首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The block-lava effusion at Volcán de Colima, México began on November 20, 1998, after 12 months of seismic activity, and ended about 80 days later. Three types of seismic events were observed during the lava effusion. Volcano—tectonic earthquakes occurred mainly at the very beginning and after the termination of lava effusion. Explosion earthquakes occurred frequently during the period of the maximum rate in lava effusion. The remainder of the seismic signals were associated with pyroclastic flows and rockfalls from the lava dome. These latter signals increased sharply in number at the onset of lava effusion. The rate of occurrence remained high when the lava discharge rate decreased but gradually decreased after the termination of lava effusion. Maximum daily durations of seismic signals are proportional to the daily volumetric output of lava, indicating the dependence of the number of pyroclastic flows on the rate of lava output. A log-log plot of seismic signal duration vs. number of events with this duration displays a linear relationship. The short-period seismic signals can be divided into three categories based on duration: short events with durations less than 100 s; intermediate events with durations between 100 and 250 s; and long events with durations longer than 250 s. We infer that long events correspond to pyroclastic flows with mean deposit volume 2×105 m3, and intermediate events represent pyroclastic flows with mean deposit volume 1×103 m3.Editorial responsibility: J McPhie  相似文献   

2.
The general characteristics of seismic signals produced by pyroclastic flows (generated by either the collapse of a lava dome or an eruptive column) and lahars at Volcán de Colima, México are discussed. The paper concentrates on the 2004–2006 activity associated with and following the extrusion of andesitic block-lava in October–November 2004. It is shown that the duration of the broad-band seismic records of pyroclastic flows lasts a few minutes while the duration of seismic records of lahars continues for tens of minutes or hours. The spectra of seismic records produced by pyroclastic flows are characterized by lower peak frequencies (around 3–4 Hz) than for lahars (around 6–8 Hz). This difference in the frequency content together with the difference in the duration of seismic signals allows early diagnostic of the events in real time.  相似文献   

3.
The results from two different types of gas measurement, telemetered in situ monitoring of reducing gases on the dome and airborne measurements of sulfur dioxide emission rates in the plume by correlation spectrometry, suggest that the combination of these two methods is particularly effective in detecting periods of enhanced degassing that intermittently punctuate the normal background leakage of gaseous effluent from Mount St Helens to the atmosphere. Gas events were recorded before lava extrusion for each of the four dome-building episodes at Mount St Helens since mid-1984. For two of the episodes, precursory reducing gas peaks were detected, whereas during three of the episodes, COSPEC measurements recorded precursory degassing of sulfur dioxide. During one episode (October 1986), both reducing gas monitoring and SO2 emission rate measurements simultaneously detected a large gas release several hours before lava extrusion. Had both types of gas measurements been operational during each of the dome-building episodes, it is thought that both would have recorded precursory signals for all four episodes. Evidence from the data presented herein suggests that increased degassing at Mount St Helens becomes detectable when fresh upward-moving magma is between 2 km and a few hundred meters below the base of the dome and between about 60 and 12 hours before the surface extrusion of lava.  相似文献   

4.
This paper presents the results of 7 years (Aug. 1999–Oct. 2006) of SO2 gas measurements during the ongoing eruption of Tungurahua volcano, Ecuador. From 2004 onwards, the operation of scanning spectrometers has furnished high temporal resolution measurements of SO2 flux, enabling this dataset to be correlated with other datasets, including seismicity. The emission rate of SO2 during this period ranges from less than 100 to 35,000 tonnes/day (t d− 1) with a mean daily emission rate of 1458 t d− 1 and a standard deviation of ± 2026 t d− 1. Average daily emissions during inferred explosive phases are about 1.75 times greater than during passive degassing intervals. The total amount of sulfur emitted since 1999 is estimated as at least 1.91 Mt, mostly injected into the troposphere and carried westwards from the volcano. Our observations suggest that the rate of passive degassing at Tungurahua requires SO2 exsolution of an andesitic magma volume that is two orders of magnitude larger than expected for the amount of erupted magma. Two possible, and not mutually exclusive, mechanisms are considered here to explain this excess degassing: gas flow through a permeable stagnant-magma-filled conduit and gas escape from convective magma overturning in the conduit. We have found that real-time gas monitoring contributes significantly to better eruption forecasting at Tungurahua, because it has provided improved understanding of underlying physical mechanisms of magma ascent and eruption.  相似文献   

