首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of multiple partially penetrating wells (MPPW) during aquifer storage and recovery (ASR) in brackish aquifers can significantly improve the recovery efficiency (RE) of unmixed injected water. The water quality changes by reactive transport processes in a field MPPW-ASR system and their impact on RE were analyzed. The oxic freshwater injected in the deepest of four wells was continuously enriched with sodium (Na+) and other dominant cations from the brackish groundwater due to cation exchange by repeating cycles of ‘freshening’. During recovery periods, the breakthrough of Na+ was retarded in the deeper and central parts of the aquifer by ‘salinization’. Cation exchange can therefore either increase or decrease the RE of MPPW-ASR compared to the RE based on conservative Cl, depending on the maximum limits set for Na+, the aquifer’s cation exchange capacity, and the native groundwater and injected water composition. Dissolution of Fe and Mn-containing carbonates was stimulated by acidifying oxidation reactions, involving adsorbed Fe2+ and Mn2+ and pyrite in the pyrite-rich deeper aquifer sections. Fe2+ and Mn2+ remained mobile in anoxic water upon approaching the recovery proximal zone, where Fe2+ precipitated via MnO2 reduction, resulting in a dominating Mn2+ contamination. Recovery of Mn2+ and Fe2+ was counteracted by frequent injections of oxygen-rich water via the recovering well to form Fe and Mn-precipitates and increase sorption. The MPPW-ASR strategy exposes a much larger part of the injected water to the deeper geochemical units first, which may therefore control the mobilization of undesired elements during MPPW-ASR, rather than the average geochemical composition of the target aquifer.  相似文献   

2.
Iron isotopes were used to investigate iron transformation processes during an in situ field experiment for removal of dissolved Fe from reduced groundwater. This experiment provided a unique setting for exploring Fe isotope fractionation in a natural system. Oxygen-containing water was injected at a test well into an aquifer containing Fe(II)-rich reduced water, leading to oxidation of Fe(II) and precipitation of Fe(III)(hydr)oxides. Subsequently, groundwater was extracted from the same well over a time period much longer than the injection time. Since the surrounding water is rich in Fe(II), the Fe(II) concentration in the extracted water increased over time. The increase was strongly retarded in comparison to a conservative tracer added to the injected solution, indicating that adsorption of Fe(II) onto the newly formed Fe(III)(hydr)oxides occurred. A series of injection-extraction (push-pull) cycles were performed at the same well. The δ57Fe/54Fe of pre-experiment background groundwater (−0.57 ± 0.17 ‰) was lighter than the sediment leach of Fe(III) (−0.24 ± 0.08 ‰), probably due to slight fractionation (only ∼0.3 ‰) during microbial mediated reductive dissolution of Fe(III)(hydr)oxides present in the aquifer. During the experiment, Fe(II) was adsorbed from native groundwater drawn into the oxidized zone and onto Fe(III)(hydr)oxides producing a very light groundwater component with δ57Fe/54Fe as low as −4 ‰, indicating that heavier Fe(II) is preferentially adsorbed to the newly formed Fe(III)(hydr)oxides surfaces. Iron concentrations increased with time of extraction, and δ57Fe/54Fe linearly correlated with Fe concentrations (R2 = 0.95). This pattern was reproducible over five individual cycles, indicating that the same process occurs during repeated injection/extraction cycles. We present a reactive transport model to explain the observed abiotic fractionation due to adsorption of Fe(II) on Fe(III)(hydr)oxides. The fractionation is probably caused by isotopic differences in the equilibrium sorption constants of the various isotopes (Kads) and not by sorption kinetics. A fractionation factor α57/54 of 1.001 fits the observed fractionation.  相似文献   

3.
The evolution of groundwater chemistry along the direction of groundwater flow was studied using hydrochemical data from samples collected along a flow line in the Neogene Aquifer, Belgium. Infiltrating water was found to have a very low mineral content and low pH because the sediments are strongly decalcified. Increasing SiO2 and cation concentrations along the groundwater flow line indicate silicate-weathering processes, confirmed with the aid of saturation indices, calculated with PHREEQC, and stability diagrams. A classification system based on redox sensitive species was developed and shows that an extensive redox sequence is present in the aquifer. At a shallow depth, pyrite oxidation has caused an increase in sulphate, while iron is precipitated as hydroxides. Elevated arsenic concentrations are related to the reduction of these iron hydroxides at a relatively shallow depth and to the dissolution of siderite at greater depth. Dissolution of carbonate in the aquifer material, present in deep layers and to the north, has lead to increased Ca2+ and HCO3 ? concentrations. The Ca2+ from the groundwater is exchanged for Na+, Mg2+ and K+ adsorbed to the clay surfaces at the bottom of the groundwater reservoir. Although the Neogene Aquifer is well flushed, there are still some marine influences present in the deepest parts.  相似文献   

