首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 527 毫秒
1.
The chemical and isotopic compositions (δDH2O, δ18OH2O, δ18OCO2, δ13CCO2, δ34S, and He/N2 and He/Ar ratios) of fumarolic gases from Nisyros, Greece, indicate that both arc-type magmatic water and local seawater feed the hydrothermal system. Isotopic composition of the deep fluid is estimated to be +4.9±0.5‰ for δ18O and ?11±5‰ for δD corresponding to a magmatic water fraction of 0.7. Interpretation of the stable water isotopes was based on liquid–vapor separation conditions obtained through gas geothermometry. The H2–Ar, H2–N2, and H2–H2O geothermometers suggest reservoir temperatures of 345±15 °C, in agreement with temperatures measured in deep geothermal wells, whereas a vapor/liquid separation temperature of 260±30 °C is indicated by gas equilibria in the H2O–H2–CO2–CO–CH4 system. The largest magmatic inputs seem to occur below the Stephanos–Polybotes Micros crater, whereas the marginal fumarolic areas of Phlegeton–Polybotes Megalos craters receive a smaller contribution of magmatic gases.  相似文献   

2.
Hydrocarbon compositions and δ13C values for methane of fourteen natural seep gases and four underwater vents in the northwestern Gulf of Mexico are reported. The C1/(C2 + C3) ratios of the seep gas samples ranged from 68 to greater than 1000, whereas δPDB13C values varied from ?39.9 to ?65.5‰. Compositions suggest that eleven of the natural gas seeps are produced by microbial degradation whereas the remaining three have a significant thermocatalytically produced component. Contradictions in the inferences drawn from molecular and isotopic compositions make strict interpretation of the origins of a few of the samples impossible.  相似文献   

3.
Since the 1990s, interest in the magmatic fluids and their relation to mineralization has been re-aroused[1—6]. Studies on stable isotopes of low-sulfidation deposits commonly show the predominance of meteoric water[7]. Paradoxically, the evidence for me…  相似文献   

4.
In 2013, a great breakthrough of deep petroleum exploration was achieved in the Cambrian pre-salt intervals of Wells Zhongshen1 (ZS1) and Zhongshen1C (ZS1C), Tazhong Uplift. However, the hydrocarbon discovery in the Cambrian pre-salt intervals has triggered extensive controversy regarding the source of marine oils in the Tarim Basin. The geochemistry and origin of the Cambrian pre-salt hydrocarbons in Wells ZS1 and ZS1C were investigated using GC, GC-MS and stable carbon isotope technique. These hydrocarbons can be easily distinguished into two genetic families based on their geochemical and carbon isotopic compositions. The oil and natural gases from the Awatage Formation of Well ZS1 are derived from Middle- Upper Ordovician source rocks. In contrast, the condensate and gases from the Xiaoerbulake Formation of Wells ZS1 and ZS1C probably originate from Cambrian source rocks. The recent discovery of these hydrocarbons with two different sources in Wells ZS1 and ZS1C suggests that both Middle-Upper Ordovician-sourced hydrocarbons and Cambrian-sourced petroleums are accumulated in the Tazhong Uplift, presenting a great exploration potential.  相似文献   

5.
Abstract This paper presents systematic studies on the C-O and Sr-Nd isotopic compositions for Cretaceous Badou carbonatites, Fangcheng basalts, and Jiaodong lamprophyres and Paleozoic Mengyin kimberlites in Shandong Province, China. Paleozoic kimberlites have normal and uniform C-O isotopic compositions with δ13C and δ18O in the range of-4.8‰-7.6‰ and +9.9‰-+13.2‰, respectively. However, Cretaceous three different types of mantle-derived rocks have quite different C-O isotopic compositions, indicating that the mantle sources are probably partially contaminated with organic carbon-bearing crustal materials. These Cretaceous rocks show uniform and EMII-like Sr-Nd isotopic compositions and also indicate that the mantle sources were affected by recycled crustal materials. Comparative studies of C-O and Sr-Nd isotopes reveal that the lithospheric mantle beneath the eastern North China Craton had different isotope characteristics in the Paleozoic, the early Cretaceous, and the Tertiary time. This demon  相似文献   

