首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a detailed analysis of the source properties of Long-Period (LP) signals recorded at Campi Flegrei Caldera (Italy) during the last (2005–2006) mini-uplift episode. Moment Tensor inversion via full-waveform modelling of broad-band seismograms indicates a crack-like source with a significant volumetric component. From auto-regressive modelling of the signal's tail we evaluate the dominant frequency and the attenuation factor of the oscillating source. Considering the acoustic properties of a fluid-filled crack, these values are consistent with the resonant oscillations of a crack filled by a water–gas mixture at variable gas–volume fraction. For these fluids, the crack size would be on the order of 40–420 m, a size range which is consistent with the spatial spreading of LP hypocenters. Analysis of temporally-correlated time series of seismological and geochemical data indicates that climaxing of LP activity was preceded by swarms of volcano-tectonic (VT) events and rapidly followed by a consistent increase of both thermal emissions and gas fluxes recorded at the surface (1 month — 2/3 days, respectively). Following these observations, we propose a conceptual model where VT activity increases permeability of the medium, thus favouring fluid mobility. As a consequence, the hydrothermal system experiences pressure perturbations able to trigger its resonant, LP oscillations.  相似文献   

2.
Guagua Pichincha, located 14 km west of Quito, Ecuador, is a stratovolcano bisected by a horseshoe-shaped caldera. In 1999, after some months of phreatic activity, Guagua Pichincha entered into an eruptive period characterized by the extrusion of several dacitic domes, vulcanian eruptions, and pyroclastic flows. We estimated the three-dimensional (3-D) P-wave velocity structure beneath Guagua Pichincha using a tomographic inversion method based on finite-difference calculations of first-arrival times. Hypocenters of volcano-tectonic (VT) earthquakes and long-period (LP) events were relocated using the 3-D P-wave velocity model. A low-velocity anomaly exists beneath the caldera and may represent an active volcanic conduit. Petrologic analysis of eruptive products indicates a magma storage region beneath the caldera, having a vertical extent of 7–8 km with the upper boundary at about sea level. This zone coincides with the source region of deeper VT earthquakes, indicating that a primary magma body exists in this region. LP swarms occurred in a cyclic pattern synchronous with ground deformation during magma extrusions. The correlation between seismicity and ground deformation suggests that both respond to pressure changes caused by the cyclic eruptive behavior of lava domes.  相似文献   

3.
We investigate the source mechanism of long-period (LP) events observed at Kusatsu–Shirane Volcano, Japan, based on waveform inversions of their effective excitation functions. The effective excitation function, which represents the apparent excitation observed at individual receivers, is estimated by applying an autoregressive filter to the LP waveform. Assuming a point source, we apply this method to seven LP events the waveforms of which are characterized by simple decaying and nearly monochromatic oscillations with frequency in the range 1–3 Hz. The results of the waveform inversions show dominant volumetric change components accompanied by single force components, common to all the events analyzed, and suggesting a repeated activation of a sub-horizontal crack located 300 m beneath the summit crater lakes. Based on these results, we propose a model of the source process of LP seismicity, in which a gradual buildup of steam pressure in a hydrothermal crack in response to magmatic heat causes repeated discharges of steam from the crack. The rapid discharge of fluid causes the collapse of the fluid-filled crack and excites acoustic oscillations of the crack, which produce the characteristic waveforms observed in the LP events. The presence of a single force synchronous with the collapse of the crack is interpreted as the release of gravitational energy that occurs as the slug of steam ejected from the crack ascends toward the surface and is replaced by cooler water flowing downward in a fluid-filled conduit linking the crack and the base of the crater lake.  相似文献   

