首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Burial diagenesis of chalk is a combination of mechanical compaction and chemical recrystallization as well as cementation. We have predicted the characteristic trends in specific surface resulting from these processes. The specific surface is normally measured by nitrogen adsorption but is here measured by image analysis of scanning electron micrographs. This method concentrates on the micritic matrix alone. Deep-sea sediments are ideally suited to the study of burial diagenesis because they accumulate in a relatively conservative tectonic setting. We used material from the Ontong Java Plateau in the Pacific, where a > 1 km thick package of chalk facies sediments accumulated from the Cretaceous to the present. In the upper 200–300 m the sediment is unconsolidated carbonate ooze, throughout this depth interval compaction is the principal porosity reducing agent, but recrystallization has an equal or larger influence on the textural development. In the chalk interval below, compaction is not the only porosity reducing agent but it has a larger influence on texture than concurrent recrystallization. Below 850 m grain-bridging cementation becomes important resulting in a lithified limestone below 1100 m. This interpretation is based on specific surface data alone, and modifies current diagenetic models.  相似文献   

2.
Chalks originate as Cretaceous to Recent pelagic or hemipelagic calcareous ooze, which indurate via burial diagenesis to chalk and limestone. Because they accumulate in pelagic settings with high environmental continuity, chalks may form thick formations and even groups. For this reason, and because chalks have a simple mineralogy (low magnesium calcite, silica and clays), they are ideal for the study of diagenetic processes including the depth-related decrease of porosity. It is the aim of this study to illustrate how the evaluation of in situ elastic strain can help in understanding these processes including the interplay between stress-controlled diagenetic processes and processes furthered by thermal energy. Petrophysical core and well data can be used for analyses of how porosity reduction via pore collapse and pressure dissolution is related to in situ elastic strain. The data in question are: depth, density of overburden, pore pressure, ultrasonic P-wave velocity and dry density/porosity. The analysis reveals that the transition from ooze to chalk is associated with high elastic strain and consequent pressure dissolution at calcite–particle contacts causing contact cementation. The transition from chalk to limestone is also associated with high elastic strain, especially at clay–calcite interphases causing development of stylolites via pressure dissolution, and consequent pore-filling cementation. Following each transformation the elastic strain drops rapidly. The observation of this diagenesis-related pattern in elastic strain of the sedimentary rock is novel and should not only be helpful in understanding the porosity development in sedimentary basins, but also add basic scientific insight.  相似文献   

3.
The stable isotope geochemistry of Miocene sediments from the leeward margin of the Great Bahama Bank was examined to investigate burial diagenetic processes in periplatform carbonates. Data indicate that, in addition to differences in bulk proportions of neritic and pelagic carbonate along the slope, rhythmic variation in primary carbonate content has controlled patterns of burial diagenesis and associated geochemical signatures throughout much of the succession examined. The present study focuses on Ocean Drilling Program Sites 1006 and 1007, the most distal of five sites drilled from marginal to deep basin environments during Leg 166. These Miocene sections are characterized by their cyclic appearance, manifest as decimetre‐ to metre‐scale alternations between light‐coloured ooze/chalk/limestone and dark‐coloured marl/marlstone. The section at Site 1006 contains a high proportion of pelagic carbonate and is unlithified to a subbottom depth of ~675 m. Fluctuations in δ18O and δ13C values at this site are independent of lithological variation and reflect primary conditions. At Site 1007, located at the toe‐of‐slope and composed of a mixture of bank‐derived and pelagic carbonate, limestones are densely cemented, show little evidence of compaction and have δ18O values up to 2‰ higher than coeval sediments at Site 1006. Marlstones at Site 1007 are poorly cemented, exhibit an increase in compaction‐related features with depth and have lower and more variable δ18O values that are similar to those of coeval sediments at Site 1006. Isotopic and petrographic characteristics of limestone interbeds result from cement precipitation from cold sea water during the first ~100 m of burial. Higher proportions of insoluble materials and pelagic carbonate seem to have inhibited diagenetic alteration in adjacent marlstones; in spite of significant compaction and pressure solution during burial, original isotopic compositions appear to be best preserved in these intervals at Site 1007. The documented contrasts in petrographic and isotopic patterns illustrate the role of primary sediment composition in controlling lithification processes in periplatform carbonates and stress the importance of considering such factors when interpreting geochemical data from ancient shelf and slope limestones.  相似文献   

