首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Two soil CO2 efflux surveys were carried out in September 1999 and June 2002 to study the spatial distribution of diffuse CO2 degassing and estimate the total CO2 output from Showa-Shinzan volcanic dome, Japan. Seventy-six and 81 measurements of CO2 efflux were performed in 1999 and 2002, respectively, covering most of Showa-Shinzan volcano. Soil CO2 efflux data showed a wide range of values up to 552 g m-2 d-1. Carbon isotope signatures of the soil CO2 ranged from -0.9‰ to -30.9‰, suggesting a mixing between different carbon reservoirs. Most of the study area showed CO2 efflux background values during the 1999 and 2002 surveys (B = 8.2 and 4.4 g m-2 d-1, respectively). The spatial distribution of CO2 efflux anomalies for both surveys showed a good correlation with the soil temperature, indicating a similar origin for the extensive soil degassing generated by condensation processes and fluids discharged by the fumarolic system of Showa-Shinzan. The total diffuse CO2 output of Showa-Shinzan was estimated to be about 14.0–15.6 t d-1 of CO2 for an area of 0.53 km2.  相似文献   

2.
We characterize and quantify volatile emissions at Hot Spring Basin (HSB), a large acid-sulfate region that lies just outside the northeastern edge of the 640 ka Yellowstone Caldera. Relative to other thermal areas in Yellowstone, HSB gases are rich in He and H2, and mildly enriched in CH4 and H2S. Gas compositions are consistent with boiling directly off a deep geothermal liquid at depth as it migrates toward the surface. This fluid, and the gases evolved from it, carries geochemical signatures of magmatic volatiles and water–rock reactions with multiple crustal sources, including limestones or quartz-rich sediments with low K/U (or 40?Ar/4?He). Variations in gas chemistry across the region reflect reservoir heterogeneity and variable degrees of boiling. Gas-geothermometer temperatures approach 300 °C and suggest that the reservoir feeding HSB is one of the hottest at Yellowstone. Diffuse CO2 flux in the western basin of HSB, as measured by accumulation-chamber methods, is similar in magnitude to other acid-sulfate areas of Yellowstone and is well correlated to shallow soil temperatures. The extrapolation of diffuse CO2 fluxes across all the thermal/altered area suggests that 410 ± 140 t d− 1 CO2 are emitted at HSB (vent emissions not included). Diffuse fluxes of H2S were measured in Yellowstone for the first time and likely exceed 2.4 t d− 1 at HSB. Comparing estimates of the total estimated diffuse H2S emission to the amount of sulfur as SO42− in streams indicates ~ 50% of the original H2S in the gas emission is lost into shallow groundwater, precipitated as native sulfur, or vented through fumaroles. We estimate the heat output of HSB as ~ 140–370 MW using CO2 as a tracer for steam condensate, but not including the contribution from fumaroles and hydrothermal vents. Overall, the diffuse heat and volatile fluxes of HSB are as great as some active volcanoes, but they are a small fraction (1–3% for CO2, 2–8% for heat) of that estimated for the entire Yellowstone system.  相似文献   