4.
We present analyses of two swarms of long-period (LP) earthquakes at > 30 km depth that accompanied the geodetically observed 2002–2005 Mauna Loa intrusion. The first LP earthquake swarm in 2002 consisted of 31 events that were precursory and preceded the start of Mauna Loa inflation; the second LP swarm of two thousand events occurred from 2004–2005. The rate of LP earthquakes slowed significantly coincident with the occurrence of the December 26, 2004 Mw 9.3 Sumatra earthquake, suggesting that the seismic waves from this great earthquake may have had a dynamic triggering effect on the behavior of Mauna Loa's deep magma system. Using waveform cross correlation and double difference relocation, we find that a large number of earthquakes in each swarm are weakly similar and can be classified into two families. The relocated hypocenters for each family collapse to compact point source regions almost directly beneath the Mauna Loa intrusion. We suggest that the observed waveform characteristics are compatible with each family being associated with the resonance of a single fluid filled vertical crack of fixed geometry, with differences in waveforms between events being produced by slight variations in the trigger mechanism. If these LP earthquakes are part of the primary magma system that fed the 2002–2005 intrusion, as indicated by the spatial and temporal associations between mantle seismicity and surface deformation, then our results raise the possibility that this magma system may be quite focused at these depths as opposed to being a diffuse network. It is likely that only a few locations of Mauna Loa's deep magma system met the geometric and fluid dynamic conditions for generating LP earthquakes that were large enough to be recorded at the surface, and that much of the deep magma transfer associated with the 2002–2005 intrusion occurred aseismically.  相似文献   

5.
We analyze data from three seismic antennas deployed in Las Cañadas caldera (Tenerife) during May–July 2004. The period selected for the analysis (May 12–31, 2004) constitutes one of the most active seismic episodes reported in the area, except for the precursory seismicity accompanying historical eruptions. Most seismic signals recorded by the antennas were volcano-tectonic (VT) earthquakes. They usually exhibited low magnitudes, although some of them were large enough to be felt at nearby villages. A few long-period (LP) events, generally associated with the presence of volcanic fluids in the medium, were also detected. Furthermore, we detected the appearance of a continuous tremor that started on May 18 and lasted for several weeks, at least until the end of the recording period. It is the first time that volcanic tremor has been reported at Teide volcano. This tremor was a small-amplitude, narrow-band signal with central frequency in the range 1–6 Hz. It was detected at the three antennas located in Las Cañadas caldera. We applied the zero-lag cross-correlation (ZLCC) method to estimate the propagation parameters (back-azimuth and apparent slowness) of the recorded signals. For VT earthquakes, we also determined the S–P times and source locations. Our results indicate that at the beginning of the analyzed period most earthquakes clustered in a deep volume below the northwest flank of Teide volcano. The similarity of the propagation parameters obtained for LP events and these early VT earthquakes suggests that LP events might also originate within the source volume of the VT cluster. During the last two weeks of May, VT earthquakes were generally shallower, and spread all over Las Cañadas caldera. Finally, the analysis of the tremor wavefield points to the presence of multiple, low-energy sources acting simultaneously. We propose a model to explain the pattern of seismicity observed at Teide volcano. The process started in early April with a deep magma injection under the northwest flank of Teide volcano, related to a basaltic magma chamber inferred by geological and geophysical studies. The stress changes associated with the injection produced the deep VT cluster. In turn, the occurrence of earthquakes permitted an enhanced supply of fresh magmatic gases toward the surface. This gas flow induced the generation of LP events. The gases permeated the volcanic edifice, producing lubrication of pre-existing fractures and thus favoring the occurrence of VT earthquakes. On May 18, the flow front reached the shallow aquifer located under Las Cañadas caldera. The induced instability constituted the driving mechanism of the observed tremor.  相似文献   

