首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O. White  G. Kopp  M. Snow  K. Tapping 《Solar physics》2011,274(1-2):159-162
Given the numerous ground-based and space-based experiments producing the database for the Cycle 23??C?24 Minimum epoch from September 2008 to May 2009, we have an extraordinary opportunity to understand its effects throughout the heliosphere. We use solar radiative output in this period to obtain minimum values for three measures of the Sun??s radiative output: the total solar irradiance, the Mg ii index, and the 10.7 cm solar radio flux. The derived values are included in the research summaries as a means to exchange ideas and data for this long minimum in solar activity.  相似文献   

2.
The study of variations in total solar irradiance (TSI) and spectral irradiance is important for understanding how the Sun affects the Earth’s climate. A data-driven approach is used in this article to analyze and model the temporal variation of the TSI and Mg?ii index back to 1947. In both cases, observed data in the time interval of the satellite era, 1978?–?2013, were used for neural network (NN) model-design and testing. For this particular purpose, the evolution of the solar magnetic field is assumed to be the main driver for the day-to-day irradiance variability. First, we design a model for the Mg?ii index data from F10.7 cm solar radio-flux using the NN approach in the time span of 1978 through 2013. Results of Mg?ii index model were tested using various numbers of hidden nodes. The predicted values of the hidden layer with five nodes correspond well to the composite Mg?ii values. The model reproduces 94% of the variability in the composite Mg?ii index, including the secular decline between the 1996 and 2008 solar cycle minima. Finally, the extrapolation of the Mg?ii index was performed using the developed model from F10.7 cm back to 1947. Similarly, the NN model was designed for TSI variability study over the time span of the satellite era using data from the Physikalisch-Meteorologisches Observatorium Davos (PMOD) as a target, and solar activity indices as model inputs. This model was able to reproduce the daily irradiance variations with a correlation coefficient of 0.937 from sunspot and facular measurements in the time span of 1978?–?2013. Finally, the temporal variation of the TSI was analyzed using the designed NN model back to 1947 from the Photometric Sunspot Index (PSI) and the extrapolated Mg?ii index. The extrapolated TSI result indicates that the amplitudes of Solar Cycles 19 and 21 are closely comparable to each other, and Solar Cycle 20 appears to be of lower irradiance during its maximum.  相似文献   

3.
Images taken in the band centered at 30.4 nm are routinely used to map the radiance of the He?ii Ly?α line on the solar disk. That line is one of the strongest, if not the strongest, line in the EUV observed in the solar spectrum, and one of the few lines in that wavelength range providing information on the upper chromosphere or lower transition region. However, when observing the off-limb corona, the contribution from the nearby Si?xi 30.3 nm line can become significant. In this work we aim at estimating the relative contribution of those two lines in the solar corona around the minimum of solar activity. We combine measurements from CDS taken in August 2008 with temperature and density profiles from semiempirical models of the corona to compute the radiances of the two lines, and of other representative coronal lines (e.g. Mg?x 62.5 nm, Si?xii 52.1 nm). Considering both diagnosed quantities from line ratios (temperatures and densities) and line radiances in absolute units, we obtain a good overall match between observations and models. We find that the Si?xi line dominates the He?ii line from just above the limb up to ≈?2?R in streamers, while its contribution to narrowband imaging in the 30.4 nm band is expected to become smaller, even negligible in the corona beyond ≈?2?–?3?R , the precise value being strongly dependent on the coronal temperature profile.  相似文献   

4.
We present an investigation of line-of-sight (LOS) velocity oscillations in solar faculae and sunspots. To study the phase relations between chromospheric and photospheric oscillations of the LOS velocity, we measured the time lag of the chromospheric signal relative to the photospheric one for several faculae and sunspots in a set of spectral line pairs. The measured time lags are different for different objects. The mean measured delay between the oscillations in the five-minute band in faculae is 50?s for the Si?i 10?827?Å?–?He?i 10?830?Å pair; for the pair Fe?i 6569?Å?–?Hα 6563?Å the mean delay is 20?s; for the pair Fe?i 4551?Å?–?Ba?ii 4554?Å the mean delay is 7?s; for the pair Si?i 8536?Å?–?Ca?ii 8542?Å the mean delay is 20?s. For the oscillations in the three-minute band in sunspot umbrae the mean delay is 55?s for the Si?i 10?827?Å?–?He?i 10?830?Å pair; for the Fe?i 6569?Å?–?Hα 6563?Å pair it was not possible to determine the delay; for the Fe?i 4551?Å?–?Ba?ii 4554?Å pair the mean delay is 6?s; for the Si?i 8536?Å?–?Ca?ii 8542?Å pair the mean delay is 21?s. Measured delays correspond to the wave propagation speed, which significantly exceeds the generally adopted speed of sound in the photosphere. This raises the question of the origin of these oscillations. The possibility that we deal with slow MHD waves is not ruled out.  相似文献   

