首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equilibrium and disequilibrium degassing of a volatile phase from a magma of K-phonolitic composition was investigated to assess its behavior upon ascent. Decompression experiments were conducted in Ar-pressurized externally heated pressure vessels at superliquidus temperature (1050 °C), in the pressure range 10–200 MPa using pure water as fluid phase. All experiments were equilibrated at 200 MPa and then decompressed to lower pressures with rates varying from 0.0028 to 4.8 MPa/s. Isobaric saturation experiments were performed at the same temperature and at 900–950 °C to determine the equilibrium water solubility in the pressure range 30–250 MPa. The glasses obtained from decompression experiments were analyzed for their dissolved water content, vesicularity and bubble size distribution. All decompressed samples presented a first event of bubble nucleation at the capsule–melt interface. Homogeneous bubble nucleation in the melt only occurred in fast-decompressed experiments (4.8 and 1.7 MPa/s), for ΔP ≅ 100 MPa. For these decompression rates high water over-saturations were maintained until a rapid exsolution was triggered at ΔP > 150 MPa. For slower rates (0.0028, 0.024, 0.17 MPa/s) the degassing of the melt took place by diffusive growth of the bubbles nucleating at the capsule–melt interface. This process sensibly reduced water over-saturation in the melt, preventing homogeneous nucleation to occur. For decompression rates of 0.024 and 0.17 MPa/s low water over-saturations were attained in the melt, gradually declining toward equilibrium concentrations at low pressures. A near-equilibrium degassing path was observed for a decompression rate of 0.0028 MPa/s. Experimental data combined with natural pumice textures suggest that both homogeneous and heterogeneous bubble nucleations occurred in the phonolitic magma during the AD 79 Vesuvius plinian event. Homogeneous bubble nucleation probably occurred at a depth of ∼ 3 km, in response to a fast decompression of the magma during the ascent.  相似文献   

2.
Experiments have been performed to determine the effect of deformation on degassing of bubble-bearing melts. Cylindrical specimens of phonolitic composition, initial water content of 1.5 wt.% and 2 vol.% bubbles, have been deformed in simple-shear (torsional configuration) in an internally heated Paterson-type pressure vessel at temperatures of 798–848 K, 100–180 MPa confining pressure and different final strains. Micro-structural analyses of the samples before and after deformation have been performed in two and three dimensions using optical microscopy, a nanotomography machine and synchrotron tomography. The water content of the glasses before and after deformation has been measured using Fourier Transform Infrared Spectroscopy (FTIR). In samples strained up to a total of γ ∼ 2 the bubbles record accurately the total strain, whereas at higher strains (γ ∼ 10) the bubbles become very flattened and elongate in the direction of shear. The residual water content of the glasses remains constant up to a strain of γ ∼ 2 and then decreases to about 0.2 wt.% at γ ∼ 10. Results show that strain enhances bubble coalescence and degassing even at low bubble volume-fractions. Noticeably, deformation produced a strongly water under-saturated melt. This suggests that degassing may occur at great depths in the volcanic conduit and may force the magma to become super-cooled early during ascent to the Earth’s surface potentially contributing to the genesis of obsidian.  相似文献   

