首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mineral assemblages (heavy and light fractions) and sedimentological characteristics of the Quaternary alluvial aquifers were examined in the central Bengal Basin where As concentrations in groundwater are highly variable in space but generally decrease downward. Chemical compositions of sediment samples from two vertical core profiles (2-150 m below ground level, bgl) were analyzed along with groundwater in moderately As-enriched aquifers in central Bangladesh (Manikganj district), and the As mobilization process in the alluvial aquifer is described. Heavy minerals such as biotite, magnetite, amphibole, apatite and authigenic goethite are abundant at shallow (<100 m below ground level (mbgl)) depths but less abundant at greater depths. It is interpreted that principal As-bearing minerals were derived from multiple sources, primarily from ophiolitic belts in the Indus-Tsangpo suture in the northeastern Himalayan and Indo-Burman Mountain ranges. Authigenic and amorphous Fe-(oxy)hydroxide minerals that are generally formed in river channels in the aerobic environment are the major secondary As-carriers in alluvial sediments. Reductive dissolution (mediated by Fe-reducing bacteria) of Fe-(oxy)hydroxide minerals under anoxic chemical conditions is the primary mechanism responsible for releasing As into groundwater. Authigenic siderite that precipitates under reducing environment at greater depths decreases Fe and possibly As concentrations in groundwater. Presence of Fe(III) minerals in aquifers shows that reduction of these minerals is incomplete and this can release more As if further Fe-reduction takes place with increased supplies of organic matter (reactive C). Absence of authigenic pyrite suggests that SO4 reduction (mediated by SO4-reducing bacteria) in Manikganj groundwater is limited in contrast to the southeastern Bengal Basin where precipitation of arsenian pyrite is thought to sequester As from groundwater.  相似文献   

2.
Aquifer sediments from areas of low- and high-As groundwater were characterized mineralogically and geochemically at a field site in the Nadia district of West Bengal, India. Leaching experiments and selective extraction of the sediments were also carried out to understand the release mechanism of As in the sub-surface. The correlation between measured elements (major, minor and trace) from low- and high-As groundwater areas are only significant for As, Fe and Mn. The borehole lithology and percentage of silt and clay fraction demonstrates the dominance of finer sediments in the high-As aquifer. Multivariate analysis of the geochemical parameters showed the presence of four different mineral phases (heavy-mineral fraction, phyllosilicates/biotite/Fe-oxyhydroxides, carbonates and sulphides) in the sediments. Selective extraction of sediment reveals that amorphous Fe-oxyhydroxide acts as a potential sink for As in the sub-surface. The result is consistent with microbially mediated redox reactions, which are controlled in part by the presence of natural organic matter within the aquifer sediments. The occurrences of As-bearing redox traps, primarily formed of Fe- and Mn-oxides/hydroxides, are also important factors that control the release of As into groundwater at the study site.  相似文献   

3.
At a watershed scale, sediments and soil weathering exerts a control on solid and dissolved transport of trace elements in surface waters and it can be considered as a source of pollution. The studied subwatershed (1.5 km2) was located on an As-geochemical anomaly. The studied soil profile showed a significant decrease of As content from 1500 mg kg−1 in the 135–165 cm deepest soil layer to 385 mg kg−1 in the upper 0–5 cm soil layer. Directly in the stream, suspended matter and the <63 μm fraction of bed sediments had As concentrations greater than 400 mg kg−1. In all these solid fractions, the main representative As-bearing phases were determined at two different observation scales: bulk analyses using X-ray absorption structure spectroscopy (XAS) and microanalyses using scanning electron microscope (SEM) and associated electron probe microanalyses (EPMA), as well as micro-Raman spectroscopy and synchrotron-based micro-scanning X-ray diffraction (μSXRD) characterization. Three main As-bearing phases were identified: (i) arsenates (mostly pharmacosiderite), the most concentrated phases As in both the coherent weathered bedrock and the 135–165 cm soil layer but not observed in the river solid fraction, (ii) Fe-oxyhydroxides with in situ As content up to 15.4 wt.% in the deepest soil layer, and (iii) aluminosilicates, the least concentrated As carriers. The mineralogical evolution of As-bearing phases in the soil profile, coupled with the decrease of bulk As content, may be related to pedogenesis processes, suggesting an evolution of arsenates into As-rich Fe-oxyhydroxides. Therefore, weathering and mineralogical evolution of these As-rich phases may release As to surface waters.  相似文献   