5.
The relative Doppler velocities and linewidths in a polar coronal hole and the nearby quiet-Sun region have been obtained from the Solar and Heliospheric Observatory (SOHO)/Coronal Diagnostic Spectrometer (CDS) observations using emission lines originating at different heights in the solar atmosphere from the lower transition region (TR) to the low solar corona. The observed region is separated into the network and the cell interior, and the behavior of the above parameters were examined in the different regions. It has been found that the histograms of Doppler velocity and width are generally broader in the cell interior than in the network. The histograms of Doppler velocities of the network and cell interior do not show significant differences in most cases. However, in the case of the quiet Sun, the Doppler velocities of the cell interior are more blueshifted than those of the network for the lowermost line He?ii 304 Å, and an opposite behavior is seen for the uppermost line Mg?ix 368 Å. The linewidth histograms show that the network–cell difference is more prominent in the coronal hole. The network has a significantly larger linewidth than the cell interior for the lowermost TR line He?ii 304 Å for the quiet Sun. For the coronal hole, this is true for the three lower TR lines: He?ii 304 Å, O?iii 599 Å, and O?v 630 Å. We also obtained the correlations between the relative Doppler velocity and the width. A mild positive correlation is found for the lowermost transition-region line He?ii 304 Å, which decreases even more or become insignificant for the intermediate lines. For the low coronal line Mg?ix 368 Å, the correlation becomes strongly negative. This might be caused by standing waves or waves propagating from the lower to the upper solar atmosphere. The results may have implications for the generation of the fast solar wind and coronal heating.  相似文献   

6.
A filament disappearance event was observed on 22 May 2008 during our recent campaign JOP 178. The filament, situated in the Southern Hemisphere, showed sinistral chirality consistent with the hemispheric rule. The event was well observed by several observatories, in particular by THEMIS. One day, before the disappearance, Hα observations showed up- and down-flows in adjacent locations along the filament, which suggest plasma motions along twisted flux rope. THEMIS and GONG observations show shearing photospheric motions leading to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation angle 52.4°, showed quite different views of this untwisting flux rope in He ii 304 Å images. Here, we reconstruct the three-dimensional geometry of the filament during its eruption phase using STEREO EUV He ii 304 Å images and find that the filament was highly inclined to the solar normal. The He ii 304 Å movies show individual threads, which oscillate and rise to an altitude of about 120 Mm with apparent velocities of about 100 km?s?1 during the rapid evolution phase. Finally, as the flux rope expands into the corona, the filament disappears by becoming optically thin to undetectable levels. No CME was detected by STEREO, only a faint CME was recorded by LASCO at the beginning of the disappearance phase at 02:00 UT, which could be due to partial filament eruption. Further, STEREO Fe xii 195 Å images showed bright loops beneath the filament prior to the disappearance phase, suggesting magnetic reconnection below the flux rope.  相似文献   

7.
There are very few reports of flare signatures in the solar irradiance at H i Lyman α at 121.5 nm, i.e. the strongest line of the solar spectrum. The LYRA radiometer onboard PROBA2 has observed several flares for which unambiguous signatures have been found in its Lyman-α channel. Here we present a brief overview of these observations followed by a detailed study of one of them: the M2 flare that occurred on 8 February 2010. For this flare, the flux in the LYRA Lyman-α channel increased by 0.6 %, which represents about twice the energy radiated in the GOES soft X-ray channel and is comparable with the energy radiated in the He ii line at 30.4 nm. The Lyman-α emission represents only a minor part of the total radiated energy of this flare, for which a white-light continuum was detected. Additionally, we found that the Lyman-α flare profile follows the gradual phase but peaks before other wavelengths. This M2 flare was very localized and had a very brief impulsive phase, but more statistics are needed to determine if these factors influence the presence of a Lyman-α flare signal strong enough to appear in the solar irradiance.  相似文献   