3.
Bubble growth in rhyolitic melts: experimental and numerical investigation   总被引:2,自引:0,他引:2  
 Bubble growth controlled by mass transfer of water from hydrated rhyolitic melts at high pressures and temperatures was studied experimentally and simulated numerically. Rhyolitic melts were hydrated at 150 MPa, 780–850  °C to uniform water content of 5.5–5.3 wt%. The pressure was then dropped and held constant at 15–145 MPa. Upon the drop bubbles nucleated and were allowed to grow for various periods of time before final, rapid quenching of the samples. The size and number density of bubbles in the quenched glasses were recorded. Where number densities were low and run duration short, bubble sizes were in accord with the growth model of Scriven (1959) for solitary bubbles. However, most results did not fit this simple model because of interaction between neighboring bubbles. Hence, the growth model of Proussevitch et al. (1993), which accounts for finite separation between bubbles, was further developed and used to simulate bubble growth. The good agreement between experimental data, numerical simulation, and analytical solutions enables accurate and reliable examination of bubble growth from a limited volume of supersaturated melt. At modest supersaturations bubble growth in hydrated silicic melts (3–6 wt% water, viscosity 104–106 Pa·s) is diffusion controlled. Water diffusion is fast enough to maintain steady-state concentration gradient in the melt. Viscous resistance is important only at the very early stage of growth (t<1 s). Under the above conditions growth is nearly parabolic, R2=2Dtρm(C0–Cf)/ρg until the bubble approaches its final size. In melts with low water content, viscosity is higher and maintains pressure gradients in the melt. Growth may be delayed for longer times, comparable to time scales of melt ascent during eruptions. At high levels of supersaturation, advection of hydrated melt towards the growing bubble becomes significant. Our results indicate that equilibrium degassing is a good approximation for modeling vesiculation in melts with high water concentrations (C0>3 wt%) in the region above the nucleation level. When the melt accelerates and water content decreases, equilibrium can no longer be maintained between bubbles and melt. Supersaturation develops in melt pockets away from bubbles and new bubbles may nucleate. Further acceleration and increase in viscosity cause buildup of internal pressure in the bubbles and may eventually lead to fragmentation of the melt. Received: 19 June 1995 / Accepted: 27 December 1995  相似文献   

4.
This study focuses on constraining bubble nucleation and H2O exsolution processes in alkalic K-phonolite melts, using “white pumice” of the 79 AD eruption of Vesuvius as starting material. The first set of experiments consisted of H2O solubility runs at 1153 to 1250 K and pressures between 50 and 200 MPa, to constrain equilibrium water concentrations along the decompression pathways. The decompression experiments were equilibrated with H2O at 150 MPa and 1173 and 1223 K, and then decompressed at 3 to 17 MPa/s before rapid quenching. Experiments nucleated bubbles within the first 50 MPa pressure drop, producing maximum bubble number densities (NV), corrected to melt volume, of 3.8 × 1014 m− 3 at 1173 K and 4.3 × 1013 m− 3 at 1223 K. Most bubbles were not visibly attached to crystals, except for a subset attached to pyroxenes primarily in the 1173 K experiments. When compared with prior bubble nucleation studies, the reduced nucleation ΔP and relatively low NV observed indicate predominantly a heterogeneous nucleation mechanism. Melt–vapor–crystal wetting angles measured in 1173 K experiments from bubbles attached to pyroxene crystals are 36 to 69°, which are similar to those measured on titanomagnetite crystals in calc-alkaline dacite melts. The 1223 K experiments have porosities and water concentrations that largely track equilibrium, despite the rapid decompression rate. The 1173 K experiments deviate strongly from equilibrium trends in both porosity and water concentration, and slower H2O diffusion rates are likely the cause of the inhibited bubble growth. Bubble number densities from 79 AD Vesuvius natural EU2 pumice are relatively high (2 to 4 × 1015 m− 3; [Gurioli, L., Houghton, B.F., Cashman, K.V., Cioni, R., 2005. Complex changes in eruption dynamics during the 79 AD eruption of Vesuvius. Bull. Volcanol. 67: 144–159.]) when corrected to vesicularity. In comparison, corrected NV's from homogeneous and heterogeneous bubble nucleation experiments from this study and prior work are at least factor of 5 lower, indicating perhaps that the natural magmas initially nucleated bubbles in the presence of CO2. The disequilibrium H2O exsolution seen in the 1173 K experiments indicates that inhibited bubble growth could lead to delayed exsolution in the conduit in cooler K-phonolite magmas.  相似文献   

5.
The style of magma eruption depends strongly on the character of melt degassing and foaming. Depending on the kinetics of these processes the result can be either explosive or effusive volcanism. In this study the kinetics of foaming due to the internal stresses of gas expansion of two types of obsidian have been investigated in time series experiments (2 min-24 h) followed by quenching the samples. The volumetric gas-melt ratio has been estimated through the density measurements of foamed samples.The variation of gas volume (per unit or rhyolite melt volume) with time may be described by superposition of two exponentials responsible for gas generation and gas release processes respectively. An observed difference in foaming style in this study is interpreted as the result of variations in initial contents of microlites that serve as bubble nucleation centers during devolatilization of the melts. Quantitatively the values of the gas generation rate constants (k g) are more than an order of magnitude higher in microlite-rich obsidian than in microlite-free obsidian. Possible origins of differences in the degassing style of natural magmas are discussed in the light of bubble nucleation kinetics in melts during foaming. In a complementary set of experiments the mechanical response of vesicular melt to external shear stress has been determined in a concentric cylinder viscometer. The response of vesicular melt to the pulse of shear deformation depends on the volume fraction of bubbles. The obtained response function can be qualitatively described by a Burgers body model. The experimental shear stress response function for bubble-bearing melt has an overshoot due to the strain-dependent rheology of a twophase liquid with viscously deformable inclusions.  相似文献   