4.
Continuous core sediments (to a depth of 90.1 m) taken at a transitional area of Holocene and Pleistocene deposits in Sonargaon, Bangladesh were characterized for their mineralogy and chemistry. Among the sediments of the lower part of the Holocene aquifer (depth: 18–29 m), where most domestic wells are installed, As is mostly fixed in biotite and organic phases. A positive correlation of As concentration with those of Al and Fe but not that of total organic C clearly suggests that biotite is a primary source of As. Although microbial reduction–dissolution of As-containing Fe oxyhydroxides is thought to cause As-enriched groundwater in the Ganges–Brahmaputra–Meghna delta plain, the authors conclude that chemical weathering of biotite is the primary formation mechanism and prevailing reducing conditions contribute to the expansion of As-enriched groundwater in the study area.  相似文献   

5.
The mobility of subsurface arsenic is controlled by sorption, precipitation, and dissolution processes that are tied directly to coupled redox reactions with more abundant, but spatially and temporally variable, iron and sulfur species. Adjacent to the site of a former pesticide manufacturing facility near San Francisco Bay (California, USA), soil and groundwater arsenic concentrations are elevated in sediments near the prior source, but decrease to background levels downgradient where shallow groundwater mixes with infiltrating tidal waters at the plume periphery, which has not migrated appreciably in over two decades of monitoring. We used synchrotron X-ray absorption spectroscopy, together with supporting characterizations and sequential chemical extractions, to directly determine the oxidation state of arsenic and iron as a function of depth in sediments from cores recovered from the unsaturated and saturated zones of a shallow aquifer (to 3.5 m below the surface). Arsenic oxidation state and local bonding in sediments, as As-sulfide, As(III)-oxide, or As(V)-oxide, were related to lithologic redox horizons and depth to groundwater. Based on arsenic and iron speciation, three subsurface zones were identified: (i) a shallow reduced zone in which sulfide phases were found in either the arsenic spectra (realgar-like or orpiment-like local structure), the iron spectra (presence of pyrite), or both, with and without As(III) or As(V) coordinated by oxygen; (ii) a middle transitional zone with mixed arsenic oxidation states (As(III)–O and As(V)–O) but no evidence for sulfide phases in either the arsenic or iron spectra; and (iii) a lower oxidized zone in the saturated freshwater aquifer in which sediments contained only oxidized As(V) and Fe(III) in labile (non-detrital) phases. The zone of transition between the presence and absence of sulfide phases corresponded to the approximate seasonal fluctuation in water level associated with shallow groundwater in the sand-dominated, lower oxic zone. Total sediment arsenic concentrations showed a minimum in the transition zone and an increase in the oxic zone, particularly in core samples nearest the former source. Equilibrium and reaction progress modeling of aqueous-sediment reactions in response to decreasing oxidation potential were used to illustrate the dynamics of arsenic uptake and release in the shallow subsurface. Arsenic attenuation was controlled by two mechanisms, precipitation as sulfide phases under sulfate-reducing conditions in the unsaturated zone, and adsorption of oxidized arsenic to iron hydroxide phases under oxidizing conditions in saturated groundwaters. This study demonstrates that both realgar-type and orpiment-type phases can form in sulfate-reducing sediments at ambient temperatures, with realgar predicted as the thermodynamically stable phase in the presence of pyrite and As(III) under more reduced conditions than orpiment. Field and modeling results indicate that the potential for release of arsenite to solution is maximized in the transition between sulfate-reduced and iron-oxidized conditions when concentrations of labile iron are low relative to arsenic, pH-controlled arsenic sorption is the primary attenuation mechanism, and mixed Fe(II,III)-oxide phases do not form and generate new sorption sites.  相似文献   