6.
Seismic activity recorded at Mount Etna during 1992 was characterized by long-period (LP) events and tremor with fluctuating amplitudes. These signals were associated with the evolution of the eruptive activity that began on December 14, 1991. Following the occurrence of numerous volcano-tectonic earthquakes at the onset of the eruption, LP events dominated the overall seismicity starting in January, 1992. The LP activity occurred primarily in swarms, which were temporally correlated with episodic collapses of the crater floor in the Northeast Crater. Source depths determined for selected LP events suggest a source region located slightly east of Northeast Crater and extending from the surface to a depth of 2000 m. Based on the characteristic signatures of the time series, four families of LP events are identified. Each family shares common spectral peaks independent of azimuth and distance to the source. These spectral features are used to develop a fluid-filled crack model of the source. We hypothesize that the locus of the LP events represents a segment of the magma feeding system connecting a depressurizing magma body with a dike extending in the SSE direction along the western wall of Valle del Bove, toward the site of the Mount Etna eruption. We surmise that magma withdrawal from the source volume beneath Northeast Crater may have caused repeated collapses of the crater floor. Some collapse events may have produced pressure transients in the subjacent dike which acted as seismic wave sources for LP events.  相似文献   

7.
地震、形变、火山气体地球化学等观测结果表明2002~2005年长白山天池火山经历了1次扰动事件。长白山站地震台(CBS台)记录到了扰动事件前后连续稳定的宽频带地震观测资料。前人的观测研究结果认为长白山天池火山扰动期间的火山地震类型主要为构造型火山地震,伴随少量的谐频型地震。本文通过匹配滤波技术,对1999~2007年扰动事件前后CBS台单台三分量地震观测数据进行模板扫描,获得3763个清晰的火山地震事件,其中谐频(HS)事件125个,构造(VT)事件3618个,并发现长周期(LP)事件20个。进而将火山扰动期间火山地震事件分为3种类型:构造型事件、长周期事件和谐频型事件,并提出2002~2005年长白山天池火山扰动机制模型:深源地震-火山能量传递模型,即汪清深源地震能量释放和传递,引发长白山火山区岩石圈应力状态波动。地幔岩浆房受应力干扰后,岩浆通道打开,少量岩浆侵入地壳岩浆房。岩浆混合脱气导致地壳岩浆房升压,引起顶部岩石微破裂,产生构造型火山地震,气体和流体填充这些裂隙,从而产生LP和HS型火山地震事件。  相似文献   

8.
Analysis of sustained long-period activity at Etna Volcano, Italy   总被引:1,自引:0,他引:1  
Following the installation of a broadband network on Mt. Etna, sustained Long-Period (LP) activity was recorded accompanying a period of total quiescence and the subsequent onset of the 2004–2005 effusive episode. From about 56000 events detected by an automatic classification procedure, we analyse a subset of about 3000 signals spanning the December 17th, 2003–September 25th, 2004, time interval. LP spectra are characterised by several, unevenly-spaced narrow peaks spanning the 0.5–10 Hz frequency band. These peaks are common to all the recording sites of the network, and different from those associated with tremor signals. Throughout the analysed time interval, LP spectra and waveforms maintain significant similarity, thus indicating the involvement of a non-destructive source process that we interpret in terms of the resonance of a fluid-filled buried cavity. Polarisation analysis indicates radiation from a non-isotropic source involving large amounts of shear. Concurrently with LP signals, recordings from the summit station also depict Very-Long-Period (VLP) pulses whose rectilinear motion points to a region located beneath the summit craters at depths ranging between 800 and 1100 m beneath the surface. Based on a refined repicking of similar waveforms, we obtain robust locations for a selected subset of the most energetic LP events from probabilistic inversion of travel-times calculated for a 3D heterogenous structure. LP sources cluster in a narrow volume located beneath the summit craters, and extending to a maximum depth of ≈ 800 m beneath the surface. No causal relationships are observed between LP, VLP and tremor activities and the onset of the 2004–2005 lava effusions, thus indicating that magmatic overpressure played a limited role in triggering this eruption. These data represent the very first observation of LP and VLP activity at Etna during non-eruptive periods, and open the way to the quantitative modelling of the geometry and dynamics of the shallow plumbing system.  相似文献   

