggered without pre-eruptive coronal null point reconnection, and the presence of null points is not a sufficient condition for the occurrence of flares. We propose that this eruptive flare results from the loss of equilibrium due to persistent flux emergence, continuous photospheric motion and strong shear along the magnetic neutral line. The opening of the coronal field lines above the active region should be a byproduct of the large 3B/X1.2 flare rather than its trigger.  相似文献   

10.
We present a detailed analysis of the magnetic topology of AR 2776 together with Hα UV, X-rays, and radio observations of the November 5, 1980 flares in order to understand the role of the active region large-scale topology on the flare process. As at present the coronal magnetic field is modeled by an ensemble of sub-photospheric sources whose positions and intensities are deduced from a least-square fit between the computed and observed longitudinal magnetic fields. Charges and dipole representations are shown to lead to similar modeling of the magnetic topology provided that the number of sources is great enough. However, for AR 2776, departure from a potential field has to be taken into account, therefore a linear force-free field extrapolation is used. The locations of the four bright off-band Hα kernels in quadrupolar active regions have been studied previously. In this new study the active region is bipolar and shows a two-ribbon structure. We show that these two ribbons are a consequence of the bipolar photospheric field (the four kernels of quadrupolar regions merge into two bipolar regions). The two ribbons are found to be located at the intersection of the separatrices with the chromosphere when the shear, deduced from the fibril direction, is taken into account. This study supports the hypothesis that magnetic energy is stored in field-aligned currents and released by magnetic reconnection at the location of the separator, before being transported along field lines to the chromospheric level. It is also possible that part of the magnetic energy could be stored and released on the separatrices. Our study shows that meeting just one of two conditions- the presence of intense coronal currents or of a separator in a magnetic field configuration - is not sufficient for flaring. In order to release the stored energy, the coronal currents need either to be formed along the separatrices or to be transported towards the separator or separatrices. The location of the observed photospheric current concentrations on the computed separatrices supports this view. Member of the Carrera del Investigador Científico, CONICET.  相似文献   

11.
The corona associated with an active region is structured by high-temperature, magnetically dominated closed and open loops. The projected 2D geometry of these loops is captured in EUV filtergrams. In this study using SDO/AIA 171 Å filtergrams, we expand our previous method to derive the 3D structure of these loops, independent of heliostereoscopy. We employ an automated loop recognition scheme (Occult-2) and fit the extracted loops with 2D cubic Bézier splines. Utilizing SDO/HMI magnetograms, we extrapolate the magnetic field to obtain simple field models within a rectangular cuboid. Using these models, we minimize the misalignment angle with respect to Bézier control points to extend the splines to 3D (Gary, Hu, and Lee 2014). The derived Bézier control points give the 3D structure of the fitted loops. We demonstrate the process by deriving the position of 3D coronal loops in three active regions (AR 11117, AR 11158, and AR 11283). The numerical minimization process converges and produces 3D curves which are consistent with the height of the loop structures when the active region is seen on the limb. From this we conclude that the method can be important in both determining estimates of the 3D magnetic field structure and determining the best magnetic model among competing advanced magnetohydrodynamics or force-free magnetic-field computer simulations.  相似文献   

12.
We present the multiwavelength observations of a flux rope that was trying to erupt from NOAA AR 11045 and the associated M-class solar flare on 12 February 2010 using space-based and ground-based observations from TRACE, STEREO, SOHO/MDI, Hinode/XRT, and BBSO. While the flux rope was rising from the active region, an M1.1/2F class flare was triggered near one of its footpoints. We suggest that the flare triggering was due to the reconnection of a rising flux rope with the surrounding low-lying magnetic loops. The flux rope reached a projected height of ≈0.15R with a speed of ≈90 km s−1 while the soft X-ray flux enhanced gradually during its rise. The flux rope was suppressed by an overlying field, and the filled plasma moved towards the negative polarity field to the west of its activation site. We found the first observational evidence of the initial suppression of a flux rope due to a remnant filament visible both at chromospheric and coronal temperatures that evolved a couple of days earlier at the same location in the active region. SOHO/MDI magnetograms show the emergence of a bipole ≈12 h prior to the flare initiation. The emerged negative polarity moved towards the flux rope activation site, and flare triggering near the photospheric polarity inversion line (PIL) took place. The motion of the negative polarity region towards the PIL helped in the build-up of magnetic energy at the flare and flux rope activation site. This study provides unique observational evidence of a rising flux rope that failed to erupt due to a remnant filament and overlying magnetic field, as well as associated triggering of an M-class flare.  相似文献   