6.
Groundwater with high geogenic arsenic (As) is extensively present in the Holocene alluvial aquifers of Ghazipur District in the middle Gangetic Plain, India. A shift in the climatic conditions, weathering of carbonate and silicate minerals, surface water interactions, ion exchange, redox processes, and anthropogenic activities are responsible for high concentrations of cations, anions and As in the groundwater. The spatial and temporal variations for As concentrations were greater in the pre-monsoon (6.4–259.5 μg/L) when compared to the post-monsoon period (5.1–205.5 µg/L). The As enrichment was encountered in the sampling sites that were close to the Ganges River (i.e. south and southeast part of Ghazipur district). The depth profile of As revealed that low concentrations of NO3 are associated with high concentration of As and that As depleted with increasing depth. The poor relationship between As and Fe indicates the As release into the groundwater, depends on several processes such as mineral weathering, O2 consumption, and NO3 reduction and is de-coupled from Fe cycling. Correlation matrix and factor analysis were used to identify various factors influencing the gradual As enrichment in the middle Gangetic Plain. Groundwater is generally supersaturated with respect to calcite and dolomite in post-monsoon period, but not in pre-monsoon period. Saturation in both periods is reached for crystalline Fe phases such as goethite, but not with respect to poorly crystalline Fe phases and any As-bearing phase. The results indicate release of arsenic in redox processes in dry period and dilution of arsenic concentration by recharge during monsoon. Increased concentrations of bicarbonate after monsoon are caused by intense flushing of unsaturated zone, where CO2 is formed by decomposition of organic matter and reactions with carbonate minerals in solid phase. The present study is vital considering the fact that groundwater is an exclusive source of drinking water in the region which not only makes situation alarming but also calls for the immediate attention.  相似文献   

7.
Patchy occurrences of elevated As are often encountered in groundwater from the shallow aquifers (<50 m) of the Bengal Delta Plain (BDP). A clear understanding of various biogeochemical processes, responsible for As mobilization, is very important to explain this patchy occurrence and thus to mitigate the problem. The present study deals with the periodical monitoring of groundwater quality of five nested piezometeric wells between December 2008 and July 2009 to investigate the temporal changes in groundwater chemistry vis-a-vis the prevalent redox processes in the aquifer. Geochemical modeling has been carried out to identify key phases present in groundwater. A correlation study among different aqueous redox parameters has also been performed to evaluate prevailing redox processes in the aquifer. The long term monitoring of hydrochemical parameters in the multilevel wells together with hydrogeochemical equilibrium modeling has shown more subtle differences in the geochemical environment of the aquifer, which control the occurrence of high dissolved As in BDP groundwater. The groundwater is generally of Ca-HCO3 type. The dissolved As concentration in groundwater exceeded both WHO and National drinking water standard (Bureau of Indian Standards; BIS, 10 μg L−1) throughout the sampling period. The speciation of As and Fe indicate persistent reducing conditions within the aquifer [As(III): 87-97% of AsT and Fe(II): 76-96% of FeT]. The concentration of major aqueous solutes is relatively high in the shallow aquifer (wells A and B) and gradually decreases with increasing depth in most cases. The calculation of SI indicates that groundwater in the shallow aquifer is also relatively more saturated with carbonate minerals. This suggests that carbonate mineral dissolution is possibly influencing the groundwater chemistry and thereby controlling the mobilization of As in the monitored shallow aquifer. Hydrogeochemical investigation further suggests that Fe and/or Mn oxyhydroxide reduction is the principal process of As release in groundwater from deeper screened piezometric wells. The positive correlations of U and V with As, Fe and Mn indicate redox processes responsible for mobilization of As in the deeper screened piezometric wells are possibly microbially mediated. Thus, the study advocates that mobilization of As is depth dependent and concentrations of As in groundwater depends on single/combined release mechanisms.  相似文献   