3.
In the summer of 2005, continuous surface water measurements of fugacity of CO2 (fCO2sw), salinity and temperature were performed onboard the IB Oden along the Northwest Passage from Cape Farwell (South Greenland) to the Chukchi Sea. The aim was to investigate the importance of sea ice and river runoff on the spatial variability of fCO2 and the sea–air CO2 fluxes in the Arctic Ocean. Additional data was obtained from measurements of total alkalinity (AT) by discrete surface water and water column sampling in the Canadian Arctic Archipelago (CAA), on the Mackenzie shelf, and in the Bering Strait. The linear relationship between AT and salinity was used to evaluate and calculate the relative fractions of sea ice melt water and river runoff along the cruise track. High-frequency fCO2sw data showed rapid changes, due to variable sea ice conditions, freshwater addition, physical upwelling and biological processes. The fCO2sw varied between 102 and 678 μatm. Under the sea ice in the CAA and the northern Chukchi Sea, fCO2sw were largely CO2 undersaturated of approximately 100 μatm lower than the atmospheric level. This suggested CO2 uptake by biological production and limited sea–air CO2 gas exchange due to the ice cover. In open areas, such as the relatively fresh water of the Mackenzie shelf and the Bering Strait, the fCO2sw values were close to the atmospheric CO2 level. Upwelling of saline and relatively warm water at the Cape Bathurst caused a dramatic fCO2sw increase of about 100 μatm relative to the values in the CAA. At the southern part of the Chukchi Peninsula we found the highest fCO2sw values and the water was CO2 supersaturated, likely due to upwelling. In the study area, the calculated sea–air CO2 flux varied between an oceanic CO2 sink of 140 mmol m−2 d−1 and an oceanic source of 18 mmol m−2 d−1. However, in the CAA and the northern Chukchi Sea, the sea ice cover prevented gas exchange, and the CO2 fluxes were probably negligible at this time of the year. Assuming that the water was exposed to the atmosphere by total melting and gas exchange would be the only process, the CO2 undersaturated water in the ice-covered areas will not have the time to reach the atmospheric CO2 value, before the formation of new sea ice. This study highlights the value of using high-frequency measurements to gain increased insight into the variable and complex conditions, encountered on the shelves in the Arctic Ocean.  相似文献   

4.
The 3-d coupled physical–biogeochemical model ECOHAM (version 3) was applied to the Northwest-European Shelf (47°41′–63°53′N, 15°5′W–13°55′E) for the years 1993–1996. Carbon fluxes were calculated for the years 1995 and 1996 for the inner shelf region, the North Sea (511,725 km2). This period was chosen because it corresponds to a shift from a very high winter-time North Atlantic Oscillation Index (NAOI) in 1994/1995, to an extremely low one in 1995/1996, with consequences for the North Sea physics and biogeochemistry. During the first half of 1996, the observed mean SST was about 1 °C lower than in 1995; in the southern part of the North Sea the difference was even larger (up to 3 °C). Due to a different wind regime, the normally prevailing anti-clockwise circulation, as found in winter 1995, was replaced by more complicated circulation patterns in winter 1996. Decreased precipitation over the drainage area of the continental rivers led to a reduction in the total (inorganic and organic) riverine carbon load to the North Sea from 476 Gmol C yr−1 in 1995 to 340 Gmol C yr−1 in 1996. In addition, the North Sea took up 503 Gmol C yr−1 of CO2 from the atmosphere. According to our calculations, the North Sea was a sink for atmospheric CO2, at a rate of 0.98 mol C m−2 yr−1, for both years. The North Sea is divided into two sub-systems: the shallow southern North Sea (SNS; 190,765 km2) and the deeper northern North Sea (NNS; 320,960 km2). According to our findings the SNS is a net-autotrophic system (net ecosystem production NEP>0) but released CO2 to the atmosphere: 159 Gmol C yr−1 in 1995 and 59 Gmol C yr−1 in 1996. There, the temperature-driven release of CO2 outcompetes the biological CO2 drawdown. In the NNS, where respiratory processes prevail (NEP<0), 662 and 562 Gmol C yr−1 were taken up from the atmosphere in 1995 and 1996, respectively. Stratification separates the productive, upper layer from the deeper layers of the water column where respiration/remineralization takes place. Duration and stability of the stratification are determined by the meteorological conditions, in relation to the NAO. Our results suggest that this mechanism controlling the nutrient supply to the upper layer in the northern and central North Sea has a larger impact on the carbon fluxes than changes in lateral transport due to NAOI variations. The North Sea as a whole imports organic carbon and exports inorganic carbon across the outer boundaries, and was found to be net-heterotrophic, more markedly in 1996 than in 1995.  相似文献   