6.
In this study, carbon dioxide exsolution from carbonated water is directly observed under reservoir conditions (9 MPa and 45 °C). Fluorescence microscopy and image analysis are used to quantitatively characterize bubble formation, morphology, and mobility. Observations indicate the strong influence of interfacial tension and pore-geometry on bubble growth and evolution. Most of the gas exhibits little mobility during the course of depressurization and clogs water flow paths. However, a snap-off mechanism mobilizes a small portion of the trapped gas along the water flow paths. This feature contributes to the transport of the dispersed exsolved gas phase and the formation of intermittent gas flow. A new definition of critical gas saturation is proposed accordingly as the minimum saturation that snap-off starts to produce mobile bubbles. Low mobility of the water phase and CO2 phase in exsolution is explained by formation of dispersed CO2 bubbles which block water flow and lack the connectivity to create a mobile gas phase.  相似文献   

7.
Increasing amount of crystals tends to reduce the mobility of magmas and modifies its elastic characteristics (e.g. [Caricchi, L. et al., 2007. Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth and Planetary Science Letters, 264: 402–419.; Bagdassarov, N., Dingwell, D.B. and Webb, S.L., 1994. Viscoelasticity of crystal- and bubble-bearing rhyolite melts. Physics of the Earth and Planetary Interior, 83: 83–99.]). To quantify the effect of crystals on the elastic properties of magmas the propagation speed of shear and compressional waves have been measured at pressure and temperatures relevant for natural magmatic reservoirs. The measurements have been performed in aggregates at variable particle fractions (? = 0–0.7). The measurements were carried out at 200 MPa confining pressure and temperatures between 300 K and 1273 K (i.e. across the glass transition temperature (Tg) from glass to melt). The specimens were mixtures of a haplogranitic melt containing 5.25 wt.% H2O and variable amounts of sub-spherical alumina particles. Additional experiments were carried out on a sample containing both, crystals and air bubbles. The temperature derivatives of the shear (dVs/dT) and compressional wave (dVp/dT) velocities for pure glass and samples with a crystal fraction of 0.5 are different below and above the glass transition temperature. For a crystal fraction 0.7, only dVp/dT changed above the Tg. In the presence of gas bubbles, Vp and Vs decrease constantly with increasing temperature. The bubble-bearing material yields a lower bulk modulus relative to its shear modulus. The propagation velocities of compressional and shear waves increase non-linearly with increasing crystal fraction with a prominent raise in the range 0.5 < ? < 0.7. The speed variations are only marginally related to the density increase due to the presence of crystals, but are dominantly related to the achievement of a continuous crystal framework. The experimental data set presented here can be utilized to estimate the relative proportions of crystals and melt present in a magmatic reservoir, which, in turn, is one of the fundamental parameters determining the mobility of magma and, consequently, exerting a prime control on the likelihood of an eruption from a sub-surficial magma reservoir.  相似文献   

8.
Most, if not all, magmas contain gas bubbles at depth before they erupt. Those bubbles play a crucial role in eruption dynamics, by allowing magma to degas, which causes the magma to accelerate as it ascends towards the surface. There must be a limit to that acceleration, however, because gas bubbles cannot grow infinitely fast. To explore that limit, a series of experiments was undertaken to determine the maximum rate at which bubbly high-silica rhyolite can decompress. Rhyolite melt that was hydrated at 150 MPa with ~5.3 wt.% dissolved water and contained 7 to 18 vol.% bubbles can degas in equilibrium at 875°C when decompressed at rates up to 1.2 MPa s−1 from 150 to 78 MPa, and up to 1.8 MPa s−1 when decompressed further to 42 MPa. In contrast, that same rhyolite cannot degas in equilibrium at 750°C if decompressed faster than 0.015–0.025 MPa s−1. When combined with other published experiments, the maximum rate of decompression for equilibrium degassing is found to increase by a factor of ten for every 50–75°C increase in temperature. When compared to predictions from conduit flow models that assume equilibrium degassing, it is found that such models greatly over-estimate the rate at which relatively cold rhyolite can decompress, whereas that assumption is largely correct for hot rhyolite, and thus for most other magmas, all of which are less viscous than rhyolite. In addition, most bubbles that were 20–30 μm in size at high pressure were lost from the population at low pressure. That absence suggests that only relatively large vesicles seen in volcanic pumice may be relics of pre-eruptive bubbles, even if small bubbles were originally present at depth.  相似文献   