6.
Natural gases discovered up to now in Lishui Sag, the East China Sea Basin, differ greatly in gaseous compositions, of which hydrocarbon gases amount to 2%–94% while non-hydrocarbon gases are dominated by CO2. Their hydrocarbon gases, without exception, contain less than 90% of methane and over 10% of C2 + heavier hydrocarbons, indicating a wet gas. Carbon isotopic analyses on these hydrocarbon gases showed that δ 13C1, δ 13C2 and δ 13C3 are basically lighter than ?44‰, ?29‰ and ?26‰, respectively. The difference in carbon isotopic values between methane and ethane is great, suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation. δ 13 \(C_{CO_2 } \) values of nonhydrocarbon gases are all heavier than ?10‰, indicating a typical abiogenic gas. The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit, consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter. Moreover, δ 13C1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰ heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit while δ 13C2 and δ 13C3 values of the former are over 9‰ heavier than those of the latter. Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag, where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter, therefore, natural gases in the LS36-1 oil-gas pool are mainly derived from the Yueguifeng Formation lacustrine source rock rather than the Lingfeng Formation marine or Mingyuefeng Formation coal-measures source rocks.  相似文献   

7.

Natural gases discovered up to now in Lishui Sag, the East China Sea Basin, differ greatly in gaseous compositions, of which hydrocarbon gases amount to 2%–94% while non-hydrocarbon gases are dominated by CO2. Their hydrocarbon gases, without exception, contain less than 90% of methane and over 10% of C2 + heavier hydrocarbons, indicating a wet gas. Carbon isotopic analyses on these hydrocarbon gases showed that δ 13C1, δ 13C2 and δ 13C3 are basically lighter than −44‰, −29‰ and −26‰, respectively. The difference in carbon isotopic values between methane and ethane is great, suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation. δ 13 \( C_{CO_2 } \) values of nonhydrocarbon gases are all heavier than −10‰, indicating a typical abiogenic gas. The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit, consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter. Moreover, δ 13C1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰ heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit while δ 13C2 and δ 13C3 values of the former are over 9‰ heavier than those of the latter. Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag, where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter, therefore, natural gases in the LS36-1 oil-gas pool are mainly derived from the Yueguifeng Formation lacustrine source rock rather than the Lingfeng Formation marine or Mingyuefeng Formation coal-measures source rocks.

  相似文献   

8.
The newly discovered Baogudi gold district is located in the southwestern Guizhou Province,China,where there are numerous Carlin-type gold deposits.To better understand the geological and geochemical characteristics of the Baogudi gold district,we carried out petrographic observations,elemental analyses,and fluid inclusion and isotopic composition studies.We also compared the results with those of typical Carlin-type gold deposits in southwestern Guizhou.Three mineralization stages,namely,the sedimentation diagenesis,hydrothermal(main-ore and late-ore substages),and supergene stages,were identified based on field and petrographic observations.The main-ore and late-ore stages correspond to Au and Sb mineralization,respectively,which are similar to typical Carlin-type mineralization.The mass transfer associated with alteration and mineralization shows that a significant amount of Au,As,Sb,Hg,Tl,Mo,and S were added to mineralized rocks during the main-ore stage.Remarkably,arsenic,Sb,and S were added to the mineralized rocks during the late-ore stage.Element migration indicates that the sulfidation process was responsible for ore formation.Four types of fluid inclusions were identified in ore-related quartz and fluorite.The main-ore stage fluids are characterized by an H2O–NaCl–CO2–CH4±N2system,with medium to low temperatures(180–260℃)and low salinity(0–9.08%NaCl equivalent).The late-ore stage fluids featured H2O–NaCl±CO2±CH4,with low temperature(120–200℃)and low salinity(0–7.48%Na Cl equivalent).The temperature,salinity,and CO2and CH4concentrations of ore-forming fluids decreased from the main-ore stage to the late-ore stage.The calculated δ^13C,d D,and δ^18O values of the ore-forming fluids range from-14.3 to-7.0%,-76 to-55.7%,and 4.5–15.0%,respectively.Late-ore-stage stibnite had δ^34S values ranging from-0.6 to 1.9%.These stable isotopic compositions indicate that the ore-forming fluids originated mainly from deep magmatic hydrothermal fluids,with minor contributions from strata.Collectively,the Baogudi metallogenic district has geological and geochemical characteristics that are typical of Carlin-type gold deposits in southwest Guizhou.It is likely that the Baogudi gold district,together with other Carlin-type gold deposits in southwestern Guizhou,was formed in response to a single widespread metallogenic event.  相似文献   