8.
We suggest from synoptic charts of radial magnetic field and intensities of spectral lines (Fe?i, He?ii, and Fe?ix/x) over Carrington rotations 1942??C?2050 that deep convective layers control the pattern of large-scale solar activity. A new result is a Kolmogorov-type energy spectrum of the longitudinal variations of solar activity. This spectrum for nonphotospheric scales of convection (harmonic number m<100) is a new ??fingerprint?? of turbulence in the deep layers of the solar convection zone (CZ). The manifestation of one source of convective turbulence in the deep CZ is revealed as the excess in the power spectrum over the Kolmogorov spectrum. This source may be identified with giant convection cells at the CZ bottom. The convective cascade of the turbulence starts at the vortex size corresponding to the trans-CZ convective cells with the turnover time which the mixing length theory (MLT) predicts. This connection between the MLT formalism and real features in the Sun could account for the success of the MLT in stellar modeling.  相似文献   

9.
Radiative lifetimes for excited states in La ii, Ce ii, Pr ii, Nd ii, Sm ii, Yb i, Yb ii, and Lu ii have been determined by means of the beam-foil technique or the zero-field level-crossing method. The lifetimes for La, Ce, Pr, Nd, Sm, and Yb are shorter than those computed by summing the transition probabilities of Corliss and Bozman by a factor of up to ~5. The large discrepancies between the abundance of La, Ce, Pr, Nd, and Sm in the solar photosphere and in meteorites are eliminated or greatly reduced if the abundance determinations of the solar photosphere are based upon the gf values of Corliss and Bozman, corrected for by the present lifetimes.  相似文献   

10.
We present a multiwavelength analysis of a long-duration, white-light solar flare (M8.9/3B) event that occurred on 04 June 2007 from AR NOAA 10960. The flare was observed by several spaceborne instruments, namely SOHO/MDI, Hinode/SOT, TRACE, and STEREO/SECCHI. The flare was initiated near a small, positive-polarity, satellite sunspot at the center of the active region, surrounded by opposite-polarity field regions. MDI images of the active region show a considerable amount of changes in the small positive-polarity sunspot of δ configuration during the flare event. SOT/G-band (4305 Å) images of the sunspot also suggest the rapid evolution of this positive-polarity sunspot with highly twisted penumbral filaments before the flare event, which were oriented in a counterclockwise direction. It shows the change in orientation, and also the remarkable disappearance of twisted penumbral filaments (≈35?–?40%) and enhancement in umbral area (≈45?–?50%) during the decay phase of the flare. TRACE and SECCHI observations reveal the successive activation of two helically-twisted structures associated with this sunspot, and the corresponding brightening in the chromosphere as observed by the time-sequence of SOT/Ca?ii H line (3968 Å) images. The secondary, helically-twisted structure is found to be associated with the M8.9 flare event. The brightening starts six?–?seven minutes prior to the flare maximum with the appearance of a secondary, helically-twisted structure. The flare intensity maximizes as the secondary, helically-twisted structure moves away from the active region. This twisted flux tube, associated with the flare triggering, did not launch a CME. The location of the flare activity is found to coincide with the activation site of the helically-twisted structures. We conclude that the activation of successive helical twists (especially the second one) in the magnetic-flux tubes/ropes plays a crucial role in the energy build-up process and the triggering of the M-class solar flare without a coronal mass ejection (CME).  相似文献   

11.
Magnetic fields give rise to distinctive features in different solar atmospheric regimes. To study this, time variations of the flare index, sunspot number and sunspot area, each index arising from different physical conditions, were compared with the solar composite irradiance throughout cycle 23. Rieger-type periodicities in these time series were calculated using Fourier and wavelet transforms (WTs). The peaks of the wavelet power of these periodicities appeared between the years 1999 and 2002. We found that the solar irradiance oscillations are less significant than those in the other indices during this cycle. The irradiance shows non-periodic fluctuations during this time interval. The peaks of the flare index, sunspot number and sunspot total area were seen around 2000.4, 1999.9 and 2001.0, respectively. These periodicities appeared intermittently and were not simultaneous in different solar activity indices during the three years of the maximum phase of solar cycle 23.  相似文献   