9.
Acoustic turbidity caused by the presence of gas bubbles in seafloor sediments is a common occurrence worldwide,but is as yet poorly understood. The Coastal Benthic Boundary Layer experiment in the Baltic off northern Germany was planned to better characterize the acoustic response of a bubbly sediment horizon. In this context, in situ measurements of compressional wave speed and attenuation were made over the frequency range of 5–400 kHz in gassy sediments of Eckernförde Bay. Dispersion of compressional speed data was used to determine the upper limit of the frequency of methane bubble resonance at between 20 and 25 kHz. These data, combined with bubble size distributions determined from CT scans of sediments in cores retained at ambient pressure, yield estimates of effective bubble sizes of 0.3–5.0 mm equivalent radius. The highly variable spatial distribution of bubble volume and bubble size distribution is used to reconcile the otherwise contradictory frequency-dependent speed and attenuation data with theory. At acoustic frequencies above resonance (>25 kHz) compressional speed is unaffected by bubbles and scattering from bubbles dominates attenuation. At frequencies below resonance (<1 kHz) ‘compressibility effects’ dominate, speed is much lower (250 m s-1) than bubble-free sediments, and attenuation is dominated by scattering from impedance contrasts. Between 1.5 and 25 kHz bubble resonance greatly affects speed and attenuation. Compressional speed in gassy sediments (1100–1200 m s-1) determined at 5–15 kHz is variable and higher than predicted by theory (<250 m s-1). These higher measured speeds result from two factors: speeds are an average of lower speeds in gassy sediments and higher speeds in bubble-free sediments; and the volume of smaller-sized bubbles which contribute to the lower observed speeds is much lower than total gas volume. The frequency-dependent acoustic propagation is further complicated as the mixture of bubble sizes selectively strips energy near bubble resonance frequencies (very high attenuation) allowing lower and higher frequency energy to propagate. It was also demonstrated that acoustic characterization of gassy sediments can be used to define bubble size distribution and fractional volume.  相似文献   

10.
Thermal diffusivity of rhyolite melt and rhyolite foam (70–80% porosity) has been measured using the radial heat transfer method. Cylindrical samples (length 50–55 mm, diameter 22 mm) of rhyolite melt and foam have been derived by heating samples of Little Glass Mountain obsidian. Using available data on heat capacity and density of rhyolite melt, the thermal conductivity of samples has been determined. The difference in thermal conductivity between rhyolite melt and foam at igneous temperatures ( 1000°C) is about one order of magnitude. The effect of thermal insulation of magmas due to vesiculation and foaming of the top layer is discussed in terms of the data obtained using a simple illustrative model of magma chamber convection.  相似文献   

11.
On a former waste water disposal field with water repellent sandy soil under grass vegetation we analyzed the persistency of flow patterns on a 150 m × 25 m plot by (i) continuous TDR-measurements on a 2 m × 1 m transect combined with seasonal soil moisture sampling campaigns, and (ii) a time-delayed double tracer experiment on a second 3 m × 1 m transect. Here, we applied bromide under wettable soil conditions in spring and chloride under water repellent soil conditions in autumn. At the end of the tracer experiment, after a travel time of 328 days for Br and 87 days for Cl, respectively, the transect was excavated and sampled in high spatial resolution. Tracer concentration, water content, water drop penetration times (WDPT), and soil organic matter content (SOM) of each sample were analyzed in order to characterize flow patterns. The TDR readings were used to predict the effective cross section (ECS) of subsurface flow and flow shifts over the season.During summer, when ECS is low and consecutive precipitation events occur, flow paths – once created – persist over time. However, over longer times (from autumn to autumn), the spatial arrangements of the flow paths can change completely. The Cl distribution showed typical fingering structures with high concentrations in the less water repellent flow paths. In contrast, Br was found mostly in the dry, hydrophobic areas indicating that it was transported before the soil became water repellent. Consequently, the flow patterns generated in spring and early summer differ completely from those in autumn and winter because of water repellent structures established during the vegetative period. These structures could be identified using a critical water content (θcrit) concept, considering both soil water content and SOM.As not all soil parts being active during to season, four flow categories could be identified: about 10% permanent (=stable flow paths), 45% periodic (i.e. water repellent in summer), 40% occasional (water repellent in summer and autumn), and 5% permanent water repellent.  相似文献   