9.
Calculated univariant equilibria and oxygen isotope compositions of silicates and carbonates support the proposal that the “Mottled Zone Event” is a low-pressure (1–25 atm), high-temperature (200° < T < 1300°C) metamorphism of calcareous siliceous sediments in which the thermal energy is provided by combustion of organic matter. δ18O of silicates decreases systematically with increasing metamorphic grade from averages of 18.1‰ in protolith shales, to 16.6‰ in grossular-diopside-zeolite rocks, 15.6‰ in wollastonite and anorthite-diopside-gehlenite-grossular fels, 14.1‰ in spurrite-brownmillerite marbles and 11.7‰ in the highest-grade larnite-gehlenite-brownmillerite assemblages. Decarbonation is the principal mechanism influencing the oxygen isotope compositions. The progressive decrease of δ18O in silicates can be modelled as a Rayleigh distillation of CO2 approximately 16‰ enriched in 18O relative to whole rock assemblages i.e., of initial isotopic composition 8.5‰ heavier than the parent carbonates. The mineral assemblage of one sample with an unusual granoblastic texture is in apparent isotopic equilibrium at a temperature of 540°C.  相似文献   

10.
中国火山温泉主要分布在吉林长白山、云南腾冲和黑龙江五大连池等火山区。这些火山虽然处于休眠状态,但大面积的温泉分布指示着岩浆房存在的可能性。本文总结了前人研究成果,分析了中国主要火山区温泉气体地球化学特征,并探讨了温泉气体在火山监测中的应用。长白山、腾冲和五大连池火山区温泉气体地球化学性质类似,都以CO2为主要气体,含量在80%以上,最高可达99%以上,其它气体组分包括CH4、N2、O2、SO2、H2S、He和H2等。长白山火山温泉气体中氦同位素比值(3He/4He)最高,约为4—6RA,CO2中碳同位素比值(δ13C)为-7.9‰—-1.3‰,CH4中碳同位素为-48.0‰—-28.7‰;腾冲火山温泉气体氦同位素比值为3—5.5RA,CO2中的碳同位素为-6.49‰—-2.07‰,CH4中碳同位素为-23.5‰—-9.3‰;五大连池火山温泉气体氦同位素比值约为3RA,CO2中的碳同位素比值为-9.6‰—-3.1‰,CH4中碳同位素为-47.2‰—-44.4‰。3个火山区的温泉气体均显示地幔来源的岩浆气体特征,并在上升运移过程中受地壳或古俯冲物质的影响。  相似文献   

11.
CO2-rich inclusions recovered from “popping” and related tholeiitic rocks from the Mid-Atlantic Ridge have δ13C values of ?7.6 ± 0.5%. relative to PDB. δ13C values of total carbon in the same rocks range from ?12 to ?13.7‰. These values are discussed in the light of the known δ13C variations in rocks of deep-seated origin. The ?7.6‰ value is interpreted as a reasonable estimate of the primary value of δ13C of deep-seated carbon in the ridge area.  相似文献   

12.
贵州草海湖泊系统碳循环简单模式   总被引:17,自引:2,他引:15  
本文分析了贵州草海湖泊系统中的主要含碳物质-湖水DIC、表层沉积物有机质、水生植物的稳定碳同位素组成,其δ^13C值分别为:-3.70‰至-10.60‰,-20.90‰至-21.60%,-16.10‰至-17.40,通过质量平衡计算,建立了草海区域碳循环的简单模式,结果表明:对于草海这样一个水生植物茂盛的浅水富氧湖而言,光合一呼吸作用和有机质的降解对整个湖泊体系的稳定碳同位素组成具有决定性的作用。  相似文献   