12.
Solar activity during 2007?–?2009 was very low, causing anomalously low thermospheric density. A comparison of solar extreme ultraviolet (EUV) irradiance in the He?ii spectral band (26 to 34 nm) from the Solar Extreme ultraviolet Monitor (SEM), one of instruments on the Charge Element and Isotope Analysis System (CELIAS) on board the Solar and Heliospheric Observatory (SOHO) for the two latest solar minima showed a decrease of the absolute irradiance of about 15±6 % during the solar minimum between Cycles 23 and 24 compared with the Cycle 22/23 minimum when a yearly running-mean filter was used. We found that some local, shorter-term minima including those with the same absolute EUV flux in the SEM spectral band show a higher concentration of spatial power in the global network structure from the 30.4 nm SOHO/Extreme ultraviolet Imaging Telescope (EIT) images for the local minimum of 1996 compared with the minima of 2008?–?2011. We interpret this higher concentration of spatial power in the transition region’s global network structure as a larger number of larger-area features on the solar disk. These changes in the global network structure during solar minima may characterize, in part, the geo-effectiveness of the solar He?ii EUV irradiance in addition to the estimations based on its absolute levels.  相似文献   

13.
Absorption systems observed along the line of sights to distant quasars are observed at all redshifts and the full range of the electromagnetic spectrum is needed to recover the variety of transitions of different elements. However, some important elements are found within the Lyman forest and their absorption line profiles need to be analyzed against the presence of possible Ly-α contamination. Considering the cosmological evolution of the number density of hydrogen clouds, the probability to detect uncontaminated metal lines is higher in the UV-Optical region exploited by CUBES. The list of these elements includes some important ones such as D, H2, O?i, N?i, O?vi, Ar?i, P?ii, C?ii, S?ii and B?ii. The determination of some of them in the Damped Ly-α galaxies and their astronomical interest are briefly discussed.  相似文献   

14.
The age decay of two indicators of the stellar magnetic activity (λ 2800 Mgii emission flux and λ 10830 Hei equivalent width) have been studied for field solar-type stars. The Li abundance has been used, in most of the cases, as a stellar age indicator. A calibrated decay law for Mgii has been determined and compared with a similar one, recently published, for the Caii K emission. The greater scatter in the Hei results is atributed to the different rotation rates.  相似文献   

15.
On the coronograph spectrophotographic records taken on 31.372 UT, August 1979, some faint emission features were found which can be ascribed to Siii and Niii. These emissions were obviously a transient phenomena which were detected only 10 hr after the supposed fall of Comet 1979 XI in the Sun's photosphere. It cannot be excluded that the appearance of Si and Ni lines was triggered by the evaporation of dust particles with a high abundance of heavier elements in the solar corona. This assumption is also supported by intensity distribution of the Fex coronal line around the Sun's limb. The maximum coincide with the position angle of the projected path of the comet.  相似文献   

16.
A new method for the automated detection of coronal holes and filaments on the solar disk is presented. The starting point is coronal images taken by the Extreme Ultraviolet Telescope on the Solar and Heliospheric Observatory (SOHO/EIT) in the Fe ix/x 171 Å, Fe xii 195 Å, and He ii 304 Å extreme ultraviolet (EUV) lines and the corresponding full-disk magnetograms from the Michelson Doppler Imager (SOHO/MDI) from different phases of the solar cycle. The images are processed to enhance their contrast and to enable the automatic detection of the two candidate features, which are visually indistinguishable in these images. Comparisons are made with existing databases, such as the He i 10830 Å NSO/Kitt Peak coronal-hole maps and the Solar Feature Catalog (SFC) from the European Grid of Solar Observations (EGSO), to discriminate between the two features. By mapping the features onto the corresponding magnetograms, distinct magnetic signatures are then derived. Coronal holes are found to have a skewed distribution of magnetic-field intensities, with values often reaching 100?–?200 gauss, and a relative magnetic-flux imbalance. Filaments, in contrast, have a symmetric distribution of field intensity values around zero, have smaller magnetic-field intensity than coronal holes, and lie along a magnetic-field reversal line. The identification of candidate features from the processed images and the determination of their distinct magnetic signatures are then combined to achieve the automated detection of coronal holes and filaments from EUV images of the solar disk. Application of this technique to all three wavelengths does not yield identical results. Furthermore, the best agreement among all three wavelengths and NSO/Kitt Peak coronal-hole maps occurs during the declining phase of solar activity. The He ii data mostly fail to yield the location of filaments at solar minimum and provide only a subset at the declining phase or peak of the solar cycle. However, the Fe ix/x 171 Å and Fe xii 195 Å data yield a larger number of filaments than the Hα data of the SFC.  相似文献   