5.
Popocatépetl volcano in central Mexico has been erupting explosively and effusively for almost 4 years. SO2 emission rates from this volcano have been the largest ever measured using a COSPEC. Pre-eruptive average SO2 emission rates (2–3 kt/d) were similar to the emission rates measured during the first part of the eruption (up to August 1995) in contrast with the effusive–explosive periods (March 1996–January 1998) during which SO2 emission rates were higher by a factor of four (9–13 kt/d). Based on a chronology of the eruption and the average SO2 emission rates per period, the total SO2 emissions (up to 1 January 1998) are estimated to be about 9 Mt, roughly half as much as the SO2 emissions from Mount Pinatubo in a shorter period. Popocatépetl volcano is thus considered as a high-emission rate, passively degassing eruptive volcano. SO2 emission rates and SO2 emissions are used here to make a mass balance of the erupted magma and related gases. Identified excess SO2 is explained in terms of continuous degassing of unerupted magma and magma mixing. Fluctuations in SO2 emission rate may be a result of convection and crystallization in the chamber or the conduits, cleaning and sealing of the plumbing system, and/or SO2 scrubbing by the hydrothermal system.  相似文献   

6.
HCl:SO2 mass ratios measured by open path Fourier transform spectroscopy (OP-FTIR) in the volcanic plume at Soufrière Hills Volcano, Montserrat, are presented for the second phase of dome building between November 1999 and November 2000. HCl:SO2 mass ratios of greater than 1 and HCl emission rates of greater than 400 t day–1 characterise periods of dome building for this volcano. The data suggest that chlorine partitions into a fluid phase as the magma decompresses and exsolves water during ascent. This is substantiated by a correlation between chlorine and water content in the melt (derived from the geochemical analysis of plagioclase melt inclusion and matrix glasses from phase I and II of dome growth). The matrix glass from the November 1999 and March 2000 domes indicate an open system degassing regime with a fluid-melt partition coefficient for chlorine of the order of 250–300. September 1997 glasses have higher chlorine contents and may indicate a switch to closed system degassing prior to explosive activity in September and October 1997. The OP-FTIR HCl time series suggests that HCl emission rate is strongly related to changes in eruption rate and we infer an emission rate of over 13.5 kt day–1 HCl during a period of high extrusion rate in September 2000. A calculation of the HCl emission rate expected for varying extrusion rates from the open-system degassing model suggests a HCl emission rate of the order of 1–4 kt day–1 is indicative of an extrusion rate of between 2 and 8 m3 s–1. Monitoring of HCl at Soufrière Hills Volcano provide a proxy for extrusion rate, with changes in ratio between HCl and SO2 occurring rapidly in the plume. Order of magnitude changes occur in HCl emission rates over the time-scale of hours to days, making these changes easy to detect during the day-to-day monitoring of the volcano. Mean water emission rates are calculated to range from 9–24 kt day–1 during dome building activity, calculated from the predicted mass ratio of H2O:HCl in the fluid at the surface and FTIR-derived HCl emission rates.  相似文献   

7.
Ten years after the last effusive eruption and at least 15 years of seismic quiescence, volcanic seismic activity started at Colima volcano on 14 February 1991, with a seismic crisis which reached counts of more than 100 per day and showed a diversity of earthquake types. Four other distinct seismic crises followed, before a mild effusive eruption in April 1991. The second crisis preceded the extrusion of an andesitic scoriaceous lava lobe, first reported on 1 March; during this crisis an interesting temporary concentration of seismic foci below the crater was observed shortly before the extrusion was detected. The third crisis was constituted by shallow seismicity, featuring possible mild degassing explosion-induced activity in the form of hiccups (episodes of simple wavelets that repeat with diminishing amplitude), and accompanied by increased fumarolic activity. The growth of the new lava dome was accompanied by changing seismicity. On 16 April during the fifth crisis which consisted of some relatively large, shallow, volcanic earthquakes and numerous avalanches of older dome material, part of the newly extruded dome, which had grown towards the edge of the old dome, collapsed, producing the largest avalanches and ash flows. Afterwards, block lava began to flow slowly along the SW flank of the volcano, generating frequent small incandescent avalanches. The seismicity associated with the stages of this eruptive activity shows some interesting features: most earthquake foci were located north of the summit, some of them relatively deep (7–11 km below the summit level), underneath the saddle between the Colima and the older Nevado volcanoes. An apparently seismic quiet region appears between 4 and 7 km below the summit level. In June, harmonic tremors were detected for the first time, but no changes in the eruptive activity could be correlated with them. After June, the seismicity decreasing trend was established, and the effusive activity stopped on September 1991.  相似文献   

