首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Volcanic emission rates of As, Sb, Pb, Hg, Se, Cl, and F were determined at Erebus volcano, Antarctica and White Island, New Zealand, using chemical traps. The trace metal fluxes were determined by combining the species to S ratios in the solutions with SO2 emission rates measured by correlation spectrometry at the two volcanoes. At Erebus volcano, fluxes for the metals Pb and Hg were 2.0 × 10− 4 and 8.1 × 10− 6 kg s− 11, respectively. Fluxes for Cl, F, As, Sb and Se (0.35, 0.15, 2.5 × 10− 4, 1.2 × 10− 5, and 4.5 × 10− 6 kg s− 1, respectively) agreed within error limits for values determined previously by the LiOH impregnated filter method [Zreda-Gostynska, G., Kyle, P., Finnegan, D., Prestbo, K., 1997. Volcanic gas emissions from Mount Erebus and their impact on the Antarctic environment. Journal of Geophysical Research, 102(B7): 15039–15055.], demonstrating the utility of the chemical trap method. A fall in the As/S ratio from 7 × 10− 4 in 1997/1999 to 3 × 10− 4 in 2000 at Erebus coincided with a change in the frequency and style of eruptive activity that may have been due to injection of magma into the system. At White Island, chemical trap data indicated fluxes of Cl = 0.90, F = 0.0079, Pb = 2.7 × 10− 4, Hg = 1.1 × 10− 5, As = 1.3 × 10− 4, Sb = 1.9 × 10− 5 and Se = 1.5 × 10− 5 kg s− 1. Samples collected 600 m downwind of the active crater were comparable to samples collected adjacent to the main gas vent, showing that this method can still be used at some distance from a degassing vent.  相似文献   

2.
This paper presents the results of 7 years (Aug. 1999–Oct. 2006) of SO2 gas measurements during the ongoing eruption of Tungurahua volcano, Ecuador. From 2004 onwards, the operation of scanning spectrometers has furnished high temporal resolution measurements of SO2 flux, enabling this dataset to be correlated with other datasets, including seismicity. The emission rate of SO2 during this period ranges from less than 100 to 35,000 tonnes/day (t d− 1) with a mean daily emission rate of 1458 t d− 1 and a standard deviation of ± 2026 t d− 1. Average daily emissions during inferred explosive phases are about 1.75 times greater than during passive degassing intervals. The total amount of sulfur emitted since 1999 is estimated as at least 1.91 Mt, mostly injected into the troposphere and carried westwards from the volcano. Our observations suggest that the rate of passive degassing at Tungurahua requires SO2 exsolution of an andesitic magma volume that is two orders of magnitude larger than expected for the amount of erupted magma. Two possible, and not mutually exclusive, mechanisms are considered here to explain this excess degassing: gas flow through a permeable stagnant-magma-filled conduit and gas escape from convective magma overturning in the conduit. We have found that real-time gas monitoring contributes significantly to better eruption forecasting at Tungurahua, because it has provided improved understanding of underlying physical mechanisms of magma ascent and eruption.  相似文献   

3.
Gas emissions from Erebus volcano, Antarctica, were measured by open-path Fourier transform infrared spectroscopy to understand degassing of its magmatic system. Two degassing phonolite lava lakes were present in the summit crater during observation in December 2004. We report analyses of H2O, CO2, CO, SO2, HF, HCl and OCS, (in order of molar abundance) in the plumes. Variations in the proportions of these species strongly reflect the dynamics of degassing, and sourcing of gas from different depths in the magmatic network. The highest observed ratios of CO2 and H2O are consistent with gas extracted from the melt at a depth of up to ∼ 2 km below the lava lakes. Magma degassing above this depth contributes to a higher H2O/CO2 proportion in the airborne plume. The ratio therefore reflects the balance of deeper vs. shallower contributions of volatiles and, possibly, a combination of closed- and open-system degassing. We observe a strong contrast in HF content in emissions from the two lava lakes, which we attribute to differing levels of magma ascent and/or cooling and crystallization of the magma supply. Fluxes of all gas species were determined using independent SO2 flux determinations and measured gas ratios. In the case of CO2 and water, ∼ 1 and ∼ 0.4 m3 s− 1, respectively, of parental basanite magma are required to sustain the calculated output. The discrepancy between the two figures is readily explained by sequestration of part of the magma supply at depth such that it only partially degasses its complement of water.  相似文献   