5.
Climate factors play critical roles in controlling chemical weathering, while chemically weathered surface material can regulate climate change. To estimate global chemical weathering fluxes and CO2 balance, it is important to identify the characteristics and driving factors of chemical weathering and CO2 consumption on the Tibetan Plateau, especially in glaciated catchments. The analysis of the hydro-geochemical data indicated that silicate weathering in this area was inhibited by low temperatures, while carbonate weathering was promoted by the abundant clastic rocks with fresh surfaces produced by glacial action. Carbonate weathering dominated the riverine solute generation (with a contribution of 58%, 51%, and 43% at the QiangYong Glacier (QYG), the WengGuo Hydrological Station (WGHS), and the lake estuary (LE), respectively). The oxidation of pyrite contributed to 35%, 42%, and 30% of the riverine solutes, while silicate weathering contributed to 5%, 6%, and 26% of the riverine solutes at the QYG, WGHS, and LE, respectively. The alluvial deposit of easily weathering fine silicate minerals, the higher air temperature, plant density, and soil thickness at the downstream LE in comparison to upstream and midstream may lead to longer contact time between pore water and mineral materials, thus enhancing the silicate weathering. Because of the involvement of sulfuric acid produced by the oxidation of pyrite, carbonate weathering in the upstream and midstream did not consume atmospheric CO2, resulting in the high rate of carbonate weathering (73.9 and 75.6 t km−2 yr−1, respectively, in maximum) and potential net release of CO2 (with an upper constraint of 35.6 and 35.2 t km−2 yr−1, respectively) at the QYG and WGHS. The above results indicate the potential of the glaciated area of the Tibetan Plateau with pyrite deposits being a substantial natural carbon source, which deserves further investigation.  相似文献   

6.
三峡水库澎溪河消落区土-气界面CO2和CH4通量初探   总被引:1,自引:0,他引:1  
李哲  张利萍  王琳  郭劲松  高旭  方芳  蒋滔 《湖泊科学》2013,25(5):674-680
水库近岸湿地(消落区)温室气体(CO2、CH4)产汇是水库温室气体效应问题的重要组成部分.本文以三峡水库支流澎溪河的白家溪、养鹿两处大面积消落区为研究对象,于2010年6 9月水库低水位运行期间,对近岸消落区土-气界面CO2、CH4通量进行监测.白家溪消落区土-气界面CO2通量均值为12.38±2.42 mmol/(m2·h);CH4通量均值为0.0112±0.0064 mmol/(m2·h).养鹿消落区CO2、CH4通量均值分别为10.54±5.17、0.14±0.16 mmol/(m2·h).总体上,6 9月土-气界面CO2通量呈增加趋势,而CH4通量水平呈现显著的递减趋势.消落区土地出露后植被恢复,在一定程度上促进了土壤有机质含量的增加,使得6 9月CO2释放通量的总体趋势有所增加.消落区退耕后,其甲烷氧化菌的活性得到恢复,加之在土地出露曝晒过程中土壤透气性增强,使得消落区土壤对大气中CH4吸收氧化潜势增强.尽管如此,仍需进一步的研究以明晰消落区土-气界面CO2、CH4产汇的主要影响因素.  相似文献   

7.
In the Jungwon area, South Korea, two contrasting types of deep thermal groundwater (around 20–33 °C) occur together in granite. Compared to shallow groundwater and surface water, thermal groundwaters have significantly lower δ18O and δD values (> 1‰ lower in δ18O) and negligible tritium content (mostly < 2 TU), suggesting a relatively high age of these waters (at least pre-thermonuclear period) and relatively long subsurface circulation. However, the hydrochemical evolution yielded two distinct water types. CO2-rich water (PCO2 = 0.1 to 2 atm) is characterized by lower pH (5.7–6.4) and higher TDS content (up to 3300 mg/L), whereas alkaline water (PCO2 = 10− 4.1–10− 4.6 atm) has higher pH (9.1–9.5) and lower TDS (< 254 mg/L). Carbon isotope data indicate that the CO2-rich water is influenced by a local supply of deep CO2 (potentially, magmatic), which enhanced dissolution of silicate minerals in surrounding rocks and resulted in elevated concentrations of Ca2+, Na+, Mg2+, K+, HCO3 and silica under lower pH conditions. In contrast, the evolution of the alkaline water was characterized by a lesser degree of water–rock (granite) interaction under the negligible inflow of CO2. The application of chemical thermometers indicates that the alkaline water represents partially equilibrated waters coming from a geothermal reservoir with a temperature of about 40 °C, while the immature characteristics of the CO2-rich water resulted from the input of CO2 in Na–HCO3 waters and subsequent rock leaching.  相似文献   