8.
Lava (n = 8) and bulk ash samples (n = 6) erupted between July 1999 and June 2005 were investigated to extend time-series compositional and textural studies of the products erupted from Volcán Colima since 1869. In particular, we seek to evaluate the possibility that the current activity will culminate in major explosive Plinian-style event similar to that in 1913. Lava samples continue to show relatively heterogeneous whole-rock compositions with some significant mafic spikes (1999, 2001) as have prevailed since 1976. Groundmass SiO2 contents continue trends to lower levels that have prevailed since 1961, in the direction of the still lower groundmass SiO2 contents found in 1913 scoriae. Importantly, ash samples from investigated Vulcanian-style explosive eruptions in 2005 are devoid of particles with micro-vesiculated groundmass textures; such textures characterized the 1913 scoriae, signifying expansion of in-situ magmatic gas as the propellant of the 1913 eruption. All magmas erupted since 1913 appear to have arrived in the upper volcanic conduit system in a degassed state. The small to moderate Vulcanian-style explosive eruptions, which have been common since 1999 (> 16,000 events), have blasted ash clouds as high as 11 km a.s.l. and sent pyroclastic flows out to distances of 5 km. These eruptions do not appear to be powered by expansion of in-situ magmatic gas. New small lava domes have been observed in the crater prior to many explosive eruptions. These plugs of degassed lava may temporarily seal the conduit and allow the build-up of magmatic gases streaming upward from below ahead of rising and degassing magma. In this interpretation, when gas pressure exceeds the strength of the plug seal in the upper conduit, an explosive Vulcanian-style eruption occurs. Alternatively these explosive eruptions may represent interactions of hot rock and groundwater (phreato-magmatic).  相似文献   

9.
Located at the volcanic front in the western Mexican arc, in the Colima Rift, is the active Volcán Colima, which lies on the southern end of the massive (∼450 km3) Colima-Nevado volcanic complex. Along the margins of this andesitic volcanic complex, is a group of 11 scoria cones and associated lavas, which have been dated by the 40Ar/39Ar method. Nine scoria cones erupted ∼1.3 km3 of alkaline magma (basanite, leucite-basanite, minette) between 450 and 60 ka, with >99% between 240 and 60 ka. Two additional cones (both the oldest and calc-alkaline) erupted <0.003 km3 of basalt (0.5 Ma) and <0.003 km3 of basaltic andesite (1.2 Ma), respectively. Cone and lava volumes were estimated with the aid of digital elevation models (DEMs). The eruption rate for these scoria cones and their associated lavas over the last 1.2 Myr is ∼1.2 km3/Myr, which is more than 400 times smaller than that from the andesitic Colima-Nevado edifice. In addition to these alkaline Colima cones, two other potassic basalts erupted at the volcanic front, but ∼200 km to the ESE (near the historically active Volcán Jorullo), and were dated at 1.06 and 0.10 Ma. These potassic suites reflect the tendency in the west-central Mexican arc for magmas close to the volcanic front to be enriched in K2O relative to those farther from the trench.Ferric-ferrous analyses on pristine samples from the alkaline cones adjacent to V. Colima and V. Jorullo indicate that their oxygen fugacities relative to the nickel-nickel oxide buffer are significantly higher (ΔNN0=2–4) than those for the calc-alkaline magma types (0–1.5). These ΔNNO values correlate positively with Ba concentrations and likely reflect the influence of a slab-derived fluid. As a result of the high oxidation states, the solubility of sulfur in these potassic magmas is enhanced. Indeed the sulfur content of both the whole rock and the apatite phenocrysts (and in olivine melt inclusions reported in the literature) suggest that part of their pre-eruptive sulfur gas (SO2) concentrations could have been discharged to the atmosphere in amounts comparable to the 1982 eruption of El Chichón, although over a prolonged period spanning thousands of years (not per eruption).Electronic Supplementary Material Supplementary material is available for this article at Editorial responsibility: J. Donnelly-Nolan  相似文献   