4.
Here we report measurements of the chemical composition and flux of gas emitted from the central lava lake at Erta 'Ale volcano (Ethiopia) made on 15 October 2005. We determined an average SO2 flux of ∼ 0.69 ± 0.17 kg s− 1 using zenith sky ultraviolet spectroscopy of the plume, and molar proportions of magmatic H2O, CO2, SO2, CO, HCl and HF gases to be 93.58, 3.66, 2.47, 0.06, 0.19 and 0.04%, respectively, by open-path Fourier transform infrared (FTIR) spectrometry. Together, these data imply fluxes of 7.3, 0.7, 0.008, 0.03 and 0.004 kg s− 1 for H2O, CO2, CO, HCl and HF, respectively. These are the first FTIR spectroscopic observations at Erta 'Ale, and are also some of the very few gas measurements made at the volcano since the early 1970s (Gerlach, T.M., 1980b. Investigation of volcanic gas analyses and magma outgassing from Erta 'Ale lava lake, Afar, Ethiopia. Journal of Volcanology and Geothermal Research, 7(3–4): 415–441). We identify significant increases in the proportion of H2O in the plume with respect to both CO2 and SO2 across this 30-year interval, which we attribute to the depletion of volatiles in magma that sourced effusive eruptions during the early 1970s and/or to fractional magma degassing between the two active pit craters located in the summit caldera.  相似文献   

5.
Six new 40Ar/39Ar and three cosmogenic 36Cl age determinations provide new insight into the late Quaternary eruptive history of Erebus volcano. Anorthoclase from 3 lava flows on the caldera rim have 40Ar/39Ar ages of 23 ± 12, 81 ± 3 and 172 ± 10 ka (all uncertainties 2σ). The ages confirm the presence of a second, younger, superimposed caldera near the southwestern margin of the summit plateau and show that eruptive activity has occurred in the summit region for 77 ± 13 ka longer than previously thought. Trachyte from “Ice Station” on the eastern flank is 159 ± 2 ka, similar in age to those at Bomb Peak and Aurora Cliffs. The widespread occurrences of trachyte on the eastern flank of Erebus suggest a major previously unrecognized episode of trachytic volcanism. The trachyte lavas are chemically and isotopically distinct from alkaline lavas erupted contemporaneously in the summit region < 5 km away.  相似文献   

6.
The stable, persistent, active lava lake at Erebus volcano (Ross Island, Antarctica) provides an excellent thermal target for analysis of spacecraft observations, and for testing new technology. In the austral summer of 2005 visible and infrared observations of the Erebus lava lake were obtained with sensors on three space vehicles Terra (ASTER, MODIS), Aqua (MODIS) and EO-1 (Hyperion, ALI). Contemporaneous ground-based observations were obtained with hand-held infrared cameras. This allowed a quantitative comparison of the thermal data obtained from different instruments, and of the analytical techniques used to analyze the data, both with and without the constraints imposed by ground-truth. From the thermal camera data, in December 2005 the main Erebus lava lake (Ray Lake) had an area of ≈ 820 m2. Surface colour temperatures ranged from 575 K to 1090 K, with a broad peak in the distribution from 730 K to 850 K. Total heat loss was estimated at 23.5 MW. The flux density was ≈ 29 kW m− 2. Mass flux was estimated at 64 to 93 kg s− 1. The best correlation between thermal emission and emitting area was obtained with ASTER, which has the best combination of spatial resolution and wavelength coverage, especially in the thermal infrared. The high surface temperature of the lava lake means that Hyperion data are for the most part saturated. Uncertainties, introduced by the need to remove incident sunlight cause the thermal emission from the Hyperion data to be a factor of about two greater than that measured by hand-held thermal camera. MODIS also over-estimated thermal output from the lava lake by the same factor of two because it was detecting reflected sunlight from the rest of the pixel area. The measurement of the detailed temperature distribution on the surface of an active terrestrial lava lake will allow testing of thermal emission models used to interpret remote-sensing data of volcanism on Io, where no such ground-truth exists. Although the Erebus lava lake is four orders of magnitude smaller than the lava lake at Pele on Io, the shape of the integrated thermal emission spectra are similar. Thermal emission from this style of effusive volcanism appears to be invariant. Excess thermal emission in most Pele spectra (compared to Erebus) at short wavelengths (< 3 μm) is most likely due to disruption of the surface on the lava lake by escaping volatiles.  相似文献   