13.
The NOAA active region (AR) 11029 was a small but highly active sunspot region which produced 73 GOES soft X-ray flares during its transit of the disk in late October 2009. The flares appear to show a departure from the well-known power law frequency-size distribution. Specifically, too few GOES C-class and no M-class flares were observed by comparison with a power law distribution (Wheatland, Astrophys. J. 710, 1324, 2010). This was conjectured to be due to the region having insufficient magnetic energy to power the missing large events. We construct nonlinear force-free extrapolations of the coronal magnetic field of AR 11029 using data taken on 24 October by the SOLIS Vector SpectroMagnetograph (SOLIS/VSM) and data taken on 27 October by the Hinode Solar Optical Telescope SpectroPolarimeter (Hinode/SP). Force-free modeling with photospheric magnetogram data encounters problems, because the magnetogram data are inconsistent with a force-free model. We employ a recently developed “self-consistency” procedure which addresses this problem and accommodates uncertainties in the boundary data (Wheatland and Régnier, Astrophys. J. 700, L88, 2009). We calculate the total energy and free energy of the self-consistent solution, which provides a model for the coronal magnetic field of the active region. The free energy of the region was found to be ≈?4×1029?erg on 24 October and ≈?7×1031?erg on 27 October. An order of magnitude scaling between RHESSI non-thermal energy and GOES peak X-ray flux is established from a sample of flares from the literature and is used to estimate flare energies from the observed GOES peak X-ray flux. Based on the scaling, we conclude that the estimated free energy of AR 11029 on 27 October when the flaring rate peaked was sufficient to power M-class or X-class flares; hence, the modeling does not appear to support the hypothesis that the absence of large flares is due to the region having limited energy.  相似文献   

14.
The powerful flare 4B/X17.2 of October 28, 2003 in the NOAA 10486 active region is studied by using Hα filtergrams. This active region had a complicated βγδ magnetic configuration and a sigmoidal pattern of the polarity inversion line, it had the largest AR area in the cycle 23. Local filaments, loops, and systems of loops were also observed in the AR. The light curves obtained for all flare knots clearly reveal two stages in their evolution. The first stage is the pre-flare one, when the accumulation of the nonpotential magnetic energy (the energy of electric currents) comes to an end and the situation becomes favorable for the realization of the second period. The intensity of flare knots (except one knot) changed slightly and slowly, and some structure features (twists and connections) became more active. By the end of the first stage a new magnetic flux emerged and a system of interrelated filaments and loops (IFL) was formed at the center of the AR as well as at its periphery. New flare knots appeared about the main S-like filament. The second flare stage began at about 11:02 UT with a dramatic increase of the intensity and area of all flare knots and the formation of new knots. In a space of 8 min the major part of the AR around the main filament was covered with flare emission which fluctuated at its maximum period. The intensity of all knots was observed to drop slowly after the maximum, at the decay phase. As the IFL system extended over the entire AR, the magnetic field energy accumulated in it was released in the form of powerful electromagnetic and corpuscular emission by way of magnetic reconnection.  相似文献   

15.
Observations of the large two-ribbon flare on 7 November 2004 made using SOHO and TRACE data are interpreted in terms of a three-dimensional magnetic field model. Photospheric flux evolution indicates that ?1.4×1043 Mx2 of magnetic helicity was injected into the active region during the 40-hour buildup prior to the flare. The magnetic model places a lower bound of 8×1031 ergs on the energy stored by this motion. It predicts that 5×1021 Mx of flux would need to be reconnected during the flare to release the stored energy. This total reconnection compares favorably with the flux swept up by the flare ribbons, which we measure using high-time-cadence TRACE images in 1?600 Å. Reconnection in the model must occur in a specific sequence that would produce a twisted flux rope containing significantly less flux and helicity (1021 Mx and ?3×1042 Mx2, respectively) than the active region as a whole. The predicted flux compares favorably with values inferred from the magnetic cloud observed by Wind. This combined analysis yields the first quantitative picture of the flux processed through a two-ribbon flare and coronal mass ejection.  相似文献   

16.
We study an active region coronal jet that evolved from southward of a major sunspot of NOAA AR12178 on 04 October 2014. This jet is associated with an onset of the GOES C1.4 flare. We use SDO/AIA, SDO/HMI, GONG \(H\upalpha\) and GOES data for analysing the observed event. We term this jet as a two-stage confined eruption of the plasma. In the first stage, some plasma erupts above the compact flaring region. In the second stage, this eruptive jet plasma and associated magnetic field lines interact with another set of distinct magnetic field lines present in its south-east direction. This creates an X-point region, where the second stage of the jet eruption is deflected above it on a curvilinear path into overlying corona. The lower part of the jet is followed by a cool surge eruption, which is visible only in \(H{\upalpha}\) emissions. The magnetic flux cancellation at the footpoint causes the triggering of C-class flare eruption. This flare energy release further triggers first stage of the coronal jet eruption. The second stage of the jet eruption is a consequence of an interaction of two distinct sets of magnetic field lines in the overlying corona. The first stage of the coronal jet and co-spatial but lagging cool surge may have common origin due to the reconnection generated heating pulses. This complex evolution of the coronal jet involves flare heating induced first stage plasma eruption, guiding of jet’s material above a junction of two distinct sets of field lines in the corona, and intra-relationship with cool surge. In effect, it imposes rigid constraints on the existing jet models.  相似文献   

