首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid urbanization results in the conversion of natural soil to urban soil,and consequently,the storage and density of the soil carbon pools change.Taking Chongqing Municipality of China as a study case,this investigation attempts to better understand soil carbon pools in hilly cities.First,the vegetated areas in the study area were derived from QuickBird images.Then,topsoil data from 220 soil samples(0-20 cm) in the vegetated areas were collected and their soil organic carbon(SOC) densities were analyzed.Using the Kriging interpolation method,the spatial pattern of SOC was estimated.The results show that the SOC density exhibited high spatial variability in the urban topsoil of Chongqing.First,the SOC density in topsoil decreased according to slope in the order 2°-6° < 25°-90° < 0°-2° < 6°-15° < 15°-25°.Second,the newly developed areas during 2001-2010 had a lower SOC density than the areas built before 1988.Third,urban parks and gardens had a higher SOC density in topsoil,residential green land followed,and scattered street green land ranked last.For hilly cities,the variability of terrain affects the distribution of SOC.The Kriging results indicate that Kriging method combining slope with SOC density produced a high level of accuracy.The Kriging results show that the SOC density to the north of the Jialing River was higher than the south.The vegetated areas were estimated to amount to 73.5 km2 across the study area with an SOC storage of 0.192 Tg and an average density of 2.61 kg/m2.  相似文献   

2.
Soil organic carbon (SOC) plays an important role in global carbon cycles.Large spatial variations in SOC contents result in uncertain estimates of the SOC pool and its changes.In the present study,the key variables explaining the SOC contents of croplands (CPs) and non-croplands (NCPs) in Chinese provinces were investigated.Data on SOC and other soil properties (obtained from the Second National Soil Survey conducted in the late 1970s to the early 1990s),climate parameters,as well as the proportion of the CP to the total land area (Pcp) were used.SOC content variations within a province were larger than those among provinces.Soil clay and total phosphorus content,ratio of annual precipitation to mean temperature,as well as Pcp were able to explain 75% of the SOC content variations in whole soil samples.Soil pH,mean temperature during the growing season from May to October,and mean annual wind velocity were able to explain 63% of the SOC content variations in NCP soils.Compared with NCP soils,CP soils had lower SOC contents,with smaller variations within and among provinces and lower C/N ratios.Stepwise regression showed that the soil clay content was a unique factor significantly correlated with the SOC content of CP soils.However,this factor only explained 24% of the variations.This result suggested that variables related to human activities had greater effects on SOC content variations in CP soils than soil properties and climate parameters.Based on SOC contents directly averaged from soil samples and estimated by regression equations,the total SOC pool in the topsoil (0-20 cm) of China was estimated at 60.02 Pg and 57.6 Pg.Thousands of years of intensive cultivation in China resulted in CP topsoil SOC loss of 4.34-4.98 Pg.  相似文献   

3.
Accurate estimate of soil carbon storage is essential to reveal the role of soil in global carbon cycle. However, there is large uncertainty on the estimation of soil organic carbon (SOC) storage in grassland among previous studies, and the study on soil inorganic carbon (SIC) is still lack. We surveyed 153 sites during plant peak growing season and estimated SOC and SIC for temperate desert, temperate steppe, alpine steppe, steppe meadow, alpine meadow and swamp, which covered main grassland in the Qinghai Plateau during 2011 to 2012. The results showed that the vertical and spatial distributions of SOC and SIC varied by grassland types. The SOC amount mainly decreased from southeast to northwest, whereas the SIC amount increased from southeast to northwest. The magnitude of SOC amount in the top 50 cm across grassland types ranked by: swamp > alpine meadow > steppe meadow > temperate steppe > alpine steppe > temperate desert, while the SIC amount showed an opposite order. There was a great deal of variation in proportion of SOC and SIC among different grassland types (from 55.17 to 94.59 for SOC and 5.14 to 44.83 for SIC). The total SOC and SIC storage was 5.78 Pg and 1.37 Pg, respectively, in the top 50 cm of soil in Qinghai Province. The mixed linear model revealed that grassland types was the predominant factor in spatial variations of SOC amount while grassland types and soil pH accounted for those of SIC amount. Our results suggested that the community shift of alpine meadow towards alpine grassland induced by climate warming would decrease carbon sequestration capacity by 6.0 kg C m2.  相似文献   