13.
The stable water isotopes, 2H and 18O, can be useful environmental tracers for quantifying snow contributions to streams and aquifers, but characterizing the isotopic signatures of bulk snowpacks is challenging because they can be highly variable across the catchment landscape. In this study, we investigate one major source of isotopic heterogeneity in snowpacks: the influence of canopy cover. We measured amounts and isotopic compositions of bulk snowpack, throughfall, and open precipitation during seven campaigns in mid-winter 2018 along forest-grassland transects at three different elevations (1196, 1297, and 1434 m above sea level) in a pre-Alpine catchment in Switzerland. Snowpack storages under forest canopies were 67 to 93% less than in adjacent open grasslands. On average, the water isotope ratios were higher in the snowpacks under forest canopy than in open grasslands (by 13.4 ‰ in δ2H and 2.3 ‰ in δ18O). This isotopic difference mirrored the higher isotope values in throughfall compared with open snowfall (by 13.5 ‰ in δ2H and 2.2 ‰ in δ18O). Although this may suggest that most of the isotopic differences in snowpacks under forests versus in open grasslands were attributable to canopy interception effects, the temporal evolution of snowpack isotope ratios indicated preferential effluxes of lighter isotopes as energy inputs increased and the snowpack ripened and melted. Understanding these effects of forest canopy on bulk snowpack snow water equivalent and isotopic composition are useful when using isotopes to infer snowmelt processes in landscapes with varying forest cover.  相似文献   

14.
Rocks of the Miocene Macquarie Island ophiolite, south of New Zealand, have oxygen and carbon isotopic compositions comparable to those of seafloor rocks. Basalt glass and weathered basalts have δ18O values at 5.8–6.0‰ and 7.9–9.5‰, respectively, similar to drilled seafloor rocks including samples from the Leg 29 DSDP holes near Macquarie Island. Compared to the basalt glass, the greenschist to amphibolite facies metaintrusives are depleted in18O (δ18O=3.2–5.9‰) similar to dredged seafloor samples, whereas the metabasalts are enriched (δ18O=7.1–9.7‰). Although the gabbros are only slightly altered in thin-section they have exchanged oxygen with a hydrothermal fluid to a depth of at least 4.5 km. There is an approximate balance between18O depletion and enrichment in the exposed ophiolite section. The carbon isotopic composition of calcite in the weathered basalts (δ13C=1.0–2.0‰) is similar to those of drilled basalts, but the metamorphosed rocks have low δ13C values (?14.6 to 0.9‰).These data are compatible with two seawater circulation regimes. In the upper regime, basalts were weathered by cold seawater in a circulation system with high water/rock ratios (?1.0). Based on calcite compositions weathering temperatures were less than 20°C and the carbon was derived from a predominantly inorganic marine source. As previously suggested for the Samail ophiolite, it is postulated that the lower hydrothermal regime consisted of two coupled parts. At the deeper levels, seawater circulating at low water/rock ratios (0.2–0.3) and high temperatures (300–600°C) gave rise to18O-depleted gabbro and sheeted dikes via open system exchange reactions. During reaction the seawater underwent a shift in oxygen isotopic composition (δ18O=1.0–5.0‰) and subsequently caused18O enrichment of the overlying metabasalts. In the shallower part of the hydrothermal regime the metabasalts were altered at relatively high water/rock ratios (1.0–10.0) and temperatures in the range 200–300°C. The relatively low water/rock ratios in the hydrothermal regime are supported by the low δ13C values of calcite, interpreted as evidence of juvenile carbon in contrast to the inorganic marine carbon found in the weathered basalts.  相似文献   

15.
The boron isotopic compositions of common synthetic boron products, municipal wastewaters from Switzerland, and three Swiss freshwater lakes were investigated. The δ11B values (δ11B values are normalized to the standard NIST SRM-951) of synthetic Na-borates (–0.4 to 7.6‰) and Ca-Na-borates (–13.4 to –4.9‰) overlap with those of natural borate minerals and hence suggest that the isotopic signal of anthropogenic boron is not modified during the manufacturing process. As a result it is possible to predict the isotopic composition of synthetic boron products and their potential impact upon contamination of water resources. The δ11B values of municipal wastewaters from two locations in northern Switzerland (–7.7 to –4.5‰) reflect utilization of Na/Ca- and/or Ca-borates depleted in 11B. Freshwater lakes from Switzerland (Lake Zürich, Greifensee, Lake Lugano) yielded a δ11B range of –1.7 to 7.1‰ and boron concentrations of 17 to 102 mg L–1. The boron isotopic ratios decrease with increasing boron concentrations, indicating mixing between anthropogenic boron with a low δ11B signature and meteoric boron with a heavier isotopic signal. We suggest that the isotopic composition of meteoric boron over central Europe has δ11B values in the range of ca. 10 to 20‰, whereas in coastal areas the marine component is larger with a higher 11B/10B ratio (δ11B ∼ 30‰).  相似文献   