4.
The shallow alluvial aquifers of the delta plains and flood plains of Bangladesh, comprises about 70% of total land area are mostly affected by elevated concentrations of arsenic (As) in groundwater exposing a population of more than 35 million to As toxicity. Geochemical studies of shallow alluvial aquifer in the Meghna flood plain show that the uppermost yellowish grey sediment is low in As (1.03 mg/kg) compared to the lower dark grey to black sediment (5.24 mg/kg) rich in mica and organic matter. Sequential extraction data show that solid phase As bound to poorly crystalline and amorphous metal (Fe, Mn, Al)-oxyhydroxides is dominant in the grey to dark grey sediment and reaches its maximum level (3.05 mg/kg) in the mica rich layers. Amount of As bound to sulphides and organic matter also peaks in the dark grey to black sediment. Vertical distributions of major elements determined by X-ray fluorescence (XRF) show that iron (Fe2O3), aluminum (Al2O3) and manganese (MnO) follow the general trend of distribution of As in the sediments. Concentrations of As, Mn, Fe, HCO3 , SO4 2− and NO3 in groundwater reflect the redox status of the aquifer and are consistent with solid phase geochemistry. Mineralogical analysis by X-ray diffraction (XRD) and scanning electron microscopy (SEM) fitted with energy dispersive X-ray spectrometer (EDS) revealed dominance of crystalline iron oxides and hydroxides like magnetite, hematite and goethite in the oxidised yellowish grey sediment. Amorphous Fe-oxyhydroxides identified as grain coating in the mica and organic matter rich sediment suggests weathering of biotite is playing a critical role as the source of Fe(III)-oxyhydroxides which in turn act as sink for As. Presence of authigenic pyrite in the dark grey sediment indicates active reduction in the aquifer.  相似文献   

5.
Patchy occurrences of elevated As are often encountered in groundwater from the shallow aquifers (<50 m) of the Bengal Delta Plain (BDP). A clear understanding of various biogeochemical processes, responsible for As mobilization, is very important to explain this patchy occurrence and thus to mitigate the problem. The present study deals with the periodical monitoring of groundwater quality of five nested piezometeric wells between December 2008 and July 2009 to investigate the temporal changes in groundwater chemistry vis-a-vis the prevalent redox processes in the aquifer. Geochemical modeling has been carried out to identify key phases present in groundwater. A correlation study among different aqueous redox parameters has also been performed to evaluate prevailing redox processes in the aquifer. The long term monitoring of hydrochemical parameters in the multilevel wells together with hydrogeochemical equilibrium modeling has shown more subtle differences in the geochemical environment of the aquifer, which control the occurrence of high dissolved As in BDP groundwater. The groundwater is generally of Ca-HCO3 type. The dissolved As concentration in groundwater exceeded both WHO and National drinking water standard (Bureau of Indian Standards; BIS, 10 μg L−1) throughout the sampling period. The speciation of As and Fe indicate persistent reducing conditions within the aquifer [As(III): 87-97% of AsT and Fe(II): 76-96% of FeT]. The concentration of major aqueous solutes is relatively high in the shallow aquifer (wells A and B) and gradually decreases with increasing depth in most cases. The calculation of SI indicates that groundwater in the shallow aquifer is also relatively more saturated with carbonate minerals. This suggests that carbonate mineral dissolution is possibly influencing the groundwater chemistry and thereby controlling the mobilization of As in the monitored shallow aquifer. Hydrogeochemical investigation further suggests that Fe and/or Mn oxyhydroxide reduction is the principal process of As release in groundwater from deeper screened piezometric wells. The positive correlations of U and V with As, Fe and Mn indicate redox processes responsible for mobilization of As in the deeper screened piezometric wells are possibly microbially mediated. Thus, the study advocates that mobilization of As is depth dependent and concentrations of As in groundwater depends on single/combined release mechanisms.  相似文献   