4.
Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microbial properties in the Changbai Moun- tains of Northeast China is meager. Soil carbon content, microbial biomass carbon (MBC), basal respiration and soil carbon mineraliza- tion were studied in five selected types of land use: natural old-growth broad-leaved Korean pine mixed forest (NF); spruce plantation (SP) established following clear-cutting of NF; cropland (CL); ginseng farmland (GF) previously under NF; and a five-year Mongolian oak young forest (YF) reforested on an abandoned GF, in the Changbai Mountains of Northeast China in 2011. Results showed that SOC content was significantly lower in SP, CL, GF, and YF than in NF. MBC ranged from 304.4 mg/kg in CL to 1350.3 mg/kg in NF, which was significantly higher in the soil of NF than any soil of the other four land use types. The SOC and MBC contents were higher in SP soil than in CL, GF, and YF soils, yielding a significant difference between SP and CL. The value of basal respiration was also higher in NF than in SP, CL, GF, and YF. Simultaneously, higher values of the metabolic quotient were detected in CL, GF, and YF soils, indicat- ing low substrate utilization of the soil microbial community compared with that in NF and SP soil. The values of cumulative mineral- ized carbon and potentially mineralized carbon (Co) in NF were significantly higher than those in CL and GF, while no significant dif- ference was observed between NF and SP. In addition, YF had higher values of Co and C mineralization rate compared with GF. The results indicate that conversion from NF into agricultural land (CL and GF) uses and plantation may lead to a reduction in soil nutrients (SOC and MBC) and substrate utilization efficiency of the microbial community. By contrast, soils below SP were more conducive to the preservation of soil organic matter, which was reflected in the comparison of microbial indicators among CL, GF, and YF land uses. This study can provide data for evaluating soils nutrients under different land use types, and serve as references for the rational land use of natural forest in the study area.  相似文献   

5.
Land use change is one of the major factors that affect soil organic carbon(SOC) variation and global carbon balance. However, the effects of land use change on SOC are always variable. In this study, using a series of paired-field experiments, we estimated the effects of revegetation types and environmental conditions on SOC stock and vertical distribution after replacement of cropland with poplar(Populus tomentosa) and korshinsk peashrub(Caragana korshinskii) in three climate regions(Chifeng City, Fengning City and Datong City of the ′Beijing-Tianjin Sandstorm Source Control′(BTSSC) program area. The results show that SOC sequestration rate ranges from 0.15 Mg/(ha·yr) to 3.76 Mg/(ha·yr) in the soil layer of 0–100 cm in early stage after cropland afforestation in the BTSSC program area. The SOC accumulation rates are the highest in Fengning for both the two vegetation types. Compared to C. korshinskii, P. tomentosa has greater effects on SOC accumulation in the three climate regions, but significantly greater effect only appears in Datong. The SOC density increases by 20%–111% and 15%–59% for P. tomentosa and 9%–63% and 0–73% for C. korshinskii in the 0–20 cm and 20–100 cm soil layers, respectively. Our results indicate that cropland afforestation not only affects SOC stock in the topsoil, but also has some effects on subsoil carbon. However, the effect of cropland afforestation on SOC accumulation varied with climate regions and revegetation types. Considering the large area of revegetation and relatively high SOC accumulation rate, SOC sequestration in the BTSSC program should contribute significantly to decrease the CO2 concentration in the atmosphere.  相似文献   