9.
Karthala volcano is a basaltic shield volcano with an active hydrothermal system that forms the southern two-thirds of the Grande Comore Island, off the east coat of Africa, northwest of Madagascar. Since the start of volcano monitoring by the local volcano observatory in 1988, the July 11th, 1991 phreatic eruption was the first volcanic event seismically recorded on this volcano, and a rare example of a monitored basaltic shield. From 1991 to 1995 the VT locations, 0.5<Ml<4.3, show a crack shaped pattern (3 km long, 1 km wide) within the summit caldera extending at depth from –2 km to +2 km relative to sea level. This N-S elongated pattern coincides with the direction of the regional maximum horizontal stress as deduced from regional focal mechanism solutions. This brittle signature of the damage associated with the 1991 phreatic eruption is a typical pattern of the seismicity induced by controlled fluid injections such as those applied at geothermal fields, in oil and gas recovery, or for stress measurements. It suggests the 1991 phreatic eruption was driven by hydraulic fracturing induced by forced fluid flow. We propose that the extremely high LP and VT seismicity rates, relative to other effusive volcanoes, during the climax of the 1991 phreatic explosion, are due to the activation of the whole hydrothermal system, as roughly sized by the distribution of VT hypocenters. The seismicity rate in 1995 was still higher than the pre-eruption seismicity rate, and disagrees with the time pattern of thermo-elastic stress readjustment induced by single magma intrusions at basaltic volcanoes. We propose that it corresponds to the still ongoing relaxation of pressure heterogeneity within the hydrothermal system as suggested by the few LP events that still occurred in 1995.Editorial responsibility: H Shinohara  相似文献   

10.
A genetic algorithm inversion of receiver functions derived from a dense seismic network around Iwate volcano, northeastern Japan, provides the fine S wave velocity structure of the crust and uppermost mantle. Since receiver functions are insensitive to an absolute velocity, travel times of P and S waves propagating vertically from earthquakes in the subducting slab beneath the volcano are involved in the inversion. The distribution of velocity perturbations in relation to the hypocenters of the low-frequency (LF) earthquakes helps our understanding of deep magmatism beneath Iwate volcano. A high-velocity region (dVS/VS=10%) exists around the volcano at depths of 2–15 km, with the bottom depth decreasing to 11 km beneath the volcano’s summit. Just beneath the thinning high-velocity region, a low-velocity region (dVS/VS=−10%) exists at depths of 11–20 km. Intermediate-depth LF (ILF) events are distributed vertically in the high-velocity region down to the top of the low-velocity region. This distribution suggests that a magma reservoir situated in the low-velocity region supplies magma to a narrow conduit that is detectable by the hypocenters of LF earthquakes. Another broad low-velocity region (dVS/VS=−5 to −10%) occurs at depths of 17–35 km. Additional clusters of deep LF (DLF) events exist at depths of 32–37 km in the broad low-velocity zone. The DLF and ILF events are the manifestations of magma movement near the Moho discontinuity and in the conduit just beneath the volcano, respectively.  相似文献   

11.
Strombolian eruptions from the long-lived lava lake of Erebus volcano, Ross Island, Antarctica, generate repeating Very Long Period (VLP) signals, containing energy between approximately 30 and 5 s, that persist for several minutes and through the post-eruptive refilling of the lava lake. The initial approximately 10 s of this signal is moderately variable, particularly with respect to its initial polarity, while the following VLP coda has been observed to be stable since the earliest VLP observations were made (1996). To estimate forces and force couples consistent with the Erebus VLP signature, we perform moment tensor inversions for point sources using high signal-to-noise data stacks from the six-station, 18-component broadband seismographic network and Green's function forward calculations that incorporate topography. We infer a shallow (approximate depth of less than 400 m below the lava lake surface) source centroid that underlies the center to the northwestern rim of the main crater, east and north of the lava lake. Integrated Mii functions over the predominant (180 s) signal duration of VLP events show that the net scalar moments for these events are on the order of 4 × 1013 N m (corresponding to a moment magnitude mw ≈ 3) for typical sized VLP events. Moment rate tensors which characterize force couple components are dominated (85–97% of variance) by dilatational components. Approximately 25% of the data variance is attributable to single forces that are attributable to oscillatory reaction forces caused by fluid transport, however, the relative contributions of vertical forces and couples with this sparse network is poorly resolved for these shallow sources. The generally high degree of repeatability in the VLP signal across thousands of eruptions over the past decade indicates that the response of the conduit system to gas slug ascent and subsequent gravitational disequilibrium is stable, consistent with the generally unchanging surface manifestation of the convecting lava lake system, and arguing for a thermally and dynamically stable conduit system beneath the lava lake.  相似文献   