6.
Iron solid-phase differentiation along a redox gradient in basaltic soils   总被引:1,自引:0,他引:1  
Iron compounds in soil are multifunctional, providing physical structure, ion sorption sites, catalytic reaction-centers, and a sink for respiratory electrons. Basaltic soils contain large quantities of iron that reside in different mineral and organic phases depending on their age and redox status. We investigated changes in soil iron concentration and its solid-phase speciation across a single-aged (400 ky) lava flow subjected to a gradient in precipitation (2200-4200 mm yr−1) and hence redox history. With increasing rainfall and decreasing Eh, total Fe decreased from about 25% to <1% of the soil mass. Quantitative speciation of soil solid-phase iron was constrained by combining 57Fe Mössbauer spectroscopy (MBS) at 295 and 4.2 K with powder X-ray diffraction, selective chemical extractions, and magnetic susceptibility measurements. This approach allowed us to partition iron into (1) nanoparticulate and microcrystalline FeIII-(oxy)hydroxides, (2) microcrystalline and bulk FeIII-oxides, (3) organic/silicate bound FeIII, and (4) ferrous iron. The FeIII-(oxy)hydroxide fraction dominated solid-phase Fe, exhibiting a crystallinity continuum based on magnetic ordering temperature. The continuum extended from well-ordered microcrystalline goethite through nanocrystalline FeIII-(oxy)hydroxides to a nano FeIII-(oxy)hydroxide phase of extremely low crystallinity. Magnetic susceptibility was correlated (R2 = 0.77) with FeIII-oxide concentration, consistent with a contribution of maghemite to the otherwise hematite dominated Fe-oxide fraction. The FeIII-(oxy)hydroxide fraction of total Fe decreased with increasing rainfall and was replaced by corresponding increase in the organic/silicate FeIII fraction. The crystallinity of the FeIII-(oxy)hydroxides also decreased with increasing rainfall and leaching, with the most disordered members of the crystallinity continuum, the nano FeIII-(oxy)hydroxides, gaining proportional abundance in the wetter sites. This finding runs counter to the conventional kinetic expectation of preferential removal of the most disordered minerals in a reductive dissolution-dominated environment. We suggest the persistence of highly disordered Fe phases reflects the dynamic redox conditions of these upland soils in which periods of anoxia are marked by high water-throughput and Fe2+(aq) removal, while periodic Fe oxidation events occur in the presence of high concentrations of organic matter. Our 57Fe Mössbauer study shows basalt-derived nano-scale FeIII phases are more disordered than current synthetic analogs and have nano-structural characteristics that are linked to their formation environment.  相似文献   

7.
The combined effects of low rainfall, groundwater withdrawal in excess of 300 GL/year and reduced recharge in areas covered by pine plantations has caused the water table in a sandy unconfined aquifer on the Gnangara Mound in Western Australia to drop by up to 5 m and aquifer storage to decline by about 500 GL over the last 20 years. Groundwater has become acidic in areas of high drawdown, with pH values typically being less than 5.0 at the water table, and elevated concentrations of SO4 2?, Al, Fe, Zn, Cu, Ni and Pb. Trends of increasing acidity and base cation concentrations in deep water supply wells in the Mirrabooka wellfield indicate that about 0.7 keq/ha/year of base cations are being leached from soil within cones of depression of pumping wells. These results indicate that the assessment of the sustainable yields of aquifers under conditions of low rainfall needs to consider geochemical interactions between groundwater, aquifer sediments, soils and vegetation, and not be just based on aquifer hydraulics and water-balance changes.  相似文献   