10.
Following 198 years of dormancy, a small phreatic eruption started at the summit of Unzen Volcano (Mt. Fugen) in November 1990. A swarm of volcano-tectonic (VT) earthquakes had begun below the western flank of the volcano a year before this eruption, and isolated tremor occurred below the summit shortly before it. The focus of VT events had migrated eastward to the summit and became shallower. Following a period of phreatic activity, phreatomagmatic eruptions began in February 1991, became larger with time, and developed into a dacite dome eruption in May 1991 that lasted approximately 4 years. The emergence of the dome followed inflation, demagnetization and a swarm of high-frequency (HF) earthquakes in the crater area. After the dome appeared, activity of the VT earthquakes and the summit HF events was replaced largely by low-frequency (LF) earthquakes. Magma was discharged nearly continuously through the period of dome growth, and the rate decreased roughly with time. The lava dome grew in an unstable form on the shoulder of Mt. Fugen, with repeating partial collapses. The growth was exogenous when the lava effusion rate was high, and endogenous when low. A total of 13 lobes grew as a result of exogenous growth. Vigorous swarms of LF earthquakes occurred just prior to each lobe extrusion. Endogenous growth was accompanied by strong deformation of the crater floor and HF and LF earthquakes. By repeated exogenous and endogenous growth, a large dome was formed over the crater. Pyroclastic flows frequently descended to the northeast, east, and southeast, and their deposits extensively covered the eastern slope and flank of Mt. Fugen. Major pyroclastic flows took place when the lava effusion rate was high. Small vulcanian explosions were limited in the initial stage of dome growth. One of them occurred following collapse of the dome. The total volume of magma erupted was 2.1×108 m3 (dense-rock-equivalent); about a half of this volume remained as a lava dome at the summit (1.2 km long, 0.8 km wide and 230–540 m high). The eruption finished with extrusion of a spine at the endogenous dome top. Several monitoring results convinced us that the eruption had come to an end: the minimal levels of both seismicity and rockfalls, no discharge of magma, the minimal SO2 flux, and cessation of subsidence of the western flank of the volcano. The dome started slow deformation and cooling after the halt of magma effusion in February 1995.  相似文献   

11.
A petrological study of the eruptive products of El Reventador allowed us to infer the magmatic processes related to the 2002 and 2004–05 eruptions of this andesitic stratovolcano. On November 3, 2002, El Reventador experienced a highly explosive event, which was followed by emplacement of two lava flows in November–December 2002. Silica contents range from 62 to 58 wt.% SiO2 for the November 3 pyroclastic deposits to 58–56 and 54–53 wt.% SiO2 for the successive lava flows. In November 2004 eruptive activity resumed supplying four new lava flows (56–54 wt.% SiO2) between November 2004 and August 2005.  相似文献   

12.
On December 1, 2007, the solar absorption infrared spectra of the Popocatépetl volcanic plume was recorded during an eruptive event and complementarily on November 17, 2008, the passive quiescent degassing was measured from the same site. A portable FTIR spectrometer with a scanning mirror for fast tracking of the sun provided the flexibility, quality, and simplicity needed for field deployment. Slant columns of the gases SO2, HCl, HF, and SiF4 were retrieved and strong differences could be observed when comparing gas ratios in both time periods. During the explosive eruption, the SO2/HCl ratio was three times greater and the HF/HCl ratio was slightly smaller than during passive degassing.While the ratios among SO2, HCl, HF, and SiF4 describe the chemical composition of the volcanic gas mixture, the SiF4/HF ratio provides information about the equilibrium temperatures of the stored gases which in this study were calculated at 150° and 185 °C for the explosive and quiescent degassing episodes, respectively. We conclude that cooling of lava domes in the crater precedes Vulcanian explosions as suggested by Schaaf et al (2005). Based on SO2 flux (Grutter et al., 2008) and measurements and data from the November 2008 event, the average fluxes for HCl, HF, SiF4, and F through quiescent degassing are estimated to be 204, 22.7, 9.8, and 31.7 tons/day, respectively. These values are similar to those reported by Love et al. (1998) more than 10 yrs ago.  相似文献   