4.
在吐哈盆地巴喀气田八道湾组砂岩储层特征及控制因素分析的基础上,以地史时间和埋藏深度为变量,以现今孔隙度为约束条件,紧密结合埋藏阶段分析和关键成岩阶段窗口分析,分阶段建立了巴喀气田八道湾组储层从埋藏初始直至现今的孔隙度演化定量模型,动态体现了整个孔隙度演化过程。定量模拟结果表明:研究区储层总孔隙度演化是一个七段式分段函数,各个阶段孔隙度演化或遵循减小模型或遵循减小与增大的叠加模型;机械压实阶段的孔隙度减小模型是以埋深为自变量的函数,压实和胶结综合作用阶段则是以埋深和埋藏时间为变量的函数;孔隙增大模型适用于Ro值范围为0.6~1.0的溶蚀作用窗口内;早期的纯机械压实作用使八道湾组储层已接近致密,溶蚀作用之前的压实和胶结综合作用导致储层致密化,而后期溶蚀作用仅在一定程度上提高了孔隙空间。  相似文献   

5.
Knowledge of compactant behavior and the associated subsidence for high porosity carbonate formations is crucial in applications such as enhanced oil recovery. To gain insights into inelastic compaction and failure modes of a porous chalk under different loading histories, triaxial compression experiments were conducted on a high porosity (45 %) chalk, tested using three stress paths: no precompaction (virgin rock), precompacted to 30 MPa, and precompacted to 60 MPa. For the virgin chalk with no precompaction under triaxial compression, the transition from axial splitting to shear fracturing to compaction banding was observed. By precompacting the specimens to mean stresses of 30 and 60 MPa, the brittle failure regime expanded. In 60 MPa precompacted specimens, shear fracture was observed over a larger range of mean stress. Furthermore, precompaction increased the internal friction angle due to permanent volume change, but the cohesion decreased due to damage.  相似文献   

6.
压实过程中埋深和时间对碎屑岩孔隙度演化的共同影响   总被引:10,自引:2,他引:8  
在相同埋深条件下,由于经历时间不同,地层压实程度将会存在差别。从粘弹塑性体应力-应变模型(Bingham 模型)推导出均速埋藏条件下地层孔隙度是埋深和经历时间的双元函数。该函数充分表明,在压实作用阶段,埋藏时间和埋深两个因素对地层孔隙度演化的影响都是非常重要的。为了充分证实这一结论,作者首先分析3个代表性沉积盆地地层孔隙度与埋深和埋藏时间的关系,阐明了除了埋深因素的作用,埋藏时间明显影响到了地层孔隙度的改变。另外,利用沉积物实验室压实物理模拟实验结果与实际盆地地层压实特征的差异性,进一步证明了压实过程中承压时间对压实程度起着重要的作用。任一深度地层孔隙度与埋深的表面关系不能掩盖地层孔隙度受埋藏过程控制的实质,即地层孔隙度受埋藏时间和深度的双重影响。  相似文献   

7.
近年来,随着致密砂岩油气藏研究的不断深入,亟需明确致密砂岩储层致密化机理,从而更好地利于致密砂岩油气藏的勘探与开发。机械压实作用通常被理解为中浅层砂岩所经历的主要成岩作用,而深层的机械压实作用长期以来被人们所忽视。为探讨机械压实作用在砂岩致密过程中的作用及对致密化的影响程度,本次研究以鄂尔多斯盆地上三叠统延长组致密砂岩为例,通过井孔浅层与深层孔隙度变化趋势分析、镜下岩石结构的证据和砂岩压实模拟实验3个方面对延长组致密砂岩储层机械压实作用特征进行了分析。研究发现砂岩在深层与浅层压实减孔趋势一致或平行;随着上覆压力的增加,砂岩一直表现为减孔效应且机械压实作用强度随埋深的增加而变大;薄片特征显示延长组致密砂岩机械压实作用存在分级特征,不同级别的压实强度对应一定的镜下压实特征,通过统计薄片数据发现样品都处于压实作用与胶结作用对孔隙度影响评价图(Houseknecht图版)的左下区域。结果表明砂岩在埋藏致密化过程中自始至终存在机械压实作用,并且机械压实作用是导致砂岩致密减孔最重要的原因,远远超过胶结作用产生的减孔效应。由于砂岩孔隙度演化不仅与埋深有关,同样受到地质时间的影响,本次研究通过数学推导建立了砂岩孔隙度时间埋深双元函数模型,进而通过孔隙度双元函数可以对压实减孔进行定量分析,表征机械压实作用对砂岩致密化过程的影响程度。  相似文献   