8.
A novel study on using geoelectrical resistivity, soil property, and hydrogeochemical analysis methods for delineating and mapping of heavy metal in aquifer system is presented in this paper. A total of 47 surveys of geoelectrical resistivity with Wenner configuration were conducted to determine the subsurface and the groundwater characteristics. The groundwater sample from 53 existing wells and 2 new wells has been analyzed to derive their water chemical content. The chemical analysis was done on the soil sample obtained from new two wells and from selected locations. The water and soil chemical analysis results from the new two wells were used as calibration in resistivity interpretation. The occurrence of heavy metal in aquifer system was expected to detect using the geoelectrical resistivity survey for the whole study area. The result of groundwater analysis shows that the groundwater sample contains a relatively low concentration of Fe (<?0.3 mg/L) elongating from the south up to the middle region. While in the middle and the northwestern, Fe concentration is relatively high (around 12 mg/L). Chemical analysis of soil sample shows that in the lower resistivity zone (<?18 Ωm), Al and Fe concentrations are comparatively high with an average of 68,000 and 40,000 mg/kg, respectively. Starting from the middle to the northwestern zone, the resistivity value appears to be low. It is definitely caused by higher Al and Fe concentration within the soil, and it is supported also by lower total anion content in the groundwater. While the resistivity value of more than 40 Ωm in aquifers is obtained in the zone which Fe concentration is relatively lower in the soil but not present in the groundwater. Correlation Fe concentration in the soil and Fe concentration in the groundwater sample shows the trend of positively linear; however, the Al concentration in soil has no correlation with Al content in groundwater. Finally, the probability of high heavy metal zone in the aquifer system is easily delineated by the distribution of geoelectrical resistivity presented in depth slice shapes which extend from the Boundary Range Composite Batholith in the north to the northwest.  相似文献   

9.
The objective of this work was to evaluate the influence of the natural degradation of the leachate organic fraction from the Belo Horizonte landfill on groundwater chemical evolution. The work focused on the modifications introduced by redox reactions in the presence of terminal electron acceptors. Twenty-one sampling points distributed along 13 monitoring wells were selected for the analysis of the chemical indicators of interest (TDS, SO 4 ?2 , Fe+2, Ba, pH and Eh). The behaviour of the variables involved in the alteration of the water quality was assessed by the spatial distribution of target parameters, elaboration of redox diagrams and chemical modelling that focused on the determination of mineral saturation indexes. The study showed a trend toward pyrite precipitation, which leads to the removal of chemical species such as divalent iron and sulphur as sulphide from the system. This removal disturbs the chemical equilibrium, typically by moving the reactions to replenish the sulphate concentration present in the groundwater. This process occurs primarily through the dissolution of compounds that have sulphate in their chemical composition, such as barite, suggesting that part of the barium concentration in the subsurface can be of geogenic origin. This study demonstrated the importance of knowing the nature of the geochemical processes in groundwater contaminated by urban solid waste.  相似文献   

10.
《Applied Geochemistry》1998,13(6):767-778
A small-scale artificial tracer test performed on a schist aquifer in Brittany has helped clarify mechanisms and kinetics of in situ autotrophic denitrification. NO3 was injected as a pulse simultaneously with a conservative tracer -Br. During the test, which lasted 210 h, 73% of the injected Br was recovered, as against only 47% of the NO3. The 26% difference in the recovery of the two injected species is interpreted as being the result of denitrification, in part due to the direct oxidation of pyrite present in the solid aquifer according to the reaction: 5FeS2+14NO3+4H+→7N2+10SO42−+5Fe2++2H2O, and in part due to subsequent iron oxidation according to the reaction: NO3+5Fe2++6H+→1/2N2+5Fe3++3H2O. Despite the potential increase in SO4 and Fe resulting from denitrification through pyrite oxidation, the concentrations of these elements in the groundwater remain moderate due to the precipitation of minerals such as jarosite and/or natroalunite. Tracer transfer takes place in a heterogeneous medium which, according to the breakthrough curves, can be simplified to a dual-porosity aquifer comprising a high-permeability (fractures or large fissures) medium of low porosity from which only minor denitrification of circulating NO3-bearing water was observed and a low-permeability (small fissures) medium of high porosity which induces a higher denitrification rate in the circulating NO3-bearing water. The kinetics of the denitrification reaction are high compared with results obtained for other environments and can be described by a first-order model with a half life of 7.9 days for the low-porosity medium and only 2.1 days for the high-porosity medium.  相似文献   