12.
We present results from a detailed analysis of seismic and infrasonic data recorded over a four day period prior to the Vulcanian eruptive event at Sakurajima volcano on May 19, 1998. Nearly one hundred seismic and infrasonic events were recorded on at least one of the nine seismic–infrasonic stations located within 3 km of the crater. Four unique seismic event types are recognized based on the spectral features of seismograms, including weak seismic tremor characterized by a 5–6 Hz peak mode that later shifted to 4–5 Hz. Long-period events are characterized by a short-duration, wide spectral band signal with an emergent, high-frequency onset followed by a wave coda lasting 15–20 s and a fundamental mode of 4.2–4.4 Hz. Values of Q for long-period events range between 10 and 22 suggesting that a gas-rich fluid was involved. Explosive events are the third seismic type, characterized by a narrow spectral band signal with an impulsive high-frequency onset followed by a 20–30 second wave coda and a peak mode of 4.0–4.4 Hz. Volcano-tectonic earthquakes are the fourth seismic type. Prior to May 19, 1998, only the tremor and explosion seismic events are found to have an infrasonic component. Like seismic tremor, infrasonic tremor is typically observed as a weak background signal. Explosive infrasonic events were recorded 10–15 s after the explosive seismic events and with audible explosions prior to May 19. On May 19, high-frequency impulsive infrasonic events occurred sporadically and as swarms within hours of the eruption. These infrasonic events are observed to be coincident with swarms of long-period seismic events. Video coverage during the seismic–infrasonic experiment recorded intermittent releases of gases and ash during times when seismic and acoustic events were recorded. The sequence of seismic and infrasonic events is interpreted as representing a gas-rich fluid moving through a series of cracks and conduits beneath the active summit crater.  相似文献   

13.
The three-dimensional P-wave velocity structure beneath the Katmai group of volcanoes is determined by inversion of more than 10,000 rays from over 1000 earthquakes recorded on a local 18 station short-period network between September 1996 and May 2001. The inversion is well constrained from sea level to about 6 km below sea level and encompasses all of the Katmai volcanoes; Martin, Mageik, Trident, Griggs, Novarupta, Snowy, and Katmai caldera. The inversion reduced the average RMS travel-time error from 0.22 s for locations from the standard one-dimensional model to 0.13 s for the best three-dimensional model. The final model, from the 6th inversion step, reveals a prominent low velocity zone (3.6–5.0 km/s) centered at Katmai Pass and extending from Mageik to Trident volcanoes. The anomaly has values about 20–25% slower than velocities outboard of the region (5.0–6.5 km/s). Moderately low velocities (4.5–6.0 km/s) are observed along the volcanic axis between Martin and Katmai Caldera. Griggs volcano, located about 10 km behind (northwest of) the volcanic axis, has unremarkable velocities (5.0–5.7 km/s) compared to non-volcanic regions. The highest velocities are observed between Snowy and Griggs volcanoes (5.5–6.5 km/s). Relocated hypocenters for the best 3-D model are shifted significantly relative to the standard model with clusters of seismicity at Martin volcano shifting systematically deeper by about 1 km to depths of 0 to 4 km below sea level. Hypocenters for the Katmai Caldera are more tightly clustered, relocating beneath the 1912 scarp walls. The relocated hypocenters allow us to compare spatial frequency-size distributions (b-values) using one-dimensional and three-dimensional models. We find that the distribution of b is significantly changed for Martin volcano, which was characterized by variable values (0.8 < b < 2.0) with standard locations and more uniform values (0.8 < b < 1.2) after relocation. Other seismic clusters at Mageik (1.2 < b < 2.2), Trident (0.5 < b < 1.5) and Katmai Caldera (0.8 < b < 1.8) had stable b-values indicating the robustness of the observations. The strong high b-value region at Mageik volcano is mainly associated with an earthquake swarm in October, 1996 that possibly indicates a shallow intrusion or influx of gas. The new velocity and spatial b-value results, in conjunction with prior gravity (Bouguer anomalies up to − 40 mgal) and interferometry (several cm uplift) data, provide strong evidence in favor of partially molten rock at shallow depths beneath the Mageik–Katmai–Novarupta region. Moderately low velocities beneath Martin and Katmai suggest that old, mostly solidified intrusions exist beneath these volcanoes. Higher relative velocities beneath the Griggs and Snowy vents suggest that no magma is resident in the shallow crust beneath these volcanoes.  相似文献   