8.
查明地下水中砷的时间变异性规律及机理是高砷地下水研究的难点和热点, 也是防控地下水砷污染的根本.选择在雨季前后对浅层潜水和孔隙承压水进行了动态监测.研究表明地下水砷含量和形态与地下水位波动存在明显的响应关系: 雨季开始后随着地下水位抬升, 地下水还原环境增强, As(Ⅴ)和Asp转化成As(Ⅲ), 颗粒态铁大幅降低, 导致水中溶解的砷和铁大幅增加, 地下水砷含量在雨季达到最高且As(Ⅲ)所占比例达到90%;雨季结束后随着水位逐渐降低, 地下水中As(Ⅲ)所占比例和溶解的砷含量下降.农业活动对浅层潜水砷形态季节性变化有明显的影响.孔隙承压水的砷形态分布变化较浅层潜水幅度大, 其变化与水位波动存在滞后效应.自然或人为活动引起的地下水位季节性变化改变了含水层的氧化还原环境, 补给水源与地下水之间的混合过程带来新的物质输入促进地下水系统中砷的迁移转化.   相似文献   

9.
High concentrations of geogenic As in the groundwaters of south and SE Asia, which are used as drinking waters, are causing severe health impacts to the exposed human populations. It is widely accepted that As mobilisation from sediments into these shallow reducing groundwaters requires active metal-reducing microbes and electron donors such as organic matter (OM). Although OM in such Holocene aquifers has been characterised, there is a dearth of data on Pleistocene aquifers from the same areas. Reported here are preliminary studies of OM and microbial communities present in two aquifers, one of Pleistocene and one of Holocene age, with contrasting concentrations of As (viz. Pleistocene: low As <10 μg/L; Holocene: high As up to 600 μg/L) from Van Phuc village in the Red River Delta, Vietnam. Results revealed OM inputs from multiple sources, including potential contributions from naturally occurring petroleum seeping into the shallow aquifer sediments from deeper thermally mature source rocks. Although concentrations vary, no noticeable systematic differences in biomarker distribution patterns within the OM were observed between the two sites. Microbial analyses did not show a presence of microbial communities previously associated with As mobilisation. All clone libraries were dominated by α-, β-, and γ-Proteobacteria not known to be able to reduce Fe(III) or sorbed As(V). Furthermore, representatives of the Fe(III)-reducing genus Geobacter could only be detected at very low abundance by PCR, using highly selective 16S rRNA gene primers, supporting the hypothesis that metal reduction is not a dominant in situ process in these sediments. No correlation between As concentration in groundwater and OM composition nor microbial community in the host sediments was found. This suggests that either (i) As is not being significantly mobilised in situ in these sediments, instead As appears to be mobilised elsewhere and transported by groundwater flow to the sites or (ii) sorption/desorption processes, as implicated by geochemical data from the cores, play a critical role in controlling As concentrations at these sites.  相似文献   

10.
Several samples of groundwater and soils and plants have been collected from Sohar (Batina region, NE Oman), which is affected by various activities such as mining, agriculture, and sewage. To characterize quality of groundwater, As and Cu concentrations have been investigated in waters collected from different wells. Comparison of data with local and international standard values revealed that groundwater in Sohar region is characterized by lower concentrations in Cu and As compared with standards. In soils collected from the same area, concentrations of heavy metals have been measured in different fractions in order to investigate the mobility of such elements and risk of vulnerability in this area. A sequential extraction procedure has been applied to surface sediments to determine the partitioning of Zn, Cu, Co, Mn, Fe, Pb, Cr, Cd and Ni among (1) exchangeable and acid-soluble phases, (2) Fe–Mn oxides, (3) organic matter and sulphides and (4) resistant phases. The results showed that the mobile fraction in the sewage area accounts only for 10 % of the total concentration in sediments while in the Cu mining area, the contribution of the mobile fraction may exceed 10 %, especially for Pb, Mn, Cd, Cu and Co. Investigation of concentrations in As and Cu in plants collected from mining and sewage areas revealed an important accumulation of these elements in leaves and may explain enrichment of As in shallow groundwater relative to deep groundwater. This investigation also showed that Cu is more available in sewage area than in mining zone, as opposed to As.  相似文献   