8.
The Alban Hills volcanic region (20 km south of Rome, in the Roman Province) emitted a large volume of potassic magmas (> 280 km3) during the Quaternary. Chemical interactions between ascending magmas and the ∼ 7000–8000-m-thick sedimentary carbonate basement are documented by abundant high temperature skarn xenoliths in the eruptive products and have been frequently corroborated by geochemical surveys. In this paper we characterize the effect of carbonate assimilation on phase relationships at 200 MPa and 1150–1050 °C by experimental petrology. Calcite and dolomite addition promotes the crystallization of Ca-rich pyroxene and Mg-rich olivine respectively, and addition of both carbonates results in the desilication of the melt. Furthermore, carbonate assimilation liberates a large quantity of CO2-rich fluid. A comparison of experimental versus natural mineral, glass and bulk rock compositions suggests large variations in the degree of carbonate assimilation for the different Alban Hills eruptions. A maximum of 15 wt.% assimilation is suggested by some melt inclusion and clinopyroxene compositions; however, most of the natural data indicate assimilation of between 3 and 12 wt.% carbonate. Current high CO2 emissions in this area most likely indicate that such an assimilation process still occurs at depth. We calculate that a magma intruding into the carbonate basement with a rate of ∼ 1 – 2 · 106 m3/year, estimated by geophysical studies, and assimilating 3–12 wt.% of host rocks would release an amount of CO2 matching the current yearly emissions at the Alban Hills. Our results strongly suggest that current CO2 emissions in this region are the shallow manifestation of hot mafic magma intrusion in the carbonate-hosted reservoir at 5–6 km depth, with important consequences for the present-day volcanic hazard evaluation in this densely populated and historical area.  相似文献   

9.
We report the results of two soil CO2 efflux surveys by the closed chamber circulation method at the Puhimau thermal area in the upper East Rift Zone (ERZ) of volcano, Hawaii. The surveys were undertaken in 1996 and 1998 to constrain how much CO2 might be reaching the ERZ after degassing beneath the summit caldera and whether the Puhimau thermal area might be a significant contributor to the overall CO2 budget of . The area was revisited in 2001 to determine the effects of surface disturbance on efflux values by the collar emplacement technique utilized in the earlier surveys. Utilizing a cutoff value of 50 g m−2 d−1 for the surrounding forest background efflux, the CO2 emission rates for the anomaly at Puhimau thermal area were 27 t d−1 in 1996 and 17 t d−1 in 1998. Water vapor was removed before analysis in all cases in order to obtain CO2 values on a dry air basis and mitigate the effect of water vapor dilution on the measurements. It is clear that Puhimau thermal area is not a significant contributor to CO2 output and that most of CO2 (8500 t d−1) is degassed at the summit, leaving only magma with its remaining stored volatiles, such as SO2, for injection down the ERZ. Because of the low CO2 emission rate and the presence of a shallow water table in the upper ERZ that effectively scrubs SO2 and other acid gases, Puhimau thermal area currently does not appear to be generally well suited for observing temporal changes in degassing at .  相似文献   