7.
Mount Erebus, Antarctica, is a large (3794 m) alkaline open-conduit stratovolcano that hosts a vigorously convecting and persistently degassing lake of anorthoclase phonolite magma. The composition of the lake was investigated by analyzing glass and mineral compositions in lava bombs erupted between 1972 and 2004. Matrix glass, titanomagnetite, olivine, clinopyroxene, and fluor-apatite compositions are invariant and show that the magmatic temperature (∼ 1000°C) and oxygen fugacity (ΔlogFMQ = − 0.9) have been stable. Large temperature variations at the lake surface (~ 400–500°C) are not reflected in mineral compositions. Anorthoclase phenocrysts up to 10 cm in length feature a restricted compositional range (An10.3–22.9Ab62.8–68.1Or11.4–27.2) with complex textural and compositional zoning. Anorthoclase textures and compositions indicate crystallization occurs at low degrees of effective undercooling. We propose shallow water exsolution causes crystallization and shallow convection cycles the anorthoclase crystals through many episodes of growth resulting in their exceptional size. Minor variations in eruptive activity from 1972 to 2004 are decoupled from magma compositions. The variations probably relate to changes in conduit geometry within the volcano and/or variable input of CO2-rich volatiles into the upper-level magma chamber from deeper in the system.  相似文献   

8.
Mount Erebus, a large intraplate stratovolcano dominating Ross Island, Antarctica, hosts the world's only active phonolite lava lakes. The main manifestation of activity at Erebus volcano in December 2004 was as the presence of two convecting lava lakes within an inner crater. The long-lived Ray Lake, ~ 1400 m2 in area, was the site of up to 10 small Strombolian eruptions per day. A new but short-lived, ~ 1000–1200 m2 lake formed at Werner vent in December 2004 sourced by lava flowing from a crater formed in 1993 by a phreatic eruption. We measured the radiative heat flux from the two lakes in December 2004 using a compact infrared (IR) imaging camera. Daily thermal IR surveys from the Main Crater rim provide images of the lava lake surface temperatures and identify sites of upwelling and downwelling. The radiative heat outputs calculated for the Ray and Werner Lakes are 30–35 MW and 20 MW, respectively. We estimate that the magma flux needed to sustain the combined heat loss is ~ 250–710 kg s− 1, that the minimum volume of the magma reservoir is 2 km3, and that the radius of the conduit feeding the Ray lake is ~ 2 m.  相似文献   

9.
Dilution experiments were used to investigate the phytoplankton growth and microzooplankton grazing in the continental shelf area of northeastern South China Sea during 30 June and 7 July, 2008, occurring about a week after Typhoon Fengshen. We detected negative phytoplankton growth rates (−0.03 to −2.02 d−1) and measured grazing rates of microzooplankton on phytoplankton in size-fractionations of 20-200 μm (1.25±0.44 d−1), 3-20 μm (1.48±0.63 d−1) and <3 μm (1.02±0.42 d−1). Results showed significant correlations between phytoplankton growth and microzooplankton grazing rates, between phytoplankton and ciliate abundance, and between the dominant phytoplankton Thalassionema nitzschioides and the dominant ciliate Helicostomella longa (p<0.05). Phytoplankton decay, due to nutrient-limited conditions occurring with the fading of upwelling and spreading of freshwater plume after Typhoon Fengshen, may account for negative phytoplankton growth rates in this study. Synergism in the specific size-selective grazing of various species, including ciliates and heterotrophic dinoflagellates, may contribute to similar grazing rate on phytoplankton in different size-fractionations, at the integrated level. Interactions between phytoplankton and microzooplankton, including grazing selectivity, top-down and bottom-up control between phytoplankton and microzooplankton may contribute to these findings. Our results indicate that under conditions of negative phytoplankton growth microzooplankton grazing may reduce energy loss from the epipelagic waters by retrieving energy from the decaying phytoplankton community.  相似文献   

10.
The concentrations and sea-to-air fluxes of dissolved methane (CH4) were investigated in the North Yellow Sea during August 2006, January, April and October 2007. Dissolved CH4 concentrations showed obvious seasonal variation, with maximum values occurring in summer and lowest values occurring in winter. The saturations of dissolved CH4 in surface waters ranged from 78.7% to 1679.7% with an average of 252.4%. The estimated atmospheric CH4 fluxes using the Liss and Merlivat (LM86), and Wanninkhof formulae (W92) were (4.2±4.7), (11.6±10.3), (8.5±12.7) and (0.2±1.0), and (6.9±7.3), (14.6±22.3), (13.8±14.3) and (0.4±1.7) μmol·(m2 d)−1, respectively, for spring, summer, autumn and winter. Based on the average annual atmospheric CH4 flux and the area of the North Yellow Sea, the annual CH4 emission was estimated to be (2.4×10−2–4.2×10−2) Tg a−1, which suggests that the North Yellow Sea was a net source of atmospheric CH4.  相似文献   