13.
We present daily measurements of sulfur dioxide (SO2) emissions from active volcanoes in Ecuador and southern Colombia between September 2004 and September 2006, derived from the Ozone Monitoring Instrument (OMI) on NASA's EOS/Aura satellite. OMI is an ultraviolet/visible spectrometer with an unprecedented combination of spatial and spectral resolution, and global coverage, that permits daily measurements of passive volcanic degassing from space. We use non-interactive processing methods to automatically extract daily SO2 burdens and information on SO2 sources from the OMI datastream. Maps of monthly average SO2 vertical columns retrieved by OMI over Ecuador and S. Colombia are also used to illustrate variations in regional SO2 loading and to pinpoint sources. The dense concentration of active volcanoes in Ecuador provides a stringent test of OMI's ability to distinguish SO2 from multiple emitting sources. Our analysis reveals that Tungurahua, Reventador and Galeras were responsible for the bulk of the SO2 emissions in the region in the timeframe of our study, with no significant SO2 discharge detected from Sangay. At Galeras and Reventador, we conclude that OMI can detect variations in SO2 release related to cycles of conduit sealing and degassing, which are a critical factor in hazard assessment. The OMI SO2 data for Reventador are the most extensive sequence of degassing measurements available for this remote volcano, which dominated regional SO2 production in June–August 2005. At Tungurahua, the OMI measurements span the waning stage of one eruptive cycle and the beginning of another, and we observe increasing SO2 burdens in the months prior to explosive eruptions of the volcano in July and August 2006. Cumulative SO2 loadings measured by OMI yield a total of ~ 1.16 Tg SO2 emitted by volcanoes on mainland Ecuador/S. Colombia between September 2004 and September 2006; as much as 95% of this SO2 may originate from non-eruptive degassing. Approximate apportionment of the total SO2 loading indicates that ~ 40% originated from Tungurahua, with ~ 30% supplied by both Reventador and Galeras. These measurements of volcanic SO2 degassing in Ecuador confirm OMI's potential as an effective, economical and risk-free tool for daily monitoring of SO2 emissions from hazardous volcanoes.  相似文献   

14.
In summer 2003, a Chaparral Model 2 microphone was deployed at Shishaldin Volcano, Aleutian Islands, Alaska. The pressure sensor was co-located with a short-period seismometer on the volcano’s north flank at a distance of 6.62 km from the active summit vent. The seismo-acoustic data exhibit a correlation between impulsive acoustic signals (1–2 Pa) and long-period (LP, 1–2 Hz) earthquakes. Since it last erupted in 1999, Shishaldin has been characterized by sustained seismicity consisting of many hundreds to two thousand LP events per day. The activity is accompanied by up to ∼200 m high discrete gas puffs exiting the small summit vent, but no significant eruptive activity has been confirmed. The acoustic waveforms possess similarity throughout the data set (July 2003–November 2004) indicating a repetitive source mechanism. The simplicity of the acoustic waveforms, the impulsive onsets with relatively short (∼10–20 s) gradually decaying codas and the waveform similarities suggest that the acoustic pulses are generated at the fluid–air interface within an open-vent system. SO2 measurements have revealed a low SO2 flux, suggesting a hydrothermal system with magmatic gases leaking through. This hypothesis is supported by the steady-state nature of Shishaldin’s volcanic system since 1999. Time delays between the seismic LP and infrasound onsets were acquired from a representative day of seismo-acoustic data. A simple model was used to estimate source depths. The short seismo-acoustic delay times have revealed that the seismic and acoustic sources are co-located at a depth of 240±200 m below the crater rim. This shallow depth is confirmed by resonance of the upper portion of the open conduit, which produces standing waves with f=0.3 Hz in the acoustic waveform codas. The infrasound data has allowed us to relate Shishaldin’s LP earthquakes to degassing explosions, created by gas volume ruptures from a fluid–air interface.  相似文献   