11.
One hundred thirty boreholes of volcanic aquifers in rural Yemen Highland Groundwaters (YHGs) were chemically investigated to assess the suitability of water for drinking. Focus is to identify inorganic constituents of significant risk to health that occur in groundwaters of this area. Results showed that a number of boreholes contain, apart from fluoride, levels of nitrate, some heavy metals, total dissolved solids, and sulfates that could pose a health risk for consumers. The lateral variations of major ions with depth varied within the same aquifer based on the dynamic equilibrium of groundwater and hydrogeological conditions. The main inorganic groundwater contaminant in volcanic YHG is fluoride which is attributed to groundwater lithology and water type. Fluoride appears high in Ca-poor groundwater and where cation exchanges of Ca for Na are dominant. High F concentration in YHG is an extension of East African fluoride-rich groundwater. Majority of tube wells show that Fe concentration exceeds WHO guideline many folds. Much of the iron and manganese in groundwaters are naturally occurring, since the source rocks are enriched in ferromagnesian minerals. NO 3 ? and Cl? concentrations that have been detected in some wells may indicate sewage and/or agricultural runoff. Elevated concentration of chemical constituents in groundwater is a sign of groundwater degradation.  相似文献   

12.
Bank infiltration (BI) is one of the solutions to providing raw water for public supply in tropical countries. This study in Malaysia explores the use of BI to supplement a polluted surface-water resource with groundwater. Three major factors were investigated: (1) contribution of surface water through BI to the resulting abstraction, (2) input of local groundwater, and (3) water-quality characteristics of the resulting water supply. A geophysical method was employed to define the subsurface geology and hydrogeology, and isotope techniques were performed to identify the source of groundwater recharge and the interaction between surface water and groundwater. The physicochemical and microbiological parameters of the local surface-water bodies and groundwater were analyzed before and during water abstraction. Extracted water revealed a 5–98 % decrease in turbidity, as well as reductions in HCO3 ?, Cl?, SO4 2?, NO3 ?, Ca2+, Al3+ and As concentrations compared with those of Langat River water. In addition, amounts of E. coli, total coliform and Giardia were significantly reduced (99.9 %). However, water samples from test wells during pumping showed high concentrations of Fe2+ and Mn2+. Pumping test results indicate that the two wells used in the study were able to sustain yields.  相似文献   

13.
The bank infiltration (BI) technique may be a viable option if the local climate, hydrological, and geological conditions are conducive. This study was specifically conducted to explore the possibility of using BI to source the polluted surface water in conjunction with groundwater. Three major factors were considered for evaluation: (1) investigation on the contribution of surface water through BI, (2) input of local groundwater, and (3) water quality characteristics of water supply. Initially, the geophysical method was employed to define the subsurface geology and hydrogeology, and isotope techniques were performed to identify the source of groundwater recharge and interaction between surface water and groundwater. The physicochemical and microbiological parameters of the local surface water bodies and groundwater were analyzed before and during water abstraction. Extracted water revealed a 5 %–98 % decrease in turbidity, as well as HCO3 +, SO4 ?, NO3 ?, Al, As, and Ca concentration reduction compared with those of Langat river water. However, water samples from test wells during pumping show high concentrations of Fe2+ and Mn2+. In addition, amounts of Escherichia coli, total coliform, and Giardia were significantly reduced (99.9 %). Pumping test results indicate that the two wells (DW1 and DW2) were able to sustain yields.  相似文献   

14.
Water-table elevation measurements and aquifer parameter estimates are rare in alpine settings because few wells exist in these environments. Alpine groundwater systems may be a primary source of recharge to regional groundwater flow systems. Handcart Gulch is an alpine watershed in Colorado, USA comprised of highly fractured Proterozoic metamorphic and igneous rocks with wells completed to various depths. Primary study objectives include determining hydrologic properties of shallow bedrock and surficial materials, developing a watershed water budget, and testing the consistency of measured hydrologic properties and water budget by constructing a simple model incorporating groundwater and surface water for water year 2005. Water enters the study area as precipitation and exits as discharge in the trunk stream or potential recharge for the deeper aquifer. Surficial infiltration rates ranged from 0.1–6.2×10?5 m/s. Discharge was estimated at 1.28×10?3 km3. Numerical modeling analysis of single-well aquifer tests predicted lower specific storage in crystalline bedrock than in ferricrete and colluvial material (6.7×10?5–2.0×10?3 l/m). Hydraulic conductivity in crystalline bedrock was significantly lower than in colluvial and alluvial material (4.3×10?9–2.0×10?4 m/s). Water budget results suggest that during normal precipitation and temperatures water is available to recharge the deeper groundwater flow system.  相似文献   