6.
Land cover type is critical for soil organic carbon(SOC) stocks in territorial ecosystems. However, impacts of land cover on SOC stocks in a karst landscape are not fully understood due to discontinuous soil distribution. In this study, considering soil distribution, SOC content and density were investigated along positive successional stages(cropland, plantation, grassland, scrubland, secondary forest, and primary forest) to determine the effects of land cover type on SOC stocks in a subtropical karst area. The proportion of continuous soil on the ground surface under different land cover types ranged between 0.0% and 79.8%. As land cover types changed across the positive successional stages, SOC content in both the 0–20 cm and 20–50 cm soil layers increased significantly. SOC density(SOCD) within 0–100 cm soil depth ranged from 1.45 to 8.72 kg m-2, and increased from secondary forest to primary forest, plantation, grassland, scrubland, and cropland, due to discontinuous soil distribution. Discontinuous soil distribution had a negative effect on SOC stocks, highlighting the necessity for accurate determination of soil distribution in karst areas. Generally, ecological restoration had positive impacts on SOC accumulation in karst areas, but this is a slow process. In the short term, the conversion of croplandto grassland was found to be the most efficient way for SOC sequestration.  相似文献   

7.
1INTRODUCTIONDesertification is one of the most serious land degrada-tion, which results in the deterioration of physical, che-mical, and biological characteristics of soils (UNEP, 1992). Soil organic carbon (SOC) was considered to be a key index in evaluation of soil quality, soil degradation and soil C sequestration(SCHLENGSINGER etal., 1990; FENG etal., 2002; WANG etal., 2003). Many researchers have reported the correlations among desertification restoration, soil C s…  相似文献   

8.
土地利用变化对吴江市水田土壤有机碳储量的影响分析   总被引:2,自引:0,他引:2  
 农业表层土壤碳库容易受人为强烈干扰,而又可以在较短的时间尺度上进行调节,当今我国经济发达地区土地利用变化必然会对土壤固碳产生重要影响。本研究以江苏省吴江市水稻土为例,利用新一代中分辨率成像光谱仪(MODIS)和TM/ETM影像提取了1984年稻田面积,以及这部分稻田在2000-2005年的土地利用变化状况。研究中以最大似然法对TM/ETM、MODIS影像应用归一化植被指数(NDVI)、增强型植被指数(EVI)和陆地水分指数(LSWI)掩膜的方法作了识别提取;同时,结合第二次全国土壤普查、2003年耕地地力调查点和吴江市农林局土肥指导站长期定位点的土壤有机碳数据估算了1984年和2000-2005年土壤碳库变化情况。结果表明:近20多年来尽管吴江市水稻土水耕熟化过程中有机碳总体呈增加的趋势,但由于大量稻田被非农用地所取代,导致土壤固碳能力大幅度下降,尤其从2001年开始从"碳汇"变成"碳源"。因此,在我国经济发达区应密切关注耕地转换成非农用地而导致的土壤有机碳的损失。  相似文献   

9.
Agricultural land use and management practices may affect soil properties,which play a critical role in sustaining crop production.Since the late 1970s,several new agricultural land use types had been introduced in the rural areas of China.The purpose of this study is to evaluate the effect of these land use changes on the soil properties,nu-trient absorption rate,and nutrient use economic efficiency ratio in an agricultural area of Beijing.Specifically,the cropland,the orchard and the vegetable field were examined.Results of this study suggest that land use and farming management practices significantly affect the content of soil organic carbon (SOC),total nitrogen (TN),total phos-phorus (TP),and available phosphorus in the surface layer of 0-25 cm (p<0.05) in the Yanqing Basin,northwestern Beijing.Soil nutrients in each agricultural land use type decrease rapidly with the increasing soil depth.Orchard and vegetable field tend to have higher soil nutrients than the cropland does.However,the soil nutrient-absorption rate (NAR) of the orchard and vegetable field is lower than that of the cropland,even though orchard and vegetable field may provide much higher economic benefit.While increasing SOC,TN,and TP in the orchard and vegetable field by intensive farming may be a valuable option to improve soil quality,potential increase in the risk of nutrient loss,or agricultural non-point source pollution can be a tradeoff if the intensive practices are not managed appropriately.  相似文献   