11.
Volcanoes provide important contributions to atmospheric budgets of SO2 and reactive halogens, which play significant roles in atmospheric oxidative capacity and radiation. However, the global source strengths of volcanic emissions remain poorly constrained. These uncertainties are highlighted here by the first measurements of gas emission rates from Ambrym volcano, Vanuatu. Our initial airborne ultraviolet spectroscopic measurements made in January 2005 indicate fluxes of 18–270 kg s-1 of SO2, and 62–110 g s-1 of BrO, into the atmosphere, placing Ambrym amongst the largest known contemporary point sources of both these species on Earth. We also estimate high Cl and F fluxes of ~8–14 and ~27–50 kg s-1, respectively, for this period. Further observations using both airborne and spaceborne remote sensing reveal a fluctuating SO2 output between 2004 and 2008, with a surge in the first half of 2005, and underline the substantial contribution that a single passively degassing volcano can make to the atmospheric budget of sulfur and halogens.  相似文献   

12.
Low tide rainfall may represent an important but little studied process affecting sediment fluxes on intertidal mudflats. In this study, we simulated rainfall events on an intertidal mudflat (median grain size=18.4 μm) of low slope (1 in 300) then quantified effects on sediment erodibility. Treatments consisted of a high (4.1 mm min−1 for 6 min) and low (0.36 mm min−1 for 60 min) rain intensity, chosen to match naturally occurring events and experiments were conducted seasonally (May and August) to encompass variations in ambient sediment stability. Changes in bed elevation due to rainfall were estimated using marked rods and sediment erodibility parameters (mass of sediment eroded at a flow velocity of 0.3 m s−1 (ME-30, g m−2) and critical erosion velocity (Ucrit, m s−1)) were determined in annular flumes (bed area=0.17 m2). Ambient/control sediment erodibility in May (ME-30=211 g m−2, Ucrit=0.18 m s−1) was higher than in August (ME-30=30 g m−2, Ucrit=0.26 m s−1) and was correlated with changes in biological activity. In May, surface sediment was influenced by high densities of the bioturbating snail Hydrobia ulvae (1736 ind. m−2) and low biomass of the sediment stabilising microphytobenthos (5.7 μg chlorophyll a cm−2). In contrast, in August H. ulvae densities were low (52 ind. m−2) and microphytobenthic biomass higher (9.2 μg chlorophyll a cm−2). The high rain treatment caused a decrease in bed elevation of between 1.5 mm (May) and 4.4 mm (August) and significantly reduced sediment organic content and microphytobenthic biomass. Rainfall increased sediment erodibility; compared to ambient sediments ME-30 increased by a factor of 1.4× in May and 8.8× in August and caused a 10–30% decline in Ucrit. The seasonal difference in treatment effect was due to the change in ambient sediment stability. The low rain treatment in August had no effect on bed elevation, microphytobenthic biomass or sediment erodibility. In May, the same treatment caused a reduction in bed elevation (0.5 mm) and microphytobenthic biomass but counter-intuitively, a decrease in sediment erodibility (ME-30 was reduced by 40%, Ucrit increased by 5%) compared to controls. We attribute this result to removal by rainfall of easily eroded surface flocs and biogenic roughness which resulted in an underlying sediment with a smoother surface and greater resistant to erosion. Results suggest that high intensity rain events may destabilise intertidal sediments making them more susceptible to erosion by returning tidal currents and that the sediment eroded during such events may represent a considerable fraction (up to 25%) of the seasonal variation in shore elevation. The impact of natural rain events are likely to vary considerably due to variations in droplet size, intensity and duration and the interaction with ambient sediment stability.  相似文献   