11.
Microorganisms play an important role in As mobilization into groundwater by directly influencing As speciation or indirectly inducing solubilisation from As-bearing phases, such as Fe, Mn and Al oxides. Iron oxide dissolution could also be induced by siderophores, small-molecule compounds produced by microorganisms to favour Fe uptake. Well waters exceeding the potable water limit of 10 μg As L−1 (0.133 μM) have been widely reported in geothermal areas. Mechanisms responsible for these high As concentrations have not yet been thoroughly elucidated and the complexity of As mobilization in volcanic aquifers is still open to multiple interpretations. The present study was based on batch release experiments aimed at verifying and quantifying the effect of siderophores on As mobilization from volcanic rocks (lava, tuff, peperino and fallout deposit) at different pH and ligand concentration. In the experiments the siderophore trihydroxamate desferroxamine B (Dfob) was used and its effect on As release from volcanic rocks was manifest after the first days. The most favourable pH for As release was pH 6 while concentrations above 250 μM Dfob considerably enhanced As and Fe concentrations in solution. The As release from rocks was between 2.0–10% at pH 6 and 2.4–8.8% at pH 8. The As/Fe ratio in solution changed with time suggesting different release mechanisms and higher mobility of As compared to Fe during the first phase of the experiment. The presence of siderophore increased Fe dissolution rates up to 10 orders of magnitude. The As release correlated with Al, Mn, Fe, Si, V, Ga and Sb and the release of all these elements increased with increasing Dfob concentration. In alkaline environments also Cu, Zn and Pb were mobilized. The presence of siderophores represents a possible trigger for As mobilization from iron binding minerals to the water phase, with interesting implications for groundwater quality, plant uptake and bacterial communities.  相似文献   

12.
Here new data from field bioremediation experiments and geochemical modeling are reported to illustrate the principal geochemical behavior of As in anaerobic groundwaters. In the field bioremediation experiments, groundwater in Holocene alluvial aquifers in Bangladesh was amended with labile water-soluble organic C (molasses) and MgSO4 to stimulate metabolism of indigenous SO4-reducing bacteria (SRB). In the USA, the groundwater was contaminated by Zn, Cd and SO4, and contained <10 μg/L As under oxidized conditions, and a mixture of sucrose and methanol were injected to stimulate SRB metabolism. In Bangladesh, groundwater was under moderately reducing conditions and contained ∼10 mg/L Fe and ∼100 μg/L As. In the USA experiment, groundwater rapidly became anaerobic, and dissolved Fe and As increased dramatically (As > 1000 μg/L) under geochemical conditions consistent with bacterial Fe-reducing conditions. With time, groundwater became more reducing and biogenic SO4 reduction began, and Cd and Zn were virtually completely removed due to precipitation of sphalerite (ZnS) and other metal sulfide mineral(s). Following precipitation of chalcophile elements Zn and Cd, the concentrations of Fe and As both began to decrease in groundwater, presumably due to formation of As-bearing FeS/FeS2. By the end of the six-month experiment, dissolved As had returned to below background levels. In the initial Bangladesh experiment, As decreased to virtually zero once biogenic SO4 reduction commenced but increased to pre-experiment level once SO4 reduction ended. In the ongoing experiment, both SO4 and Fe(II) were amended to groundwater to evaluate if FeS/FeS2 formation causes longer-lived As removal. Because As-bearing pyrite is the common product of SRB metabolism in Holocene alluvial aquifers in both the USA and Southeast Asia, it was endeavored to derive thermodynamic data for arsenian pyrite to better predict geochemical processes in naturally reducing groundwaters. Including the new data for arsenian pyrite into Geochemist’s Workbench, its stability field completely dominates in reducing Eh–pH space and “displaces” other As-sulfides (orpiment, realgar) that have been implied to be important in previous modeling exercises and reported in rare field conditions.  相似文献   