10.
Soil organic carbon (SOC) was considered to be a key index in evaluation of soil degradation and soil C sequestration. To discuss the spatial-temporal dynamics of SOC in arable layer in reversed desertification area, a case study was conducted in Yulin City, Shaanxi Province, China. Data of SOC were based on general soil survey in 1982 and repeated soil sampling in 2003. Soil organic carbon content (SOCC) was determined by K2Cr3O2-FeSO4 titration method, and soil organic carbon density (SOCD) was calculated by arithmetic average and area weighted average method, respectively. On average, SOCC and SOCD of the arable layer in the study area from 1982 to 2003 had increased 0.5 Ig/kg and 0.16kg/m2, respectively. Considering main soil types, the widest distributed Arid-Sandic Entisols had lowest values and increments of SOCC and SOCD during the study period; while the second widest Los-Orthic Entisols had higher values and increments of SOCC and SOCD, compared to the mean values of the whole region. The results indicated that reversed desertification process was due to the modification of land use and management practices, such as natural vegetation recovery, planting grass, turning arable land to grassland, and soil and water conservation etc., which can improve SOCC and SOCD and thus enhance soil C sequestration.  相似文献   

11.
This study was carried out in the Gurbantünggüt Desert,Uygur Autonomous Region of Xinjiang,Northwest China in August,2009.To quantify the storage,contribution and vertical distribution patterns of plant biomass carbon (PBC)and soil organic carbon(SOC)in the study area,we investigated the carbon concentrations and its vertical distribution in three different desert shrubland communities dominated by Reaumuria soongorica,Haloxylon ammodendron+R.soongorica and Tamarix ramosissima+R.soongorica,respectively.We analyzed vertical distribution of root biomass carbon and soil carbon contents by excavating soil profiles for each dominated community.The results show that SOC is considerably the larger carbon pool in the soil layers of 1.0-3.0 m(the mean value of three shrubland communities is 38.46%)and 3.0-5.0 m(the mean value is 40.24%).In contrast,70.74%of belowground biomass carbon storage in 0-1.0 m layer,and its content decrease with increasing soil depth.The Haloxylon ammodendron+R. soongorica shrubland community has the highest belowground biomass carbon among three selected communities. This study highlights the importance of SOC stored in deep soil layers(lower than 3.0 m from the surface)in arid shrubland communities in the global carbon balance.In addition,it provides the data support for revealing deep soil solid carbon potential,and offers scientific basis for the further research in the carbon cycle of terrestrial ecosystem.  相似文献   

12.
北京城市增长边界预测   总被引:2,自引:0,他引:2  
为了遏制北京”摊大饼”式的城市发展模式,促进土地资源的集约、高效利用,引导国土空间合理布局,划定北京城市增长边界成为重要举措。本研究从城市内生发展动力角度,将遗传神经网络嵌入CA模型,建立北京城市增长边界预测模型,选定了自然、人口经济、区位、邻域、土地利用类型和政策规划6类因素共18个影响因子,预测北京市城市增长弹性边界。同时,从土地自身生态承载能力角度,用建设用地适宜性评价方法,选定了地形、地貌、公园水域、土地利用现状、自然保护区、城市用地距离为影响因子,划定北京市城市增长刚性边界。结果表明,利用该模型预测北京市2025年城市增长边界,总的面积匹配值为96%,模型精度较高;2025年北京市弹性增长边界总面积为1738.98 km2,刚性增长边界总面积为3297.01 km2。基于GANN-CA模型的城市增长边界划定方法对确定城市未来扩张方向有指导作用,可为城市规划和发展政策的制定提供依据。  相似文献   