12.
We examine the physics of growth of water bubbles in highly viscous melts. During the initial stages, diffusive mass transfer of water into the bubble keeps the internal pressure in the bubbles close to the initial pressure at nucleation. Growth is controlled by melt viscosity and supersaturation pressure and radial growth under constant pressure is approximately exponential. At later stages, internal pressure falls, radial growth decelerates and follows the square-root of time. At this stage it is controlled by diffusion. The time of transition between the two stages is controlled by the decompression, melt viscosity and the Peclet number of the system. The model closely fit experimental data of bubble growth in viscous melts with low water content. Close fit is also obtained for new experiments at high supersaturation, high Peclet numbers, and high, variable viscosity. Near surface, degassed, silicic melts are viscous enough, so that viscosity-controlled growth may last for very long times. Using the model, we demonstrate that bubbles which nucleate shortly before fragmentation cannot grow fast enough to be important during fragmentation. We suggest that tiny bubbles observed in melt pockets between large bubbles in pumice represent a second nucleation event shortly before or after fragmentation. The presence of such bubbles is an indicator of the conditions at fragmentation. The water content of lavas extruded at lava domes is a key factor in their evolution. Melts of low water content (<0.2 wt%) are too viscid and bubbles nucleated in them will not grow to an appreciable size. Bubbles may grow in melts with 0.4 wt% water. The internal pressure in such bubbles may be preserved for days and the energy stored in the bubbles may be important during the disintegration of dome rocks and the formation of pyroclastic flows.  相似文献   

13.
The Alban Hills volcanic region (20 km south of Rome, in the Roman Province) emitted a large volume of potassic magmas (> 280 km3) during the Quaternary. Chemical interactions between ascending magmas and the ∼ 7000–8000-m-thick sedimentary carbonate basement are documented by abundant high temperature skarn xenoliths in the eruptive products and have been frequently corroborated by geochemical surveys. In this paper we characterize the effect of carbonate assimilation on phase relationships at 200 MPa and 1150–1050 °C by experimental petrology. Calcite and dolomite addition promotes the crystallization of Ca-rich pyroxene and Mg-rich olivine respectively, and addition of both carbonates results in the desilication of the melt. Furthermore, carbonate assimilation liberates a large quantity of CO2-rich fluid. A comparison of experimental versus natural mineral, glass and bulk rock compositions suggests large variations in the degree of carbonate assimilation for the different Alban Hills eruptions. A maximum of 15 wt.% assimilation is suggested by some melt inclusion and clinopyroxene compositions; however, most of the natural data indicate assimilation of between 3 and 12 wt.% carbonate. Current high CO2 emissions in this area most likely indicate that such an assimilation process still occurs at depth. We calculate that a magma intruding into the carbonate basement with a rate of ∼ 1 – 2 · 106 m3/year, estimated by geophysical studies, and assimilating 3–12 wt.% of host rocks would release an amount of CO2 matching the current yearly emissions at the Alban Hills. Our results strongly suggest that current CO2 emissions in this region are the shallow manifestation of hot mafic magma intrusion in the carbonate-hosted reservoir at 5–6 km depth, with important consequences for the present-day volcanic hazard evaluation in this densely populated and historical area.  相似文献   