13.
14.
Hydrogeochemical characteristics and elemental features of groundwater and core sediments have been studied to better understand the sources and mobilization process responsible for As-enrichment in part of the Gangetic plain (Barasat, West Bengal, India). Analysis of water samples from shallow tubewells (depth 24.3–48.5 m) and piezometer wells (depth 12.2–79.2 m) demonstrate that the groundwater is mostly the Ca-HCO3 type and anoxic in nature (mean EhSHE = 34 mV). Arsenic concentrations ranged from <10–538 μg/L, with high concentrations only present in the shallow to medium depth (30–50 m) of the aquifer along with high Fe (0.07–9.8 mg/L) and relatively low Mn (0.15–3.38 mg/L) as also evidenced in core sediments. Most groundwater samples contained both As(III) and As(V) species in which the concentration of As(III) was generally higher than that of As(V), exhibiting the reducing condition. Results show lower concentrations of NO3, SO4 and NO2 along with higher values of DOC and HCO3, indicating the reducing nature of the aquifer with abundant organic matter that can promote the release of As from sediments into groundwater. Positive correlations of As with Fe and DOC were also observed. The presence of DOC may actively drive the redox processes. This study revealed that reduction processes of FeOOH was the dominant mechanism for the release of As into the groundwater in this part of the Ganges Delta plain.  相似文献   

15.
Arsenic contamination in tube-well water in Ambagarh-Chowki block, central India, is restricted to local areas confined within the N-S trending Dongargarh rift zone. Affected areas are preferentially located in acid volcanics, close to shear zones and also in granites. Dug-wells even in severely contaminated areas generally have As concentration ≤10 μg/l. But in Kaurikasa area, several tube-wells and dug-wells are severely polluted. Weathered rocks and soils are also enriched in As from severely contaminated areas. As preferentially occurs in iron-enriched soil and similarly altered biotite, chlorite in granite. As sorbed in hydrated iron oxide (HFO) that preferably occurs in acid-leachable fraction and possibly as coatings on kaolinite, illite and goethite in soil or as coatings and along cleavage traces on weathered biotite and chlorite. Reductive dissolution of HFO released sorbed As to groundwater and enriched it in Fe. Pyrite in volcanic and shear zone rocks, although locally As-bearing is a minor source of As in groundwater.  相似文献   

16.
《Applied Geochemistry》2003,18(9):1453-1477
Observed As concentrations in groundwater from boreholes and wells in the Huhhot Basin of Inner Mongolia, northern China, range between <1 μg l−1 and 1480 μg l−1. The aquifers are composed of Quaternary (largely Holocene) lacustrine and fluvial sediments. High concentrations are found in groundwater from both shallow and deep boreholes as well as from some dug wells (well depths ranging between <10 m and 400 m). Populations from the affected areas experience a number of As-related health problems, the most notable of which are skin lesions (keratosis, melanosis, skin cancer) but with internal cancers (lung and bladder cancer) also having been reported. In both the shallow and deep aquifers, groundwaters evolve down the flow gradient from oxidising conditions along the basin margins to reducing conditions in the low-lying central part of the basin. High As concentrations occur in anaerobic groundwaters from this low-lying area and are associated with moderately high dissolved Fe as well as high Mn, NH4, dissolved organic C (DOC), HCO3 and P concentrations. Many of the deep groundwaters have particularly enriched DOC concentrations (up to 30 mg l−1) and are often brown as a result of the high concentrations of organic acid. In the reducing groundwaters, inorganic As(III) constitutes typically more than 60% of the total dissolved As. The highest As concentrations tend to be found in groundwater with low SO4 concentrations and indicate that As mobilisation occurs under strongly reducing conditions, where SO4 reduction has been an active process. High concentrations of Fe, Mn, NH4, HCO3 and P are a common feature of reducing high-As groundwater provinces (e.g. Bangladesh, West Bengal). High concentrations of organic acid (humic, fulvic acid) are not a universal feature of such aquifers, but have been found in groundwaters from Taiwan and Hungary for example. The observed range of total As concentrations in sediments is 3–29 mg kg−1 (n=12) and the concentrations correlate positively with total Fe. Up to 30% of the As is oxalate-extractable and taken to be associated largely with Fe oxides. The release of As into solution under the reducing conditions is believed to be by desorption coupled with reductive dissolution of the Fe oxide minerals. The association of dissolved As with constituents such as HCO3, DOC and P may be a coincidence related to the prevalent reducing conditions and slow groundwater flow, but they may also be directly involved because of their competition with As for binding sites on the Fe oxides. The Huhhot groundwaters also have some high concentrations of dissolved U (up to 53 μg l−1) and F (up to 6.8 mg l−1). In contrast to As, U occurs predominantly under the more oxidising conditions along the basin margins. Fluoride occurs dominantly in the shallow groundwaters which have Na and HCO3 as the dominant ions. The combination of slow flow of groundwater and the young age of the aquifer sediments are also considered potentially important causes of the high dissolved As concentrations observed as the sediments are likely to contain newly-formed and reactive minerals and have not been well flushed since burial.  相似文献   