8.
Graphical statistics have been applied to the pore-size distribution curves of argillaceous rocks to characterize the changes in pore parameters that result from compaction and geological time. The most striking characteristic of recently deposited sediment is the high variability in mean pore size and in the sorting and skewness of the pore system. The mean pore size ranges from 15 to 980 nm, sorting ranges from very well sorted to poorly sorted, and skewness varies from systems in which small pores predominate over large ones to systems in which large pores predominate. This high variability in pore structure represents the many environmental and mineral-related variables that affect the pore system of newly deposited sediment. The mean pore size of shales decreases with increasing compaction and approaches a limiting value of about 3·5 nm at depth. Within a geological time span of 50 m.y. and/or depth of burial of about 1200 m, most sediments have reached an irreversible, well sorted pore-size distribution. Early diagenetic processes apparently affect the skewness of pore systems more than compaction, such that within about 50 m.y. the pore system is negatively skewed, with small pores predominating over large. Sediments buried to a depth of 500 m or less exhibit a porosity range of 40--85%; below 500 m, porosity decreases linearly with burial depth. No correlation exists between the surface area of shale pore systems and depth of burial, geological age, and the pore parameters mean pore size, sorting, and skewness.  相似文献   

9.
This work aims to reveal the evolution of the porosity in the Triassic Yanchang Formation tight sandstone reservoir of the Xifeng–Ansai area of Ordos Basin. Based on destructive diagenesis(compaction and cementation) and constructive diagenesis(dissolution) of sandstone reservoirs, this study analyzed the diagenesis characteristics of the tight sandstone reservoirs in this area, and discussed the relationship between sandstone diagenesis and porosity evolution in combination with present porosity profile characteristics of sandstone reservoir. The effect simulation principle was employed for the mathematical derivation and simulation of the evolution of porosity in the Yanchang Formation tight sandstone reservoirs. The result shows that compaction always occurs in tight sandstone reservoirs in the Yanchang Formation, and cementation occurs when the burial depth increases to a certain value and remains ever since. Dissolution occurs only at a certain stage of the evolution with window features. In the corresponding present porosity profile, diagenesis is characterized by segmentation. From the shallow to the deep, compaction, compaction, cementation and dissolution, compaction and cementation occur successively. Therefore, the evolution of sandstone porosity can be divided into normal compaction section, acidification and incremental porosity section, and normal compaction section after dissolution. The results show that the evolution of sandstone porosity can be decomposed into porosity reduction model and porosity increase model. The superposition of the two models at the same depth in the three stages or in the same geological time can constitute the evolution simulation of the total porosity in sandstone reservoirs. By simulating the evolution of sandstone reservoir porosity of the eighth member in Xifeng area and the sixth member in Ansai area, it shows that they are similar in the evolution process and trend. The difference is caused by the regional uplift or subsidence and burial depth.  相似文献   

10.
Marine sediments typically exhibit steep porosity gradients in their uppermost centimeters. Although the decrease in porosity with depth below the sediment-water interface is primarily due to compression arising from the accumulation of overlying sediment, early diagenetic mineral dissolution and precipitation reactions may potentially also affect the porosity gradient. Here, we present a steady state compaction model, based on the mass and momentum conservation of total fluid and solid phases, in order to quantify the relative contributions of mineral reactions and physical compaction on porosity changes. The compaction model is applied to estimate hydraulic conductivity and compressive response coefficients of deep-sea sediments from measured porosity depth profiles. The results suggest an inverse relation between the compressive response coefficient and the lithogenic content of marine sediments. For deep-sea sediments exhibiting high rates of dissolution of siliceous shell fragments, the compaction model ignoring mineral reactions overestimates the hydraulic conductivity and compressive response coefficients. In contrast to non-compacting porous media, mineral dissolution in surficial sediments can lead to lower porosity. However, as illustrated for a deep-sea sediment in the equatorial Atlantic characterized by extensive dissolution of calcareous shell fragments, the effect of mineral dissolution and precipitation reactions on porosity gradients is, in most cases, negligible.  相似文献   