14.
Characterization of snow is critical for understanding Earth’s water and energy cycles. Maps of snow from MODIS have seen growing use in investigations of climate, hydrology, and glaciology, but the lack of rigorous validation of different snow mapping methods compromises these studies. We examine three widely used MODIS snow products: the “binary” (i.e., snow yes/no) global snow maps that were among the initial MODIS standard products; a more recent standard MODIS fractional snow product; and another fractional snow product, MODSCAG, based on spectral mixture analysis. We compare them to maps of snow obtained from Landsat ETM+ data, whose 30 m spatial resolution provides nearly 300 samples within a 500 m MODIS nadir pixel. The assessment uses 172 images spanning a range of snow and vegetation conditions, including the Colorado Rocky Mountains, the Upper Rio Grande, California’s Sierra Nevada, and the Nepal Himalaya. MOD10A1 binary and fractional fail to retrieve snow in the transitional periods during accumulation and melt while MODSCAG consistently maintains its retrieval ability during these periods. Averaged over all regions, the RMSE for MOD10A1 fractional is 0.23, whereas the MODSCAG RMSE is 0.10. MODSCAG performs the most consistently through accumulation, mid-winter and melt, with median differences ranging from −0.16 to 0.04 while differences for MOD10A1 fractional range from −0.34 to 0.35. MODSCAG maintains its performance over all land cover classes and throughout a larger range of land surface properties. Characterizing snow cover by spectral mixing is more accurate than empirical methods based on the normalized difference snow index, both for identifying where snow is and is not and for estimating the fractional snow cover within a sensor’s instantaneous field-of-view. Determining the fractional value is particularly important during spring and summer melt in mountainous terrain, where large variations in snow, vegetation and soil occur over small distances and when snow can melt rapidly.  相似文献   

15.
Between 1989 and 2001, five eruptions at Etna displayed a regular alternation between repose periods and episodes rich in gas, termed quasi-fire fountains and consisting of a series of Strombolian explosions sometimes leading to a fire fountain. This behaviour results from the coalescence of a foam layer trapped at the top of the reservoir which was periodically rebuilt prior to each episode (Vergniolle and Jaupart, J Geophys Res 95:2793–2809, 1990). Visual observations of fire fountains are combined with the foam dynamics to estimate the five degassing parameters characteristic of the degassing reservoir, i.e. the number of bubbles, gas volume fraction, bubble diameter, reservoir thickness and reservoir volume. The study of decadal cycles of eruptive patterns (Allard et al., Earth Sci Rev 78:85–114, 2006) suggests that the first eruption with fire fountains occurred in 1995 while the last one happened in 2001. The number of bubbles and the gas volume fraction increase smoothly from the beginning of the cycle (1995) to its end (2001). The increasing number of bubbles per cubic metre, from 0.61–20×105 to 0.1–3.4×109, results from cooling of the magma within the reservoir. The simultaneously decreasing bubble diameter, from 0.67–0.43 to 0.30–0.19 mm, is related to the decreasing amount of dissolved volatiles. Meanwhile, the thickness and the volume of the degassing reservoir diminish, from values typical of the magma reservoir to values characteristic of a very thin bubbly layer, marking the quasi-exhaustion of volatiles. The magma reservoir has a slender vertical shape, with a maximum thickness of 3,300–8,200 m and a radius of 240 m (Vergniolle 2008), making its detection from seismic studies difficult. Its volume, at most 0.58–1.4 km3, is in agreement with geochemical studies (0.5 km3) (Le Cloarec and Pennisi, J Volcanol Geotherm Res 108:141–155, 2001). The time evolution of both the total gas volume expelled per eruption, and the inter-eruptive gas flux results from the competition between the increasing number of bubbles and the decreasing bubble diameter. The smooth temporal evolution of the five degassing parameters also points towards bubbles being produced by a self-induced mechanism within the magma reservoir rather than by a magmatic reinjection prior to each eruption. The decadal cycles are therefore initiated by a magmatic reinjection, in agreement with a typical return time of 14–80 years (Albarède 1993). Hence, the 1995 eruption results from a fresh magma being newly emplaced while the magma from the following eruptions is progressively depleted in volatiles species until reaching a state of quasi-exhaustion in 2001. A magmatic reinjection of 0.13–0.6 km3 every few decades is sufficient to explain the expelled gas volume, including SO2. A scenario is also proposed for the alternation between gas-rich summit eruptions and gas-poor flank eruptions which are observed during decadal cycles. The scenario proposed for Etna could also be at work at Piton de la Fournaise and Erta ’Ale volcanoes.  相似文献   