17.
High resolution profiles of the Mg xii 8.42 Å line in the solar X-ray spectrum were recorded from the Intercosmos 7 satellite. The Mg xii line intensity provides a sensitive indicator of the hot plasma content (T ? 3 × 106 K) in coronal condensations and X-ray flare volumes. The ratio of the line intensity to the intensity of the adjacent continuum has been used to compute approximate thermal models of the emitting regions. For all the investigated coronal condensations the temperature distribution of plasma has been found to be a function monotonically decreasing with temperature. But for some X-ray bursts there occurred a distinct excess of the hot plasma of temperature between 6–10 × 106K. FWHM values of the Mg xii line profiles have been used to estimate ion temperature in the emitting regions.  相似文献   

18.
Knowledge of solar spectral irradiance (SSI) is important in determining the impact of solar variability on climate. Observations of UV SSI have been made by the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) on the Upper Atmosphere Research Satellite (UARS), the Solar-Stellar Irradiance Comparison Experiment (SOLSTICE), and the Solar Irradiance Monitor (SIM), both on the Solar Radiation and Climate Experiment (SORCE) satellite. Measurements by SUSIM and SORCE overlapped from 2003 to 2005. SUSIM and SORCE observations represent ~?20 years of absolute UV SSI. Unfortunately, significant differences exist between these two data sets. In particular, changes in SORCE UV SSI measurements, gathered at moderate and minimum solar activity, are a factor of two greater than the changes in SUSIM observations over the entire solar cycle. In addition, SORCE UV SSI have a substantially different relationship with the Mg ii index than did earlier UV SSI observations. Acceptance of these new SORCE results impose significant changes on our understanding of UV SSI variation. Alternatively, these differences in UV SSI observations indicate that some or all of these instruments have changes in instrument responsivity that are not fully accounted for by the current calibration. In this study, we compare UV SSI changes from SUSIM with those from SIM and SOLSTICE. The primary results are that (1) long-term observations by SUSIM and SORCE generally do not agree during the overlap period (2003?–?2005), (2) SUSIM observations during this overlap period are consistent with an SSI model based on Mg ii and early SUSIM SSI, and (3) when comparing the spectral irradiance for times of similar solar activity on either side of solar minimum, SUSIM observations show slight differences while the SORCE observations show variations that increase with time between spectra. Based on this work, we conclude that the instrument responsivity for SOLSTICE and SIM need to be reevaluated before these results can be used for climate-modeling studies.  相似文献   

19.
For more than a decade total solar irradiance has been monitored simultaneously from space by different satellites. The detection of total solar irradiance variations by satellite-based experiments during the past decade and a half has stimulated modeling efforts to help identify their causes and to provide estimates of irradiance data, using proxy indicators of solar activity, for time intervals when no satellite observations exist. In this paper total solar irradiance observed by the Nimbus-7/ERB, SMM/ACRIM I, and UARS/ACRIM II radiometers is modeled with the Photometric Sunspot Index and the Mg II core-to-wing ratio. Since the formation of the Mg II line is very similar to that of the Ca II K line, the Mg core-to-wing ratio, derived from the irradiance observations of the Nimbus-7 and NOAA9 satellites, is used as a proxy for the bright magnetic elements. It is shown that the observed changes in total solar irradiance are underestimated by the proxy models at the time of maximum and during the beginning of the declining portion of solar cycle 22 similar to behavior just before the maximum of solar cycle 21. This disagreement between total irradiance observations and their model estimates is indicative of the fact that the underlying physical mechanism of the changes observed in the solar radiative output is not well-understood. Furthermore, the uncertainties in the proxy data used for irradiance modeling and the resulting limitation of the models should be taken into account, especially when the irradiance models are used for climatic studies.  相似文献   

20.
P. X. Gao  J. L. Xie  J. Zhong 《Solar physics》2014,289(5):1831-1841
We study the phase relationships between the coronal-mass-ejection (CME) energy cycle, the sunspot-area cycle, and the flare-index cycle from 1996 to 2010. The results show the following: i) The activity cycle of the flare index significantly leads the activity cycle of the sunspot area. ii) The activity cycle of the CME energy is inferred to be almost in phase with the activity cycle of the sunspot area; the activity cycle of the CME energy at low latitudes slightly leads the activity cycle of the sunspot area; the CME energy at high latitudes is shown to significantly lag behind the sunspot area. iii) The CME energy is shown to significantly lag behind the flare index; the CME energy at low latitudes is shown to slightly lag behind the flare index; the CME energy at high latitudes is shown to significantly lag behind the flare index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号