17.
18.
19.
Aluminium has received great attention in the second half of the 20th century, mainly in the context of the acid rain problem mostly in forest soils. In this research the effect of land use and depth of the groundwater on Al, pH and DOC concentration in groundwater under Dutch sandy soils has been studied. Both pH and DOC concentration play a major role in the speciation of Al in solution. Furthermore, the equilibrium with mineral phases like gibbsite, amorphous Al(OH)3 and imogolite, has been considered. Agricultural and natural land use were expected to have different effects on the pH and DOC concentration, which in turn could influence the total Al concentration and the speciation of Al in groundwater at different depths (phreatic, shallow and deep). An extensive dataset (n = 2181) from the national and some provincial monitoring networks on soil and groundwater quality was used. Land use type and groundwater depth did influence the pH, and Al and DOC concentrations in groundwater samples. The Al concentration ranged from <0.4 μmol L−1 at pH > 7 to 1941 μmol L−1 at pH < 4; highest Al concentrations were found for natural-phreatic groundwater. The DOC concentration decreased and the median pH increased with depth of the groundwater. Natural-phreatic groundwater showed lower pH than the agricultural-phreatic groundwater. Highest DOC concentrations were found for the agricultural-phreatic groundwater, induced by the application of organic fertilizers. Besides inorganic complexation, the NICA-Donnan model was used to calculate Al3+ concentrations for complexation with DOC. Below pH 4.5 groundwater samples were mainly in disequilibrium with a mineral phase. This disequilibrium is considered to be the result of kinetic constraints or equilibrium with organic matter. Log K values were derived by linear regression and were close to theoretical values for Al(OH)3 minerals (e.g. gibbsite or amorphous Al(OH)3), except for natural-phreatic groundwater for which lower log K values were found. Complexation of Al with DOC is shown to be an important factor for the Al concentrations, especially at high DOC concentrations as was found for agricultural-phreatic groundwater.  相似文献   

20.
Glauconite-bearing deposits are found worldwide, but As levels have been determined for relatively few. The As content of glauconites in sediments of the Inner Coastal Plain of New Jersey can exceed 100 mg/kg, and total As concentrations (up to 5.95 μg/L) found historically and recently in streamwaters exceed the State standard. In a major watershed of the Inner Coastal Plain, chemical “fingerprints” were developed for streambed sediments and groundwater to identify contributions of As to the watershed from geologic and anthropogenic sources. The fingerprint for streambed sediments, which included Be, Cr, Fe and V, indicated that As was predominantly of geologic origin. High concentrations of dissolved organic C, nutrients (and Cl) in shallow groundwater indicated anthropogenic inputs that provided an environment where microbial activity released As from minerals to groundwater discharging to the stream. Particulates in streamwater during high flow constituted most of the As load; the chemical patterns for these particulates resembled the geologic fingerprint of the streambed sediments. The As/Cr ratio of these suspended particles likely indicates they derived not only from runoff, but from groundwater inputs, because As contributed by groundwater is sequestered on streambed sediments. Agricultural inputs of As were not clearly identified, although chemical characteristics of some sediments indicated vehicle-related inputs of metals. Sediment sampling during dry and wet years showed that, under differing hydrologic conditions, local anthropogenic fingerprints could be obscured but the geologic fingerprint, indicating glauconitic sediments as an As source, was robust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号