16.
We investigated the distribution of Cl, F, Li, and Be in pumices, obsidians, and crystallized dome rocks at Chaitén volcano in 2008?C2009 in order to explore the behavior of these elements during explosive and effusive volcanic activity. Electron and ion microprobe analyses of matrix and inclusion glasses from pumice, obsidian, and microlite-rich dome rock indicate that Cl and other elements were lost primarily during crystallization of the rhyolitic dome after it had approached the surface. Glass in pumice and microlite-free obsidian has 888?±?121?ppm Cl, whereas residual glass in evolved microlite-rich dome rock generally retains less Cl (as low as <100?ppm). Estimated Cl losses were likely >0.7?Mt Cl, with a potential maximum of 1.8?Mt for the entire 0.8-km3 dome. Elemental variations reflect an integrated bulk distribution ratio for Cl?>?1.7 (1.7 times more Cl was degassed or incorporated into crystals than remained in the melt). Because Cl is lost dominantly as the very last H2O is degassed, and Cl is minimally (if at all) partitioned into microlites, the integrated vapor/melt distribution ratio for Cl exceeds 200 (200 times more Cl in the evolved vapor than in the melt). Cl is likely lost as HCl, which is readily partitioned into magmatic vapor at low pressure. Cl loss is accelerated by the change in the composition of the residual melt due to microlite growth. Cl loss also may be affected by open-system gas fluxing. Integrated vapor-melt distribution ratios for Li, F, and Be all exceed 1,000. On degassing, an unknown fraction of these volatiles could be immediately dissolved in rainwater.  相似文献   

17.
Cristobalite in a rhyolitic lava dome: evolution of ash hazard   总被引:1,自引:1,他引:0  
Prolonged and heavy exposure to particles of respirable, crystalline silica-rich volcanic ash could potentially cause chronic, fibrotic disease, such as silicosis, in individuals living in areas of frequent ash fall. Here, we show that the rhyolitic ash erupted from Chaitén volcano, Chile, in its dome-forming phase, contains increased levels of the silica polymorph cristobalite, compared to its initial plinian eruption. Ash erupted during the initial, explosive phase (2–5 May 2008) contained approximately 2 wt.% cristobalite, whereas ash generated after dome growth began (from 21 May 2008) contains 13–19 wt.%. The work suggests that active obsidian domes crystallise substantial quantities of cristobalite on time-scales of days to months, probably through vapour-phase crystallisation on the walls of degassing pathways, rather than through spherulitic growth in glassy obsidian. The ash is fine-grained (9.7–17.7 vol.% <4 μm in diameter, the respirable range) and the particles are mostly angular. Sparse, fibre-like particles were confirmed to be feldspar or glass.  相似文献   

18.
Four groups of thermal springs with temperatures from 50 to 80 °C are located on the S–SW–W slopes of El Chichón volcano, a composite dome-tephra edifice, which exploded in 1982 with a 1 km wide, 160 m deep crater left. Very dynamic thermal activity inside the crater (variations in chemistry and migration of pools and fumaroles, drastic changes in the crater lake volume and chemistry) contrasts with the stable behavior of the flank hot springs during the time of observations (1974–2005). All known groups of hot springs are located on the contact of the basement and volcanic edifice, and only on the W–SW–S slopes of the volcano at almost same elevations 600–650 m asl and less than 3 km of direct distance from the crater. Three groups of near-neutral (pH ≈ 6) springs at SW–S slopes have the total thermal water outflow rate higher than 300 l/s and are similar in composition. The fourth and farthest group on the western slope discharges acidic (pH ≈ 2) saline (10 g/kg of Cl) water with a much lower outflow rate (< 10 l/s).  相似文献   