14.
A significant number of volcano-tectonic (VT) earthquake swarms, some of which are accompanied by ground deformation and/or volcanic gas emissions, do not culminate in an eruption. These swarms are often thought to represent stalled intrusions of magma into the mid- or shallow-level crust. Real-time assessment of the likelihood that a VT swarm will culminate in an eruption is one of the key challenges of volcano monitoring, and retrospective analysis of non-eruptive swarms provides an important framework for future assessments. Here we explore models for a non-eruptive VT earthquake swarm located beneath Iliamna Volcano, Alaska, in May 1996–June 1997 through calculation and inversion of fault-plane solutions for swarm and background periods, and through Coulomb stress modeling of faulting types and hypocenter locations observed during the swarm. Through a comparison of models of deep and shallow intrusions to swarm observations, we aim to test the hypothesis that the 1996–97 swarm represented a shallow intrusion, or “failed” eruption. Observations of the 1996–97 swarm are found to be consistent with several scenarios including both shallow and deep intrusion, most likely involving a relatively small volume of intruded magma and/or a low degree of magma pressurization corresponding to a relatively low likelihood of eruption.  相似文献   

15.
During the 2000 activity of Miyake-jima volcano, Japan, we detected long period seismic signals with initial pulse widths of 1-2 s, accompanied by infrasonic pulses with almost the same pulse widths. The seismic signals were observed from 13 July 2000, a day before the second summit eruption. The occurrences of the seismic signals were intermittent with a gradual increase in their magnitudes and numbers building toward a significant explosive eruption on 18 August. After the eruption, the seismic and infrasonic events ceased. The results of a waveform inversion show that the initial motions were excited by an isotropic inflation source beneath the south edge of the caldera at a depth of 1.4 km. On the other hand, the sources of the infrasonic pulses were located in the summit caldera area. The times at which the infrasonic pulses were emitted at the surface were delayed by about 3 s from the origin times of the seismic events. It is suggested that small isotropic inflations excited seismic waves in the crust and simultaneously caused acoustic waves that traveled in the conduit and produced infrasonic pulses at the crater bottom. Considering the observed time differences and gas temperatures emitted from the vent, the conduit should have been filled with vapor mixed with SO2 gas and volcanic ash. The change of the time differences between the seismic and infrasonic signals suggests that the seismic source became shallower within half a day before the August 18 explosive eruption. We interpret the source process as a fragmentation process of magma in which gas bubbles burst and quickly released part of the pressure that had been sustained by the tensional strength of magma.  相似文献   

16.
A swarm of ≈ 9500 hybrid earthquakes preceded the 12–13 July 2003 dome collapse at Soufriere Hills Volcano, Montserrat. Most events had nearly identical waveforms and cross-correlation was applied to measure inter-event periods as well as phase arrival times to determine accurate relative location. Hypocenter depths were shallow (< 3 km), and relative locations were confined to a radius of < 150 m. This small source volume is consistent with the observed waveform similarity. Changes in inter-event periods and energy release, measured from the seismic records, showed that the volcano evolved through several energetic states, possibly linked to cyclic magma movement. Shorter inter-event periods were linked to higher energy release rates and possibly reflect increased pressurization during periods of low extrusion rates.  相似文献   