16.
Secondary calcite residing in open cavities in the unsaturated zone of Yucca Mountain has long been interpreted as the result of downward infiltration of meteoric water through open fractures. In order to obtain information on the isotopic composition (δD and δ18O) of the mineral-forming water we studied fluid inclusions from this calcite. Water was extracted from inclusions by heated crushing and the δD values were measured using a continuous-flow isotope-ratio mass spectrometry method. The δ18O values were calculated from the δ18O values of the host calcite assuming isotopic equilibrium at the temperature of formation determined by fluid-inclusion microthermometry.The δD values measured in all samples range between ? 110 and ? 90‰, similar to Holocene meteoric water. Coupled δ18O–δD values plot significantly, 2 to 8‰, to the right of the meteoric water line. Among the various processes operating at the topographic surface and/or in the unsaturated zone only two processes, evaporation and water–rock exchange, could alter the isotope composition of percolating water. Our analysis indicates, however, that none of these processes could produce the observed large positive δ18O-shifts. The latter require isotopic interaction between mineral-forming fluid and host rock at elevated temperature (>100 °C), which is only possible in the deep-seated hydrothermal environment. The stable isotope data are difficult to reconcile with a meteoric origin of the water from which the secondary minerals at Yucca Mountain precipitated; instead they point to the deep-seated provenance of the mineral-forming waters and their introduction into the unsaturated zone from below, i.e. a hypogene origin.  相似文献   

17.
Yang  Chun  Luo  Xia  Li  Jian  Li  ZhiSheng  Liu  QuanYou  Wang  YuLin 《中国科学:地球科学(英文版)》2008,51(1):140-147

The Xushen gas field, located in the north of Songliao Basin, is a potential giant gas area for China in the future. Its proved reserves have exceeded 1000×108 m3 by the end of 2005. But, the origin of natural gases from the deep strata is still in debating. Epimetamorphic rocks as a potential gas source are widely spreading in the northern basement of Songliao Basin. According to pyrolysis experiments for these rocks in the semi-confined system, gas production and geochemistry of alkane gases are discussed in this paper. The Carboniferous-Permian epimetamorphic rocks were heated from 300°C to 550°C, with temperature interval of 50°C. The gas production was quantified and measured for chemical and carbon isotopic compositions. Results show that δ 13C1 is less than −20‰, carbon isotope trend of alkane gas is δ 13C1<δ 13C2<δ 13C3 or δ 13C1<δ 13C2>δ 13C3, these features suggest that the gas would be coal-type gas at high-over maturity, not be inorganic gas with reversal trend of gaseous alkanes (δ 13C1>δ 13C2>δ 13C3). These characteristics of carbon isotopes are similar with the natural gas from the basin basement, but disagree with gas from the Xingcheng reservoir. Thus, the mixing gases from the pyrolysis gas with coal-typed gases at high-over maturity or oil-typed gases do not cause the reversal trend of carbon isotopes. The gas generation intensity for epimetamorphic rocks is 3.0×108–23.8×108 m3/km2, corresponding to R o from 2.0% to 3.5% for organic matter.

  相似文献   

18.
The coastal confined aquifer in the Gulf of Urabá (Colombia) is an important water source for the banana agro‐industry as well as for urban and rural communities. However, the main processes controlling recharge and mixing in the aquifer are still poorly understood. Hydrochemical analyses and stable isotope monitoring were conducted to (a) determine groundwater recharge origin, mean groundwater age, and the main processes governing groundwater chemistry and the potential mixing of marine water and the influence of diffusive processes from the two surrounding aquitard layers. Hydrochemical data indicate that the main processes affecting the dissolved chemical composition include cation exchange, dissolution of carbonated and CO2, and silicate weathering. δ18O and δ2H compositions combined with 14C data highlight the differences in climatic conditions between the recharge zone and the confined section of the aquifer, which is close to the Atlantic Ocean. Groundwater samples with 14C ages from recent to 28,300 years BP show a depleted isotopic trend ranging from ?6.43‰ to ?9.14‰ in δ18O and from ?43.2‰ to ?65.7‰ in δ2H. The most depleted δ18O and δ2H compositions suggest a cooler recharge climate than the current conditions (corresponding to the last glacial period of the late Pleistocene). Depleted δ13C values in the total dissolved inorganic carbon indicate the existence of organic material oxidation processes within the geologic formation. These results can be used or transferred to enhance groundwater modelling efforts in other confined coastal aquifers of South America where scarcity of long‐term monitoring data limits water resources planification under a changing climate.  相似文献   