13.
Labile organic carbon (LOC) is a fraction of soil organic carbon (SOC) with rapid turnover time and is affected by soil fertilization. This investigation characterized the SOC content, LOC content and LOC distribution in the treatment plots of surface soil erosion at five levels (0-, 5-, 10-, 20- and 30-cm erosion). The soil had received contrasting fertilizer treatments (i.e., chemical fertilizer or chemical fertilizer + manure) for 6 years. This study demonstrated that both SOC and various LOC fractions contents were higher in the plots with fertilizer + manure than in those with fertilizer alone under the same erosion conditions. The SOC and LOC contents de- creased as the erosion depth increased. Light fraction organic carbon, particulate organic carbon, easily oxidizable organic carbon (KMnO4-oxydizable organic carbon), and microbial biomass carbon were 27% 57%, 37%-7%, 20%-25%, and 29%-33% higher respectively in the fertilizer + manure plots, than in the fertilizer alone plots. Positive correlations (p 〈 0.05) between SOC content and different fractions contents were observed in all plots except the correlation between total SOC content and water-soluble organic carbon content in the different fertilization treatments. Obviously, fertilizer + manure treatments would be conducive to the accumulation of LOC and SOC in the Black soil of Northeast China.  相似文献   

14.
新型城镇化是以人为核心的城镇化,山东半岛城市群作为我国11个国家级城市群之一,近年来城镇化发展速度不断加快。以山东半岛城市群8个设区城市为研究对象,通过构建城市土地扩张与人口增长协调关系模型,计算8个城市的土地扩张与人口增长协调度,并根据城市土地扩张与人口增长的协调性分级标准,把1994年和2013年8个城市的土地扩张与人口增长协调性关系进行分等定级评价。结果表明:山东半岛城市群城市土地扩张与人口增长的协调性较弱,呈现出土地快速扩张态势。8个城市中有5个城市表现为土地快速扩张,其中2个城市表现为土地显著扩张,3个城市表现为土地明显扩张;人地基本协调的仅有3个,协调性空间分异明显。针对8个城市土地扩张与人口增长间不同类型的协调度,提出发展建议,促进山东半岛城市群城市土地扩张与人口增长协调发展,提高城镇化发展质量。  相似文献   

15.
Urban internal structure is essential information for urban geography researchers and urban planners or managers. This research aims to examine the spatial structure changes of internal urban land use based on the interpreted datasets of 1984 and 2008. Spatio-temporal patterns of internal land use conversion and urban expansion are analyzed, and then dominant driving factors (e.g., social economy, population growth and urban planning) were identified. The results indicate that Beijing′s intra-urban layout has experienced tremendous adjustment from compact to disperse configure, otherwise its function objects have shifted from the major economic and industrial development before the 1990s to the combination with cultural, high-technological and inhabitable city at present. The dominant urban land use transformations include the relocation of industrial lands from core districts to suburban or other provinces, and the accelerating expansion of residential areas and green spaces for supplying the demand of housing and ecological protection. Although Beijing′s urban planning has experienced three major adjustments and improvement since the 1980s, its optimization of urban internal patterns still remains a challenge.  相似文献   

16.
准确预测未采样区域SOC密度,是研究SOC演变趋势和探索土壤固碳作用对缓解全球气候变化的基础。采用泛克里格法(Universal Kriging,UK)和土壤类型法(pedological professional knowledge-based method,PKB),分别对长兴县水稻土有机碳密度进行了预测,其中,UK直接以长兴水稻土剖面资料为源数据、PKB以长兴水稻土剖面数据和长兴1∶5万数字土壤图为源数据进行预测。根据平均绝对误差(MAE)及均方根误差(RMSE)大小,评价了两种方法在县域尺度土壤有机碳密度空间预测效果。结果表明:UK的MAE(31.2)、RMSE(52.5)均大于PKB的MAE(24.7)、RMSE(43.1),说明PKB法的预测效果较好,UK法相对较差。研究表明,对土壤类型、土壤母质,以及剖面点位置等信息的综合考虑能使PKB法更好地表达土壤属性的空间特征,也更适于县域尺度土壤有机碳密度的空间预测。  相似文献   