10.
We observed a phytoplankton bloom downstream of a large estuarine plume induced by heavy precipitation during a cruise conducted in the Pearl River estuary and the northern South China Sea in May–June 2001. The plume delivered a significant amount of nutrients into the estuary and the adjacent coastal region, and enhanced stratification stimulating a phytoplankton bloom in the region near and offshore of Hong Kong. A several fold increase (0.2–1.8 μg Chl L−1) in biomass (Chl a) was observed during the bloom. During the bloom event, the surface water phytoplankton community structure significantly shifted from a pico-phytoplankton dominated community to one dominated by micro-phytoplankton (>20 μm). In addition to increased Chl a, we observed a significant drawdown of pCO2, biological uptake of dissolved inorganic carbon (DIC) and an associated enhancement of dissolved oxygen and pH, demonstrating enhanced photosynthesis during the bloom. During the bloom, we estimated a net DIC drawdown of 100–150 μmol kg−1 and a TAlk increase of 0–50 μmol kg−1. The mean sea–air CO2 flux at the peak of the bloom was estimated to be as high as ∼−18 mmol m−2 d−1. For an average surface water depth of 5 m, a very high apparent biological CO2 consumption rate of 70–110 mmol m−2 d−1 was estimated. This value is 2–6 times higher than the estimated air–sea exchange rate.  相似文献   

11.
The δ13c values of soil CO2 are less than that of atmosphere CO2 in the karst area. On the soil-air interface, the δ13c vlaues of soil CO2 decrease with the increase in soil depth; below the soil-air interface, the δ13c values of soil CO2 are invariable. The type of vegetation on the land surface has an influence on the δ13C values of soil CO2. Due to the activity of soil microbes, the δ13C values of soil CO2 are variable with seasonal change in ps. Isotopic tracer indicates that atmosphere CO2 has a great deal of contribution to soil CO2 at the lower parts of soil proflie. Project supported by the National Natural Science Foundation of China (Grant Nos. 49703048 and 49833002)  相似文献   

12.
The air–sea ice CO2 flux was measured over landfast sea ice in the Chukchi Sea, off Barrow, Alaska in late May 2008 with a chamber technique. The ice cover transitioned from a cold early spring to a warm late spring state, with an increase in air temperature and incipient surface melt. During melt, brine salinity and brine dissolved inorganic carbon concentration (DIC) decreased from 67.3 to 18.7 and 3977.6 to 1163.5 μmol kg−1, respectively. In contrast, the salinity and DIC of under-ice water at depths of 3 and 5 m below the ice surface remained almost constant with average values of 32.4±0.3 (standard deviation) and 2163.1±16.8 μmol kg−1, respectively. The air–sea ice CO2 flux decreased from +0.7 to −1.0 mmol m−2 day−1 (where a positive value indicates CO2 being released to the atmosphere from the ice surface). During this early to late spring transition, brought on by surface melt, sea ice shifted from a source to a sink for atmospheric CO2, with a rapid decrease of brine DIC likely associated with a decrease in the partial pressure of CO2 of brine from a supersaturated to an undersaturated state compared to the atmosphere. Formation of superimposed ice coincident with melt was not sufficient to shut down ice–air gas exchange.  相似文献   

13.
Surface partial pressure of CO2 (pCO2), temperature, salinity, nutrients, and chlorophyll a were measured in the East China Sea (ECS; 31°30′–34°00′N to 124°00′–127°30′E) in August 2003 (summer), May 2004 (spring), October 2004 (early fall), and November 2005 (fall). The warm and saline Tsushima Warm Current was observed in the eastern part of the survey area during four cruises, and relatively low salinity waters due to outflow from the Changjiang (Yangtze River) were observed over the western part of the survey area. Surface pCO2 ranged from 236 to 445 μatm in spring and summer, and from 326 to 517 μatm in fall. Large pCO2 (values >400 μatm) occurred in the western part of the study area in spring and fall, and in the eastern part in summer. A positive linear correlation existed between surface pCO2 and temperature in the eastern part of the study area, where the Tsushima Warm Current dominates; this correlation suggests that temperature is the major factor controlling surface pCO2 distribution in that area. In the western part of the study area, however, the main controlling factor is different and seasonally complex. There is large transport in this region of Changjiang Diluted Water in summer, causing low salinity and low pCO2 values. The relationship between surface pCO2 and water stability suggests that the amount of mixing and/or upwelling of CO2-rich water might be the important process controlling surface pCO2 levels during spring and fall in this shallow region. Sea–air CO2 flux, based on the application of a Wanninkhof [1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97, 7373–7382] formula for gas transfer velocity and a set of monthly averaged satellite wind data, were −5.04±1.59, −2.52±1.81, 1.71±2.87, and 0.39±0.18 mmol m−2 d−1 in spring, summer, early fall, and fall, respectively, in the northern ECS. The ocean in this study area is therefore a carbon sink in spring and summer, but a weak source or in equilibrium with the atmosphere in fall. If the winter flux value is assumed to have been the mean of autumnal and vernal values, then the northern ECS absorbs about 0.013 Pg C annually. That result suggests that the northern ECS is a net sink for atmospheric CO2, a result consistent with previous studies.  相似文献   