11.
徐起浩 《沉积学报》2018,36(6):1091-1104
通过建立沉积压实理论模式和由土体单元压缩前后体积、孔隙比、孔隙度变化的理论关系所导出的压实度与孔隙度关系式表明,沉积过程中下伏沉积压实度不发生变化时,上覆沉积孔隙度变化取决于初始沉积孔隙度,因沉积环境变化导致初始沉积孔隙度发生变化,造成沉积孔隙度与沉积深度不相关,出现下伏沉积孔隙度大于上覆沉积的情况。这是下伏沉积孔隙水不能排出,呈欠压实状态的表现。当无沉积外干扰因素,连续沉积过程中出现土柱下部孔隙度大于土柱上部时,土柱下部一定处于欠压实状态,这是识别滨海相沉积上覆沉积后未被再压实的重要标志。通过广东沿海8个工程场地58个钻孔191个土样相同钻孔相同命名土,及广东和国内其他有关地区不同场地共208个土样不同钻孔相同命名土孔隙度与分布深度比较,分析显示,大约40 m以内或晚更新世中晚期以来滨海相沉积在垂向和横向分布上普遍存在这种欠压实特征。提出沉积压实大致具随序发生的三个阶段:1)最表层的薄层在初始沉积孔隙度影响下的初始沉积压实阶段;2)欠压实阶段;3)再压实阶段。综合研究结果显示,滨海相沉积一般渗透性差,泄水环境不好,除沉积外因素导致再压实的局部相关沉积层外,近地表40 m以内或晚更新世中晚期以来的滨海相沉积压实下沉量不明显,在用滨海相沉积研究古海平面及海岸地壳运动时,一般情况可不考虑沉积压实影响。  相似文献   

12.
A numerical compaction model of overpressuring in shales   总被引:1,自引:0,他引:1  
A one-dimensional model of sediment compaction is presented to relate pressure, porosity, permeability, and fluid and solid-particle velocities in an evolving sedimentary basin. The burial history of a sedimentary package is followed and incorporated into rate models for diagenetic reactions to predict clay compositions with depth. The governing set of nonlinear, partial differential equations constitutes a moving boundary problem and is solved by a finite difference scheme. Sedimentation rates and a permeability-porosity function for shales are required to implement the model. Additional factors are incorporated to mimic the effect of increased fluid volume generated by dehydration from clay mineral transformations and by thermal expansion. We demonstrate that the major cause of overpressuring in sediments accumulating along passive margins is nonequilibrium compaction. Sedimentation rates and strata permeability are the most important geologic factors in the formation of overpressured zones. Smectite dehydration and aquathermal pressuring play secondary roles in the development and sustenance of overpressures.  相似文献   

13.
A laboratory test program, which simulated reservoir conditions of pressure and temperature, was conducted on outcrop and reservoir chalk samples of various porosities. All the samples experienced a stress path following uniaxial strain condition K 0 that led to compaction failure, i.e. pore collapse. The experiments were loaded by depletion of pore pressure conducted under load controlled conditions. This depletion phase was followed by a creep period, where time-dependent deformation was monitored. The intention of creating such reservoir condition in these laboratory experiments was to gain knowledge of the nature of chalk compaction. Chalk is an important reservoir rock for the oil and gas industry with unique storage capability with porosities up toward 50%. However, this rock is also very weak which has resulted in significant reservoir compaction and in turn severe seabed subsidence and casing failure. Mapping of the mechanical behavior of chalk in terms of deformation is thus decisive for a proper understanding of these reservoirs. The results of this study show that chalk is indeed a rate-dependent material under laboratory loading conditions as time effects were revealed as the loading rate was varied. However, the results raise uncertainty about the importance of rate dependency for chalk under completely drained conditions. Further, such high-porosity chalk suffers for substantial plastic strains and obvious strain hardening. Indeed, a relation between deformation/porosity and hardening is proposed by the introduction of real-time modulus values. Time-dependent deformation, also called creep was influenced by the depletion phase, as consolidation or transient creep influenced the deformation response for as much as 175 h after a change in load. This indicates that transient creep is dependent on the stress history. However, observations suggest the existence of a universal mechanism for steady state creep, governed by neither the initial porosity nor the stress history or chalk type, which thus seems to be an independent strain contributor. Finally, time dependence is found on the K 0 development for chalk tested at typically laboratory rates, which has been discussed as a reflection of the nature of the grain re-arrangement during failure and plastic deformation. Ultimately, such time dependence of the K 0 may contribute to the understanding of stress path data deduced from field data.  相似文献   