17.
The Krafla rifting episode, which occurred in North Iceland in 1975–1984, was followed by inflation of a shallow magma chamber until 1989. At that time, gradual subsidence began above the magma chamber and has continued to the present at a declining rate. Pressure decrease in a shallow magma chamber is not the only source of deformation at Krafla, as other deformation processes are driven by exploitation of two geothermal fields, together with plate spreading. In addition, deep-seated magma accumulation appears to take place, with its centre ∼ 10 km north of the Krafla caldera. The relative strength of these sources has varied with time. New results from a levelling survey and GPS measurements in 2005 allow an updated view on the deformation field. Deformation rates spanning 2000–2005 are the lowest recorded in the 30-year history of geodetic studies at the volcano. The inferred rate of 2000–2005 subsidence related to processes in the shallow magma chamber is less than 0.3 cm/yr whereas it was ∼ 5 cm/yr in 1989–1992. Currently, the highest rate of subsidence takes place in the Leirbotnar area, within the Krafla caldera, and appears to be a result of geothermal exploitation.  相似文献   

18.
The first eruptive activity at Kīlauea Volcano’s summit in 25 years began in March 2008 with the opening of a 35-m-wide vent in Halema‘uma‘u crater. The new activity has produced prominent very-long-period (VLP) signals corresponding with two new behaviors: episodic tremor bursts and small explosive events, both of which represent degassing events from the top of the lava column. Previous work has shown that VLP seismicity has long been present at Kīlauea’s summit, and is sourced approximately 1 km below Halema‘uma‘u. By integrating video observations, infrasound and seismic data, we show that the onset of the large VLP signals occurs within several seconds of the onset of the degassing events. This timing indicates that the VLP is caused by forces—sourced at or very near the lava free surface due to degassing—transmitted down the magma column and coupling to the surrounding rock at 1 km depth.  相似文献   

19.
The Anak Krakatau volcano (Indonesia) has been monitored by a multi-parametric system since 2005. A variety of signal types can be observed in the records of the seismic stations installed on the island volcano. These include volcano-induced signals such as LP, VT, and tremor-type events as well as signals not originating from the volcano such as regional tectonic earthquakes and transient noise signals. The work presented here aims at the realization of a system that automatically detects and identifies the signals in order to estimate and monitor current activity states of the volcano. An artificial neural network approach was chosen for the identification task. A set of parameters was defined, describing waveform and spectrogram properties of events detected by an amplitude-ratio-based (STA/LTA) algorithm. The parameters are fed into a neural network which is, after a training phase, able to generalize input data and identify corresponding event types. The success of the identification depends on the network architecture and training strategy. Several tests have been performed in order to determine appropriate network layout and training for the given problem. The performance of the final system is found to be well suited to get an overview of the seismic activity recorded at the volcano. The reliability of the network classifier, as well as general drawbacks of the methods used, are discussed.  相似文献   

20.
Many volcanic eruptions are shortly preceded by injection of new magma into a pre-existing, shallow (<10 km) magma chamber, causing convection and mixing between the incoming and resident magmas. These processes may trigger dyke propagation and further magma rise, inducing long-term (days to months) volcano deformation, seismic swarms, gravity anomalies, and changes in the composition of volcanic plumes and fumaroles, eventually culminating in an eruption. Although new magma injection into shallow magma chambers can lead to hazardous event, such injection is still not systematically detected and recognized. Here, we present the results of numerical simulations of magma convection and mixing in geometrically complex magmatic systems, and describe the multiparametric dynamics associated with buoyant magma injection. Our results reveal unexpected pressure trends and pressure oscillations in the Ultra-Long-Period (ULP) range of minutes, related to the generation of discrete plumes of rising magma. Very long pressure oscillation wavelengths translate into comparably ULP ground displacements with amplitudes of order 10−4–10−2 m. Thus, new magma injection into magma chambers beneath volcanoes can be revealed by ULP ground displacement measured at the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号