14.
Gas emissions from Tatun volcanic group, northern Taiwan, were studied for the first time using a multi-component gas analyser system (Multi-GAS) in combination with Giggenbach flask methods at fumaroles and mud pools at Da-you-keng (DYK) and Geng-tze-ping (GZP). CO2/S molar ratios observed at DYK ranged from 3–17, similar ratios were observed using a Multi-GAS sensor box of 8–16. SO2 at GZP was low, higher concentrations were observed at DYK where SO2/H2S ratios were close to 1 for both methods. A lower CO2/H2S ratio was measured via Giggenbach flask sampling (7.2) than was found in the plume using the gas sensor at GZP (9.2). This may reflect rapid oxidation of H2S as it mixes with background air. Gaseous elemental mercury (GEM) levels were observed in the fumarole gases using a portable mercury spectrometer. These are the first such measurements of mercury at Tatun. Mean GEM concentrations in the fumarole plumes were ∼ 20 ng m− 3, with much higher concentrations observed close to the ground (mean [GEM] 130 and 290 ng m− 3 at DYK and GZP, respectively). The GEM in the fumarole plume was elevated above concentrations in industrial/urban air in northern Taiwan and the increase in GEM observed when the instrument was lowered suggests high levels of mercury are present in the surrounding ground surface. The GEM/CO2 (10− 8) and GEM/S (10− 6) ratios observed in the fumarole gases were comparable to those observed at other low-temperature fumaroles. Combining the Hg/CO2 ratio with a previous CO2 flux value for the area, the annual GEM flux from the Tatun field is estimated as 5–50 kg/year.  相似文献   

15.
The southern Yellow Sea (SYS), located to the north of the East China Sea (ECS), was considered part of the ECS when Tsunogai et al. (1999) proposed the “continental shelf pump” (CSP) hypothesis. However, the original CSP carbon dioxide (CO2) uptake flux (2.9 mol C m−2 yr−1) appears to have been overestimated, primarily due to the differences between the SYS and the ECS in terms of their CO2 system. In this paper, we estimated air-sea CO2 fluxes in the SYS using the surface water partial pressure of CO2 (pCO2) measured in winter, spring, and summer, as well as that estimated in fall via the relationship of pCO2 with salinity, temperature, and chlorophyll a. The results indicate that overall, the entire investigated area was a net source of atmospheric CO2 during summer, winter, and fall, whereas it was a net sink during spring. Spatially, the nearshore area was almost a permanent CO2 source, while the central SYS shifted from being a CO2 sink in spring to a source in the other seasons of the year. Overall, the SYS is a net source of atmospheric CO2 on an annual scale, releasing ∼7.38 Tg C (1 Tg=1012 g) to the atmosphere annually. Thus, the updated CO2 uptake flux in the combined SYS and ECS is reduced to ∼0.86 mol C m−2 yr−1. If this value is extrapolated globally following Tsunogai et al. (1999), the global continental shelf would be a sink of ∼0.29 Pg C yr−1, instead of 1 Pg C yr−1 (1 Pg=1015 g).The SYS as a net annual source of atmospheric CO2 is in sharp contrast to most mid- and high-latitude continental shelves, which are CO2 sinks. We argue that unlike the ECS and the North Sea where carbon on the shelf could be exported to the open ocean, the SYS lacks the physical conditions required by the CSP to transport carbon off the shelf effectively. The global validity of the CSP theory is thus questionable.  相似文献   