19.
Many basaltic volcanoes emit a substantial amount of gas over long periods of time while erupting relatively little degassed lava, implying that gas segregation must have occurred in the magmatic system. The geometry and degree of connectivity of the plumbing system of a volcano control the movement of magma in that system and could therefore provide an important control on gas segregation in basaltic magmas. We investigate gas segregation by means of analogue experiments and analytical modelling in a simple geometry consisting of a vertical conduit connected to a horizontal intrusion. In the experiments, degassing is simulated by electrolysis, producing micrometric bubbles in viscous mixtures of water and golden syrup. The presence of exsolved bubbles induces a buoyancy-driven exchange flow between the conduit and the intrusion that leads to gas segregation. Bubbles segregate from the fluid by rising and accumulating as foam at the top of the intrusion, coupled with the accumulation of denser degassed fluid at the base of the intrusion. Steady-state influx of bubbly fluid from the conduit into the intrusion is balanced by outward flux of lighter foam and denser degassed fluid. The length and time scales of this gas segregation are controlled by the rise of bubbles in the horizontal intrusion. Comparison of the gas segregation time scale with that of the cooling and solidification of the intrusion suggests that gas segregation is more efficient in sills (intrusions in a horizontal plane with typical width:length aspect ratio 1:100) than in horizontally-propagating dykes (intrusions in a vertical plane with typical aspect ratio 1:1000), and that this process could be efficient in intermediate as well as basaltic magmas. Our investigation shows that non-vertical elements of the plumbing systems act as strong gas segregators. Gas segregation has also implications for the generation of gas-rich and gas-poor magmas at persistently active basaltic volcanoes. For low magma supply rates, very efficient gas segregation is expected, which induces episodic degassing activity that erupts relatively gas-poor magmas. For higher magma supply rates, gas segregation is expected to be less effective, which leads to stronger explosions that erupt gas-rich as well as gas-poor magmas. These general physical principles can be applied to Stromboli volcano and are shown to be consistent with independent field data. Gas segregation at Stromboli is thought likely to occur in a shallow reservoir of sill-like geometry at 3.5 km depth with exsolved gas bubbles 0.1–1 mm in diameter. Transition between eruptions of gas-poor, high crystallinity magmas and violent explosions that erupt gas-rich, low crystallinity magmas are calculated to occur at a critical magma supply rate of 0.1–1 m3 s− 1.  相似文献   

20.
Before the 1991–1992 activity, a large andesite lava dome belonging to the penultimate Pinatubo eruptive period (Buag ∼ 500 BP) formed the volcano summit. Buag porphyritic andesite contains abundant amphibole-bearing microgranular enclaves of basaltic–andesite composition. Buag enclaves have lower K2O and incompatible trace element (LREE, U, Th) contents than mafic pulses injected in the Pinatubo reservoir during the 1991–1992 eruptive cycle. This study shows that Buag andesite formed by mingling of a hot, water-poor and reduced mafic magma with cold, hydrous and oxidized dacite. Depending on their size, enclaves experienced variable re-equilibration during mixing/mingling. Re-equilibration resulted in hydration, oxidation and transfer of mobile elements (LILE, Cu) from the dacite to the mafic melts and prompted massive amphibole crystallization. In Buag enclaves, S-bearing phases (sulfides, apatite) and melt inclusions in amphibole and plagioclase record the evolution of sulfur partition among melt, crystal and fluid phases during magma cooling and oxidation. At high temperature, sulfur is partitioned between andesitic melt and sulfides (Ni-pyrrhotite). Magma cooling, oxidation and hydration resulted in exsolution of a S–Cl–H2O vapor phase at the S-solubility minimum near the sulfide–sulfate redox boundary. Primary magmatic sulfide (pyrrhotite) and xenocrystic sulfide grains (pyrite), recycled together with olivines and pyroxenes from old mafic intrusives, were replaced by Cu-rich phases (chalcopyrite, cubanite) and, partially, by Ba–Sr sulfate. Sulfides degassed and transformed into residual spongy magnetite in response to fS2 drop during final magma ascent and decompression. Our research suggests that a complete evaluation of the sulfur budget at Pinatubo must take into account the en route S assimilation from the country rocks. Moreover, this study shows that the efficiency of sulfur transfer between mafic recharges and injected magmas is controlled by the extent and rate of mingling, hydrous flushing and melt oxidation. Vigorous mixing/mingling and transformation of the magmatic recharge into a spray of small enclaves is required in order to efficiently strip their primary S-content that otherwise remains locked in the sulfides. Hydrous flushing increases the magma oxidation state of the recharges and modifies their primary volatile concentrations that cannot be recovered by the study of late-formed mineral phases and melt inclusions. Conversely, S stored in both late-formed Cu-rich sulfides and interstitial rhyolitic melt represents the pre-eruptive sulfur budget immediately available for release from mafic enclaves during their decompression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号