15.
The present work reports the results of 15 studies of diffuse CO2 degassing performed at Teide Volcano crater (Canary Island, Spain) and the chemical and isotopic compositions of fluids discharged from a fumarolic field located at the top of the volcano as measured between 1991 and 2010. A higher contribution of magmatic gases accompanied by enhanced total diffuse CO2 emissions were observed in relation with a seismic crisis that occurred in Tenerife Island between 2001 and 2005, with the main peak of seismic activity between April and June 2004. A significant pulse in total diffuse CO2 emission was observed at the crater of Teide (up to 26.3?t day?1) in 2001. In December 2003, the chemical composition of the Teide fumarole changed significantly, including the appearance of SO2, an increase in the HCl and CO concentrations and in the C2H6/C2H4 and C3H8/C3H6 ratios, and a decrease in the H2S, CH4, and C6H6 concentrations and in the gas/steam ratio. A few months after a drastic decrease in seismic activity, the SO2, HCl, and CO concentrations and the C2H6/C2H4 and C3H8/C3H6 ratios strongly decreased, whereas the CH4 and C6H6 concentrations and the gas/steam ratios increased. According to the trends shown by both the geochemical parameters and the seismic signals late in the observation period, the risk of a rejuvenation of volcanic activity at Teide is considered to be low. The associated temporal changes in seismic activity and magmatic degassing indicate that geophysical and fluid geochemistry signals in this system are related. Future monitoring programs aimed at mitigating volcanic hazard on Tenerife Island should involve coupled geophysical and geochemical studies.  相似文献   

16.
This paper describes a methodology for the monitoring of fumarole temperatures at medium ranges (~ 6 km) using a handheld infrared camera (wavelength range: 8–13.5 µm). As a relationship between fumarole temperatures, gas flux and volcanic activity has been demonstrated by a number of studies, fumarole temperature data has a potential use as a monitoring tool. Volcán de Colima is an andesitic stratovolcano with a 300 m diameter summit crater formed by the destruction of the 2004 lava dome by a series of explosions in 2005. Between January 2006 and August 2007, sequences of thermal images were recorded from a viewpoint 6 km to the north during regular 24–48 hour monitoring excursions. The temperatures of fumaroles on the crater rim and the ground surface on the volcano's flanks were measured. A methodology was developed to remove data affected by clouds or volcanic water vapour based on rates of temperature change and scatter within the data. For the remaining data, it is demonstrated mathematically that at this range, typical variations in atmospheric transmissivity will affect the apparent temperatures by +/− 2 °C, while a 25% change in fumarole heat flux would change it by 5–10 °C. The mean night-time apparent temperature of the fumaroles was calculated for each excursion and showed an irregular decline over the 19 month period. Subtracting the radiant heat flux of flank rocks from those of the fumaroles removes seasonal variations and gives the clearest view of trends in the fumarole heat flux. A sharp drop in fumarole temperature during February 2007 coincided with the emergence of a lava dome in the crater. The declining fumarole temperature is interpreted to reflect decreasing gas flux from the crater in line with a change in eruptive regime from frequent, small, ash-rich explosions to slow effusion of lava.  相似文献   

17.
Volcán Alcedo is one of the seven western Galápagos shields and is the only active Galápagos volcano known to have erupted rhyolite as well as basalt. The volcano stands 4 km above the sea floor and has a subaerial volume of 200 km3, nearly all of which is basalt. As Volcán Alcedo grew, it built an elongate domal shield, which was partly truncated during repeated caldera-collapse and partial-filling episodes. An outward-dipping sequence of basalt flows at least 250 m thick forms the steepest (to 33°) flanks of the volcano and is not tilted; thus a constructional origin for the steep upper flanks is favored. About 1 km3 of rhyolite erupted late in the volcano's history from at least three vents and in 2–5 episodes. The most explosive of these produced a tephra blanket that covers the eastern half of the volcano. Homogeneous rhyolitic pumice is overlain by dacite-rhyolite commingled pumice, with no stratigraphic break. The tephra is notable for its low density and coarse grain size. The calculated height of the eruption plume is 23–30 km, and the intensity is estimated to have been 1.2x108 kg/s. Rhyolitic lavas vented from the floor of the caldera and from fissures along the rim overlie the tephra of the plinian phase. The age of the rhyolitic eruptions is 120 ka, on the basis of K-Ar ages. Between ten and 20 basaltic lava flows are younger than the rhyolites. Recent faulting resulted in a moat around part of the caldera floor. Alcedo most resently erupted sometime between 1946 and 1960 from its southern flank. Alcedo maintains an active, transient hydrothermal system. Acoustic and seismic activity in 1991 is attributed to the disruption of the hydrothermal system by a regional-scale earthquake.  相似文献   