16.
The CO2 degassing from lakes on Pico Island (Azores archipelago) were characterized in order to estimate the total diffuse CO2 output and identify the possible sources of CO2. Two surveys have been made in each lake (Capitão, Caiado, Rosada, Peixinho, Paúl and Seca), in the winter and summer periods. These water bodies show small surface areas and are rather shallow, with depths ranging from 1.8 to 8.6 m. Water samples are cold, both in winter and summer periods, not presenting variations along the water column, with acid to neutral pH (5.26–7.06). The electrical conductivity values point out to very diluted waters (mean range between 27 and 33.4 μS cm−1), of the Na-Cl type, corresponding to meteoric waters influenced by marine salts.To measure the CO2 flux at the lakes surface the modified accumulation chamber method was used, and a total of 1632 measurements were accomplished (711 in winter surveys and 921 in summer). Two statistical analysis (GSA and sGs) were applied to the results of diffuse CO2 flux measurements, showing that the CO2 flux values measured in theses lakes are relatively low (0.60–20.47 g m−2 d−1), what seems to indicate a single source for CO2 (biogenic source), also suggested by the water δ13C isotopic signature.CO2 emissions range between 0.04 t d−1 (Rosada_1) and 0.25 t d−1 (Caiado_1) during the winter surveys, being in general similar to the values recorded during the summer surveys that vary between 0.03 t d−1 (Peixinho_2 and Seca_1) and 0.30 t d−1 (Caiado_2). Taken into account the surface area of the lakes, the highest values were estimated for both surveys made in Seca Lake (˜13 t km−2 d−1). The occurrence of a dense macrophyte mass in a few of the studied lakes, such as Caiado and Seca, seems to enhance the CO2 flux from these water bodies.  相似文献   

17.
El Chichón crater lake appeared immediately after the 1982 catastrophic eruption in a newly formed, 1-km wide, explosive crater. During the first 2 years after the eruption the lake transformed from hot and ultra-acidic caused by dissolution of magmatic gases, to a warm and less acidic lake due to a rapid “magmatic-to-hydrothermal transition” — input of hydrothermal fluids and oxidation of H2S to sulfate. Chemical composition of the lake water and other thermal fluids discharging in the crater, stable isotope composition (δD and δ18O) of lake water, gas condensates and thermal waters collected in 1995–2006 were used for the mass-balance calculations (Cl, SO4 and isotopic composition) of the thermal flux from the crater floor. The calculated fluxes of thermal fluid by different mass-balance approaches become of the same order of magnitude as those derived from the energy-budget model if values of 1.9 and 2 mmol/mol are taken for the catchment coefficient and the average H2S concentration in the hydrothermal vapors, respectively. The total heat power from the crater is estimated to be between 35 and 60 MW and the CO2 flux is not higher than 150 t/day or ~ 200 gm− 2 day− 1.  相似文献   