14.
This paper made a research about the change rule of elastic wave velocity with stress applied on rock from theoretical and experimental aspect. Firstly, a mathematical model of P-wave velocity and confining pressure of rock was set up from the point of acoustoelastic character. Effect of axial stress on P-wave velocity in granite and sandstone during uniaxial compression process was studied experimentally by using GAW-2000 rock mechanical testing system and RSM-SY5 ultrasonic wave testing system, and the relation curves of axial stress with P-wave velocity were obtained. Based on test data, acoustoelastic theoretical formulas of granite and sandstone were established and the best empirical formulas were fitted by using regression method. Meanwhile, a comparative analysis of the empirical and theoretical calculated values was carried out. Finally, the reliability of applying acoustoelastic theoretical formula in hard rock range was further verified based on the experimental data of granitic gneiss. The results show that the P-wave velocity experiences a rapid increase, gentle increase and then a sharp fall during the uniaxial compression process. The B-value in acoustoelastic theoretical formula (proportion coefficient determined by elastic modulus and third-order elastic constant) decreases exponentially with axial stress. The acoustoelastic theoretical formula can effectively reflect the relationship between rock acoustic velocity and stress within the allowable error, which can be the theoretical foundation of acoustoelastic geo-stress measurement of subsurface rock mass.  相似文献   

15.
Mudstones are one of the least permeable rocks in most sedimentary sequences. Accordingly they can act as seals for fluid flow leading to abnormal overpressures. Nevertheless, mudstone compaction and related permeability and porosity decrease are not adequately described in current basin modelling software, because only mechanical compaction is taken into account. In reality, however, clay minerals undergo severe chemical diagenesis which certainly influences petrophysical properties and compaction. In this context a mathematical approach which has been originally developed in soil mechanics has been adapted to basin modelling. The underlying mathematical equations are carefully explained in the text. In the basic equation the compression coefficient is a function of void ratio and effective stress. Using these equations, overpressure can be predicted by using petroleum systems modelling techniques. This is shown for a real 3D case study in the North Sea, in which strong overpressure occurs. A compaction model for mudstones that depends strongly on the clay content of the individual stratigraphic units is used for the calibration of porosities in the 3D case study. In addition, a chemical compaction model that reduces porosities by using a kinetic reaction is used for the deeper part of the basin where mechanical compaction processes are less important. The pressure generation process depends strongly on permeability and compressibility of the porous medium. Therefore, the use of mudstone compaction and permeability models is sufficient to produce pore overpressures. In the case studied, abnormal overpressures are generated during burial together with the petroleum generation process. The mechanical and chemical compaction mechanisms ensure that the pressures are preserved in the deeper part of the basin.  相似文献   

16.
Comparison of chalk on the Ontong Java Plateau and chalk in the Central North Sea indicates that, whereas pressure dissolution is controlled by effective burial stress, pore-filling cementation is controlled by temperature. Effective burial stress is caused by the weight of all overlying water and sediments as counteracted by the pressure in the pore fluid, so the regional overpressure in the Central North Sea is one reason why the two localities have different relationships between temperature and effective burial stress. In the chalk of the Ontong Java Plateau the onset of calcite-silicate pressure dissolution around 490 m below sea floor (bsf) corresponds to an interval of waning porosity-decline, and even the occurrence of proper stylolites from 830 m bsf is accompanied by only minor porosity reduction. Because opal is present, the pore-water is relatively rich in Si which through the formation of Ca–silica complexes causes an apparent super-saturation of Ca and retards cementation. The onset of massive pore-filling cementation at 1100 m bsf may be controlled by the temperature-dependent transition from opal-CT to quartz. In the stylolite-bearing chalk of two wells in the Gorm and Tyra fields, the nannofossil matrix shows recrystallization but only minor pore-filling cement, whereas microfossils are cemented. Cementation in Gorm and Tyra is thus partial and has apparently not been retarded by opal-controlled pore-water. A possible explanation is that, due to the relatively high temperature, silica has equilibrated to quartz before the onset of pressure dissolution and thus, in this case, dissolution and precipitation of calcite have no lag. This temperature versus effective burial stress induced difference in diagenetic history is of particular relevance when exploring for hydrocarbons in normally pressured chalk, while most experience has been accumulated in the over-pressured chalk of the central North Sea.  相似文献   