15.
《Applied Geochemistry》2006,21(1):83-97
Groundwater in the Gwelup groundwater management area in Perth, Western Australia has been enriched in As due to the exposure of pyritic sediments caused by reduced rainfall, increased groundwater abstraction for irrigation and water supply, and prolonged dewatering carried out during urban construction activities. Groundwater near the watertable in a 25–60 m thick unconfined sandy aquifer has become acidic and has affected shallow wells used for garden irrigation. Arsenic concentrations up to 7000 μg/L were measured in shallow groundwater, triggering concerns about possible health effects if residents were to use water from household wells as a drinking water source. Deep production wells used for public water supply are not affected by acidity, but trends of progressively increasing concentrations of Fe, SO4 and Ca over a 30-a period indicate that pyrite oxidation products extend to the base of the unconfined aquifer. Falling Eh values are triggering the release of As from the reduction of Fe(III) oxyhydroxide minerals near the base of the unconfined aquifer, increasing the risk that groundwater used as a drinking water source will also become contaminated with high concentrations of As.  相似文献   

16.
《Applied Geochemistry》2005,20(2):241-254
The hydrochemistry in the largest polder of the Oder River, named Oderbruch, is affected by long-term infiltration of water from the Oder into the aquifer below an alluvial loamy top layer of the polder. These exceptional hydraulic conditions are a result of dyke constructions which were built more than 250 a ago. The objective of this investigation is a better understanding and a characterisation of the contact zone between the anaerobic groundwater and the surface water of a vast drainage system. Induced by changing water levels, different hydraulic conditions occur, which strongly influence the hydrochemistry of the shallow aquifer and therefore the natural sink function of the polder area.Field investigations with a hydrochemical and hydraulic characterisation of selected drainage ditch locations show considerable chemical interactions between groundwater and surface water. Depending on the drainage ditch type, which is defined by the hydraulic situation, the redox processes create a chemical gradient combined with a distinct enrichment of Fe and Mn. The source of the high amounts of Fe and Mn in the groundwater are reduced Fe- and Mn-hydroxides from the aquifer sediments.Under exfiltrating conditions interrupted by dry phases, more than 50 g kg−1 Fe and 0.25 g kg−1 Mn have accumulated in the drainage ditch floor sediments since the construction of the drainage ditches 35 a ago. The results show a very effective fixation of trace metals in the drainage ditch sediments under these conditions. Under permanent exfiltration conditions, the enrichment of Fe and Mn is relatively low. The maximum Fe content was 4 g kg−1 sediment and the Mn content reached only 0.4 g kg−1. This is less than 10% of the mobile Fe2+ and less than 1% of the Mn2+ which migrates from the aquifer into the surface water.  相似文献   

17.
High water demand for domestic use in Douala with over 3 million inhabitants is met mainly by shallow groundwater. Field measurements and water sampling in January 2015 were carried out to examine the major controls on the groundwater composition and spatial view of ions in the water, timing of recharge and link between the recharge process and quality of the water. Fifty-two water samples were analysed for major ions and stable hydrogen and oxygen isotopes. Low pH values (3.61–6.92) in the groundwater indicated an acidic aquifer; thus, prone to acidification. The dominant water type was Na–Cl. Nitrate, which exceeded the WHO guide value of 50 mg/l in 22% of the groundwater, poses a health problem. Mass ratios of Cl?/Br? in the water ranged from 54 to 3249 and scattered mostly along the mixing lines between dilute waters, septic-tank effluent and domestic sewage. A majority of the samples, especially the high NO3 ? shallow wells, clustered around the septic-tank effluent-end-member indicating high contamination by seepage from pit latrines; hence, vulnerable to pollution. Stable isotopes in the groundwater indicated its meteoric origin and rapid infiltration after rainfall. The δ18O values showed narrow ranges and overlaps in rivers, springs, open wells and boreholes. These observations depict hydraulic connectivity, good water mixing and a homogeneous aquifer system mainly receiving local direct uniform areal recharge from rainfall. The rapid and diffused recharge favours the leaching of effluent from the pit toilets into the aquifer; hence, the high NO3 ? and Cl? in shallow wells. Silicate weathering, ion exchange and leaching of waste from pit toilets are the dominant controls on the groundwater chemistry. Drilling of deep boreholes is highly recommended for good-quality water supply. However, due the hydraulic connection to the shallow aquifer, geochemical modelling of future effects of such an exploitation of the deeper aquifer should support groundwater management and be ahead of the field actions.  相似文献   