18.
We report the first detailed study of spatial variations on the diffuse emission of carbon dioxide (CO2) and hydrogen sulfide (H2S) from Hengill volcanic system, Iceland. Soil CO2 and H2S efflux measurements were performed at 752 sampling sites and ranged from nondetectable to 17,666 and 722?g?m?2?day?1, respectively. The soil temperature was measured at each sampling site and used to evaluate the heat flow. The chemical composition of soil gases sampled at selected sampling sites during this study shows they result from a mixing process between deep volcanic/hydrothermal component and air. Most of the diffuse CO2 degassing is observed close to areas where active thermal manifestations occur, northeast flank of the Hengill central volcano close to the Nesjavellir power plant, suggesting a diffuse degassing structure with a SSW?CNNE trend, overlapping main fissure zone and indicating a structural control of the degassing process. On the other hand, H2S efflux values are in general very low or negligible along the study area, except those observed at the northeast flank of the Hengill central volcano, where anomalously high CO2 efflux and soil temperatures were also measured. The total diffuse CO2 emission estimated for this volcanic system was about 1,526?±?160?t?day?1 of which 453?t?day?1 (29.7?%) are of volcanic/hydrothermal origin. To calculate the steam discharge associated with the volcanic/hydrothermal CO2 output, we used the average H2O/CO2 mass ratio from 12 fumarole samples equal to 88.6 (range, 9.4?C240.2) as a representative value of the H2O/CO2 mass ratios for Hengill fumarole steam. The resulting estimate of the steam flow associated with the gas flux is equal to 40,154?t?day?1. The condensation of this steam results in thermal energy release for Helgill volcanic system of 1.07?×?1014?J?day?1 or to a total heat flow of 1,237?MWt.  相似文献   

19.
《Continental Shelf Research》2007,27(10-11):1584-1599
Historic data from the Russian-American Hydrochemical Atlas of Arctic Ocean together with data from the TRANSDRIFT II 1994 and TUNDRA 1994 cruises have been used to assess the spatial and inter-annual variability of carbon and nutrient fluxes, as well as air–sea CO2 exchange in the Laptev and western East Siberian Seas during the summer season. Budget computations using summer data of dissolved inorganic phosphate (DIP), dissolved inorganic nitrogen (DIN) and dissolved inorganic carbon (DIC) gives that the Laptev Sea shelf is a net sink of DIP and DIN of 2.5×106, 23.2×106 mol d−1, respectively, while it is a net source of DIC (excluding air–sea exchange) of 1249×106 mol d−1. In the East Siberian Seas the budget computations give 0.5×106, −11.4×106 and −173×106 mol d−1 (minus being a sink) for DIP, DIN, and DIC, respectively. In summers, the Laptev Sea Shelf is net autotrophic while the East-Siberian Sea Shelf is net heterotrophic, and both systems are weak net denitrifying. The Laptev Sea Shelf takes up 2.1 mmol CO2 m−2 d−1 from atmosphere, whereas the western part of the East-Siberian Sea Shelf loose 0.3 mmol CO2 m−2 d−1 to the atmosphere. The variability of DIP, DIN and DIC fluxes during summer in the different regions of the Laptev and East Siberian Seas depends on bottom topography, river runoff, exchange with surrounding seas and wind field.  相似文献   

20.
Hydroelectric reservoirs generate energy without significant combustion of fossil fuels. However, these systems can, potentially, emit greenhouse gases (GHG’s) at a rate which may be significant at the global scale, and, possible, co-equal, per kilowatt-hour, to that from conventional coal or oil-fired systems. Although much of the new construction of hydroelectric reservoirs is in the tropics, most of the data on GHG emissions comes from temperate regions. Further, much of the existing data on reservoir gas emissions comes from single sites, usually near the terminal dams. Large tropical reservoirs often involve the impoundments of river systems with complex morphology which in turn can cause spatial heterogeneity in gas flux. We evaluated spatial and seasonal variability in CO2 concentrations and gas flux for five large (50–1,400 km2) reservoirs in the Cerrado region of Brazil. Most of data set (87% of all measurements) showed CO2 supersaturation and net efflux to the atmosphere. There was as much or more variation in pCO2 over space and among seasons. The large studied reservoirs showed different zones in terms of CO2 emission because those fluxes are dependent on flooded biomass, watershed input of organic matter and dam operation regime. Here we demonstrate that the reservoirs in the Brazilian Cerrado have low rates of CO2 emissions compared to existing global comparisons. Our results suggest that ignoring the spatial variability can lead to more than 25% error in total system gas flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号