17.
在垂向压实和侧向压实的双重动力学机制叠加下,库车坳陷白垩系碎屑岩储层展现出的压实效应,无法用传统单一的垂向压实理论来解释。通过详实的成岩特征显微统计分析,梳理出了垂向(埋深)压实和侧向(构造)压实分别对于研究层段的压实效应。研究层段的压实效应主要由垂向压实造成,侧向压实造成的压实效应相对较弱;侧向压实减孔量占总压实减孔量的比例并不与构造应力本身的大小呈明显的正比关系,侧向构造应力施压的时间与储层垂向埋藏压实程度之间的时间配置关系、构造挤压应力的大小等因素严重制约着构造应力对于储层的侧向压实效应。  相似文献   

18.
东海西湖凹陷沉降史与构造演化   总被引:3,自引:1,他引:2  
本文利用钻井及地震剖面资料获取现今地层厚度数据,通过去压实、构造剥蚀量及沉积物负荷校正,计算不同时期的沉降量及沉降速率,恢复凹陷构造沉降史;在此基础上应用McKenzie的均一多幕拉伸模型计算单井拉伸因子β,其结果表明西湖凹陷由北向南雁列式开裂成盆;综合构造沉降、拉伸因子计算结果,并结合构造应力场特征,本文将西湖凹陷的新生代构造演化划分为左行拉伸裂谷、热沉降和右行拉伸裂谷三大阶段。  相似文献   

19.
《Tectonophysics》2001,330(1-2):141-151
In modelling sediment compaction and mineral reactions, the rheological behaviour of sediments is typically considered as poroelastic or purely viscous. In fact, compaction due to pressure solution and mechanical processes in porous media is far more complicated. A generalised model of viscoelastic compaction and the smectite to illite mineral reaction in hydrocarbon basins is presented. A one-step dehydration model of the mineral reaction is assumed. The obtained non-linear governing equations are solved numerically and different combinations of physical parameters are used to simulate realistic situations in typical sedimentary basins. Comparison of numerical simulations with real data has shown very good agreement with respect to both the porosity profile and the mineral reaction.  相似文献   

20.
周翔  何生  刘萍  俱云娟 《地学前缘》2016,23(3):253-265
利用取心井铸体薄片、扫描电镜、X衍射、压汞测试等分析化验资料,在系统研究鄂尔多斯盆地代家坪地区长6致密油储层微观孔隙结构特征、成因机理的基础上对其进行分类评价。结果表明长6储层储集空间以粒内溶孔、残余粒间孔为主,次为粒间溶孔、岩屑溶孔,喉道类型以片状、弯片状和缩颈型喉道为主。沉积作用形成的岩石组构和成分差异决定了储层原始孔渗条件,并影响到后期成岩作用的类型和强度;各成岩事件对物性影响定量计算表明,强烈的压实和碳酸盐胶结是造成储层原生孔隙结构被破坏的主要原因;构造挤压则加剧了孔隙结构的非均质性;结合盆地埋藏史将孔隙演化分为浅埋藏胶结减孔带、中埋藏压实减孔带、深埋藏溶蚀增孔带和深埋藏胶结减孔带等4个阶段。通过微观孔喉结构参数与储层宏观物性相关性分析,优选最大连通喉道半径、主要流动喉道半径、分选系数、排驱压力和中值压力等5个孔隙结构参数作为分类依据;进一步采用Q型聚类分析将长6储层分为4种类型,结果表明Ⅰ、Ⅱ类储层孔隙结构较好,为研究区有利开发目标区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号