17.
重庆市主城区1986-2007年用地时空演化特征分析   总被引:1,自引:0,他引:1  
本文以重庆市主城区为例,通过GIS构建城市用地变化模型对重庆市城市用地20年来的时空演变规律进行了分析,分别对其城市用地利用程度、城市用地多样性和城市用地重心变化进行了评价,并考虑入口和海拔因素,讨论了重庆市城市用地发展的主要特点.结果表明;(1)重庆市主城区城市用地中耕地面积最多,其次是林地,城市景观所占比例较轻.2...  相似文献   

18.
Urban forest soil infiltration, affected by various factors, is closely related with surface runoff. This paper studied the effect of urban forest types, vegetation configuration and soil properties on soil infiltration. In our study, 191 typical plots were sampled in Changchun City, China to investigate the soil infiltration characteristics of urban forest and its influencing factors. Our results showed that the steady infiltration rates of urban forest soil were highly variable. High variations in the final infiltration rates were observed for different vegetation patterns and compaction degrees. Trees with shrubs and grasses had the highest infiltration rate and trees with bare land had the lowest infiltration rate. In addition, our results showed that the soil infiltration rate decreased with an increase in the bulk density and with a reduction in the soil organic matter content and non-capillary porosity. The soil infiltration rate also had significantly positive relationships with the total porosity and saturated soil water content. Urban soil compaction contributed to low soil infiltration rates. To increase the infiltration rate and water storage volume of urban forest soil, proper techniques to minimize and mitigate soil compaction should be used. These findings can provide useful information for urban planners about how to maximize the water volume of urban forest soil and decrease urban instantaneous flooding.  相似文献   

19.
Grazing exclusion is widely adopted in restoring degraded alpine grasslands on the Qinghai-Tibetan Plateau. However, its effectiveness remains poorly understood. In this study, we investigated the effects of grazing exclusion on plant productivity, species diversity and soil organic carbon (SOC) and soil total nitrogen (STN) storage along a transect spanning from east to west of alpine meadows in northern Tibet, China. After six years of grazing exclusion, plant cover, aboveground biomass (AGB), belowground biomass (BGB), SOC and STN were increased, but species diversity indices declined. The enhancement of AGB and SOC caused by grazing exclusion was correlated positively with mean annual precipitation (MAP). Grazing exclusion led to remarkable biomass increase of sedge species, especially Kobresia pygmaea, whereas decrease of biomass in forbs and no obvious change in grass, leguminous and noxious species. Root biomass was concentrated in the near surface layer (10 cm) after grazing exclusion. The effects of grazing exclusion on SOC storage were confined to shallow soil layer in sites with lower MAP. It is indicated that grazing exclusion is an effective measure to increase forage production and enhance soil carbon sequestration in the studied region. The effect is more efficient in sites with higher precipitation. However, the results revealed a tradeoff between vegetation restoration and ecological biodiversity. Therefore, carbon pools recover more quickly than plant biodiversity in the alpine meadows. We suggest that grazing exclusion should be combined with other measures to reconcile grassland restoration and biodiversitv conservation.  相似文献   

20.
城市污泥土地利用的环境问题是限制其大规模利用的主要因素。本文建立基于权重线性加和模型的城市污泥土地利用环境风险控制方法,提出北京市城市污泥土地利用环境风险控制方案。不同因素对城市污泥施用的环境影响依次为:土壤重金属含量(0.22)>土地利用类型(0.17)≈土壤类型(0.17)≈自然降雨(0.17)>坡度(0.13)>与自然水体距离(0.09)>与城镇居民区距离(0.05)。北京市城市污泥低风险适宜施用区域主要集中在平谷和顺义交界处、昌平-延庆中部以及房山的东部山间林地,施用面积为2033 km2。中风险施用区分布在西南部、东南部的林地和旱地的混合区域,面积为5079 km2。高风险施用区面积为380 km2,分布在石景山以及门头沟东北部、房山西南部以及平谷北部区域。禁止施用区面积达8916 km2,主要分布在城区及城区周边的郊县、延庆、怀柔、密云等部分区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号