18.
《Applied Geochemistry》1993,8(5):483-493
Information regarding the origin, composition and transport of natural dissolved organic carbon (DOC) in groundwater is necessary to understand the transport of metals and organic pollutants, as well as for the use of14C in DOC as an isotopic groundwater dating method. Previous research in several groundwater systems has suggested soil organic C is the predominant source of high molecular weight DOC to the subsurface. Through the use of stable isotopes,14C and geochemical analyses, this study shows that significant concentrations of DOC and CH4 in a regional confined aquifer can be generated in situ from subsurface sedimentary organic sources. The DOC and CH4 produced is a combined result of degradation of buried peats and bacterial action, resulting in high DOC concentrations and strongly methanogenic conditions in the aquifer. The DOC and CH4 comprise, on average, nearly 50% of the total dissolved C pool in the central part of the aquifer. Methanogenic conditions complicate isotopic groundwater dating by the conventional dissolved inorganic carbon (DIC) method. Estimates of isotopic groundwater residence time using DOC14C data are proposed by the application of14C isotope and mass balance corrections.  相似文献   

19.
《Applied Geochemistry》1987,2(3):251-274
The Chalk aquifer is the most important British aquifer and is also important over much of northern Europe. Aquifer protection requires a sound knowledge of the baseline conditions and how these might vary, or have varied, with time. This detailed geochemical study of a representative area of Chalk in Berkshire, U.K., includes a consideration of several components: (1) the inputs from the atmosphere; (2) the interstitial water of the soil and the unsaturated zone; (3) the interstitial water in the confined and unconfined sections of the aquifer; and (4) the saturated, mainly fissure flow, along the hydraulic gradient which forms an important water supply of the Thames Valley region.Atmospheric inputs form an important source of some elements, but the dominant chemical characteristics of the Chalk groundwater are acquired during percolation through the soil and the upper unsaturated zone. During saturated flow downgradient the chemistry is modified mainly by incongruent reactions of the carbonate matrix and by redox reactions, and only to a minor extent by exchange reactions and mixing with residual saline connate water. The incongruent reaction of carbonate results in a marked increase in the Mg/Ca ratio and the Sr and 13C contents of the groundwater with increased residence time. Oxygen concentrations are reduced mainly by oxidation of Fe2+, and the onset of reducing conditions allows dissolved Fe2+ to increase and rapid denitrification to occur. The salinity profile through the confined Chalk confirms that residual connate water, up to one-fifth sea water concentration, still remains at depth, and this accounts for some salinity increase in the confined groundwater resulting from fissure water.pore water diffusional exchange.Timescales for groundwater movement have been established using tritium, radiocarbon, and indirectly using inert gas ratios and stable isotope ratios. On balance, it is concluded that all abstracted water is of Holocene age, although inert gas temperatures indicate cooler climatic conditions for recharge for some of the confined groundwater.The implications for development and aquifer protection are discussed, especially the prospect of natural in situ denitrification, problems of Fe solubility, and the recognition of groundwater of different maturities.  相似文献   

20.
The chemical and microbiological characteristics of groundwater from two provinces of central Spain were studied. In some zones of this area, the concentrations of As in groundwater exceed the guideline concentrations, set internationally between 10 g/l and 50 g/l, reaching levels over 100 g/l. A narrow correlation between the contents of arsenic and HCO3 was observed. These data suggest a possible mechanism of the As mobilization from aquifer sediments to groundwater: the bicarbonate ions could displace HAsO42– adsorbed on aquifer oxyhydroxides. Sediments containing relatively high contents of adsorbed arsenic are deposited in surface water environments with low carbonate concentrations. Subsequently, the sediments become exposed to groundwater with highly dissolved carbonate content, and arsenic can be mobilized by displacement from mineral surfaces. In addition, the presence of Pseudomonas genera bacteria, which secrete siderophores (Fe chelating agents) could mobilize As adsorbed on Fe oxides through their dissolution. These combined microbiological and chemical processes might have increased the natural mobility of As.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号