17.
A major two-ribbon X17 flare occurred on 28 October 2003, starting at 11:01 UT in active region NOAA 10486. This flare was accompanied by the eruption of a filament and by one of the fastest halo coronal mass ejections registered during the October–November 2003 strong activity period. We focus on the analysis of magnetic field (SOHO/MDI), chromospheric (NainiTal observatory and TRACE), and coronal (TRACE) data obtained before and during the 28 October event. By combining our data analysis with a model of the coronal magnetic field, we concentrate on the study of two events starting before the main flare. One of these events, evident in TRACE images around one hour prior to the main flare, involves a localized magnetic reconnection process associated with the presence of a coronal magnetic null point. This event extends as long as the major flare and we conclude that it is independent from it. A second event, visible in Hα and TRACE images, simultaneous with the previous one, involves a large-scale quadrupolar reconnection process that contributes to decrease the magnetic field tension in the overlaying field configuration; this allows the filament to erupt in a way similar to that proposed by the breakout model, but with magnetic reconnection occurring at Quasi-Separatrix Layers (QSLs) rather than at a magnetic null point. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

18.
In this paper, we study multiwavelength observations of an M6.4 flare in Active Region NOAA 11045 on 7 February 2010. The space- and ground-based observations from STEREO, SoHO/MDI, EIT, and Nobeyama Radioheliograph were used for the study. This active region rapidly appeared at the north-eastern limb with an unusual emergence of a magnetic field. We find a unique observational signature of the magnetic field configuration at the flare site. Our observations show a change from dipolar to quadrapolar topology. This change in the magnetic field configuration results in its complexity and a build-up of the flare energy. We did not find any signature of magnetic flux cancellation during this process. We interpret the change in the magnetic field configuration as a consequence of the flux emergence and photospheric flows that have opposite vortices around the pair of opposite polarity spots. The negative-polarity spot rotating counterclockwise breaks the positive-polarity spot into two parts. The STEREO-A 195 Å and STEREO-B 171 Å coronal images during the flare reveal that a twisted flux tube expands and erupts resulting in a coronal mass ejection (CME). The formation of co-spatial bipolar radio contours at the same location also reveals the ongoing reconnection process above the flare site and thus the acceleration of non-thermal particles. The reconnection may also be responsible for the detachment of a ring-shaped twisted flux tube that further causes a CME eruption with a maximum speed of 446 km/s in the outer corona.  相似文献   

19.
本文在非线性无力磁场的等效边界积分方程的基础上,计算了NOAA8100 活动区在1997 年11 月4 日的磁场结构。发现该磁场由一个浮现磁环、一个具有微分剪切的多磁环系统、和大尺度或开放磁力线等三部分组成。2B/X2 耀斑是由于浮现磁环与具有微分剪切的多磁环系统和大尺度或开放磁力线之间的相互作用而触发的,发生在浮现磁通量区域附近,并位于不同走向的多个磁环的公共足点处。Hβ双带出现在浮现磁通量区域附近,在浮现磁环的足点处。其中位于开放磁力线附近的亮带暗一些。然而在2B/X2 高能耀斑之后,仍然存在着强剪切状态。表明该活动区松弛到了一个低能态但不是最小能量状态。  相似文献   

20.
Yan  Yihua  Aschwanden  Markus J.  Wang  Shujuan  Deng  Yuanyong 《Solar physics》2001,204(1-2):27-40
The finite energy force-free magnetic fields of the active region NOAA 9077 on 14 July 2000 above the photosphere were reconstructed. We study the evolution of the 3D magnetic field structures in AR 9077 and compare the reconstructed field lines with TRACE EUV 171 Å flare loops during the flare maximum, which confirms the process that flaring loops extended from lower sheared level to higher arcades. We also demonstrate the 3D magnetic field evolution before the 3B/X5.7 flare on 14 July and the magnetic structure after the flare on 15 July. This shows that the helical magnetic structures were significantly changed, suggesting that the flux rope was indeed erupted during the energetic flare at 10:24 UT on 14 July.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号