18.
Gas emissions from Erebus volcano, Antarctica, were measured by open-path Fourier transform infrared spectroscopy to understand degassing of its magmatic system. Two degassing phonolite lava lakes were present in the summit crater during observation in December 2004. We report analyses of H2O, CO2, CO, SO2, HF, HCl and OCS, (in order of molar abundance) in the plumes. Variations in the proportions of these species strongly reflect the dynamics of degassing, and sourcing of gas from different depths in the magmatic network. The highest observed ratios of CO2 and H2O are consistent with gas extracted from the melt at a depth of up to ∼ 2 km below the lava lakes. Magma degassing above this depth contributes to a higher H2O/CO2 proportion in the airborne plume. The ratio therefore reflects the balance of deeper vs. shallower contributions of volatiles and, possibly, a combination of closed- and open-system degassing. We observe a strong contrast in HF content in emissions from the two lava lakes, which we attribute to differing levels of magma ascent and/or cooling and crystallization of the magma supply. Fluxes of all gas species were determined using independent SO2 flux determinations and measured gas ratios. In the case of CO2 and water, ∼ 1 and ∼ 0.4 m3 s− 1, respectively, of parental basanite magma are required to sustain the calculated output. The discrepancy between the two figures is readily explained by sequestration of part of the magma supply at depth such that it only partially degasses its complement of water.  相似文献   

19.
The continuous measurement of molecular hydrogen (H2) emissions from passively degassing volcanoes has recently been made possible using a new generation of low-cost electrochemical sensors. We have used such sensors to measure H2, along with SO2, H2O and CO2, in the gas and aerosol plume emitted from the phonolite lava lake at Erebus volcano, Antarctica. The measurements were made at the crater rim between December 2010 and January 2011. Combined with measurements of the long-term SO2 emission rate for Erebus, they indicate a characteristic H2 flux of 0.03?kg s–1 (2.8?Mg? day–1). The observed H2 content in the plume is consistent with previous estimates of redox conditions in the lava lake inferred from mineral compositions and the observed CO2/CO ratio in the gas plume (~0.9 log units below the quartz–fayalite–magnetite buffer). These measurements suggest that H2 does not combust at the surface of the lake, and that H2 is kinetically inert in the gas/aerosol plume, retaining the signature of the high-temperature chemical equilibrium reached in the lava lake. We also observe a cyclical variation in the H2/SO2 ratio with a period of ~10?min. These cycles correspond to oscillatory patterns of surface motion of the lava lake that have been interpreted as signs of a pulsatory magma supply at the top of the magmatic conduit.  相似文献   

20.
Emission rates of sulfur dioxide (SO2) were measured at Erebus volcano, Antarctica in December between 1992 and 2005. Since 1992 SO2 emissions rates are normally distributed with a mean of 61 ± 27 Mg d− 1 (0.7 ± 0.3 kg s− 1) (n = 8064). The emission rates vary over minutes, hours, days and years. Hourly and daily variations often show systematic and cyclic trends. Long-wavelength, large amplitude trends appear related to lava lake area and both are likely controlled by processes occurring at depth. Time series analysis of continuous sequences of measurements obtained over periods of several hours reveals periodicity in SO2 output ranging from 10 to 360 min, with a 10 min cycle being the most dominant. Closed and open-system degassing models are considered to explain observed variable degassing rates. Closed-system degassing is possible as rheological stiffening and stick/slip may occur within the system. However, the timescales represented in these models do not fit observations made on Erebus. Open-system degassing and convection fits the observations collected as the presented models were developed for a system similar to Erebus in terms of degassing, eruptive activity and process repose time. We show that with the observed emission rate (0.71 kg s− 1) and a crystal content of 30%, magma will cool 65 °C to match observed heat fluxes; this cooling is sufficient enough to drive convection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号