19.
Aromatic hydrocarbons are generally main distillation of crude oil and organic extract of source rocks. Bicyclic and tricyclic aromatic hydrocarbons can be purified by two-step method of chromatography on alumina. Carbon isotopic composition of individual aromatic hydrocarbons is affected not only by thermal maturity, but also by organic matter input, depositional environment, and hydrocarbon generation process based on the GC-IRMS analysis of Upper Ordovician, Lower Ordovician, and Cambrian source rocks in different areas in the Tarim Basin, western China. The subgroups of aromatic hydrocarbons as well as individual aromatic compound, such as 1-MP, 9-MP, and 2,6-DMP from Cambrian-Lower Ordovician section show more depleted 13 C distribution. The 13 C value difference between Cambrian-Lower Ordovician section and Upper Ordovician source rocks is up to 16.1‰ for subgroups and 14‰ for individual compounds. It can provide strong evidence for oil source correlation by combing the 13 C value and biomarker distribution of different oil and source rocks from different strata in the Tarim Basin. Most oils from Tazhong area have geochemical characteristics such as more negative 13C9-MP value, poor gammacerane, and abundant homohopanes, which indicate that Upper Ordovician source rock is the main source rock. In contrast, oils from Tadong area and some oils from Tazhong area have geochemical characteristics such as high 13C9-MP value, abundant gammacerane, and poor homohopanes, which suggest that the major contributor is Cambrian-Lower Ordovician source rock.  相似文献   

20.
Kinetic experiments of gas generation for typical samples of marine gas precursors including low-maturity kerogen, residual kerogen and oil as well as dispersed liquid hydrocarbon (DLH) in source rocks were performed by closed system, and the evolution trends of molecular and isotopic compositions of natural gases from different precursors against the maturity (R 0%) at laboratory conditions were analyzed. Several diagrams of gas origin were calibrated by using the experimental data. A diagram based on the ratio of normal and isomerous butane and pentane (i/nC4 ? i/nC5) was proposed and used to identify the origins of the typical marine natural gases in the Sichuan Basin and the Tarim Basin, China. And the maturities of natural gases were estimated by using the statistical relationships between the gaseous molecular carbon isotopic data and maturities (δ13C-R 0%) with different origins. The results indicate that the molecular and isotopic compositions of simulated gases from different precursors are different from each other. For example, the dryness index of the oil-cracking gas is the lowest; the dryness indices of gases from DLH and kerogen in closed system are almost the same; and the dryness index of gases from residual kerogen is extremely high, indicating that the kerogen gases are very dry; the contents of non-hydrocarbon gases in kerogen-cracking gases are far higher than those in oil-cracking and DLH-cracking gases. The molecular carbon isotopes of oil-cracking gases are the lightest, those of kerogen in closed system and GLH-cracking gases are the second lightest, and those of cracking gases from residual kerogen are the heaviest. The calibration results indicate that the diagrams of In(C1/C2)-In(C2/C3) and δ4 3C24 3C3-In(C2/C3) can discriminate primary and secondary cracking gases, but cannot be used to identify gas origin sources, while the diagram of i/nC4 ? i/nC5 can differentiate the gases from different precursors. The application results of these diagrams show that gas mixtures extensively exist in China, which involved the gases from multiple precursors and those from different maturity stages. For example, marine gases in the Sichuan Basin involve the mixture of oil-cracking gases and high-over-maturated kerogen gases, while those in the Tarim Basin involve not only the mixture of gases from multiple precursors, but also those from different maturity gases and post-reservoir alternations such as oxidized degradation and gas intrusion processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号