13.
The metabolic balance between production and respiration in plankton communities of the Gulf of Papua was investigated in May 2004. Water samples taken at 19 stations were allocated to groups on the basis of physico-chemical characteristics. Oxygen consumption and production in flasks incubated in the dark and in the light was determined by micro-Winkler titration. Dark bottle respiration in samples influenced by the estuarine plume averaged 3.09±1.92 (SD) mmol O2 m−3 d−1 and production within surface light bottles averaged 7.63±3.36 (SD)  mmol O2 m−3 d−1. Corresponding values in stations more typical of the central Gulf of Papua were 1.68±1.30 (SD) mmol O2 m−3 d−1 and 1.08±2.25 (SD) mmol O2 m−3 d−1. Despite a shallow (<10 m) euphotic zone within the plume stations, phytoplankton production in the surface layers was sufficiently high to subsidise total water column respiration. Integrating production and respiration over the water column resulted in a calculation of net community production (NCP) of 626±504 (SD) mg C m−2 d−1, and community respiration (CR) of 712±492 mg C m−2 d−1 at the plume stations, with an average P:R ratio of 1.97. In the offshore group NCP was 157±450 (SD) mg C m−2 d−1 and CR was 1620±1576 mg C m−2 d−1. The average P:R ratio was 1.27. Three of the 7 stations allocated to the offshore group were net heterotrophic. In contrast to earlier studies in the area indicating that the Gulf of Papua waters is heterotrophic [Robertson, A.I., Dixon, P., Alongi, D.M., 1998. The influence of fluvial discharge on pelagic production in the Gulf of Papua, Northern Coral Sea. Estuarine, Coastal and Shelf Science 46, 319–331], our data indicate that in May 2004 the Gulf was in positive metabolic balance, but by only ∼120 mg C m−2 d−1. We conclude that waters of the Gulf of Papua under riverine influence are net autotrophic, but that within the central Gulf there is a fine metabolic balance alternating between autotrophy and heterotrophy.  相似文献   

14.
15.
Concentrations of lead were assessed in the sea turtle, Lepidochelys olivacea, from a nesting colony of the Eastern Pacific. Twenty-five female turtles were sampled and a total of 250 eggs were collected during the “arribada” event of the 2005-2006 season. Considering the nesting season, the maternal transfer of lead (Pb) via egg-laying, in terms of metal burden in whole body, was 0.5%. Pb concentrations (in dry weight) in blood (0.95 ± 0.18 μg g−1) and egg samples (yolk, 0.80 ± 0.10 μg g−1; albumen, 1.08 ± 0.20 μg g−1; eggshell, 1.05 ± 0.20 μg g−1) were comparable or even lower than those found in other sea turtles. The isotope ratios (206Pb/207Pb and 206Pb/208Pb) in blood (1.183 ± 0.0006 and 2.452 ± 0.0006, respectively) were comparable to that of natural Pb-bearing bedrock in Mexico (1.188 ± 0.005 and 2.455 ± 0.008, respectively). According to international norms of Pb, the health of this population and its habitats is acceptable for Pb and corresponds to basic levels of a nearly pristine environment.  相似文献   

16.
Drifting sediment traps were deployed at 9 stations in May-June (ice-covered conditions) and July-August (ice-free conditions) 2004 in the Chukchi Sea to investigate the variability in export fluxes of biogenic matter in the presence and absence of sea ice cover. Measurements of chlorophyll-a (Chl-a), particulate organic carbon (POC), particulate nitrogen (PN), phytoplankton, zooplankton fecal pellets, and the stable carbon isotope composition (δ13C) of the sinking material were performed along Barrow Canyon (BC) and a parallel shelf-to-basin transect from East Hanna Shoal (EHS) to the Canada Basin. POC export fluxes were similarly high in the presence (378±106 mg C m−2 d−1) and in the absence of ice cover (442±203 mg C m−2 d−1) at the BC stations, while fluxes were significantly higher in the absence (129±98 mg C m−2 d−1) than in the presence of ice cover (44±29 mg C m−2 d−1) at the EHS stations. The C/N ratios and δ13C values of sinking organic particles indicated that POC export fluxes on the Chukchi continental shelf were mostly composed of freshly produced labile material, except at the EHS stations under ice cover where the exported matter was mostly composed of refractory material probably advected into the EHS region. Chl-a fluxes were higher under ice cover than in ice-free water, however, relatively low daily loss rates of Chl-a and similar phytoplankton carbon fluxes in ice-covered and ice-free water suggest the retention of phytoplankton in the upper water column. An increase in fecal pellet carbon fluxes in ice-free water reflected higher grazing pressure in the absence of ice cover. Elevated daily loss rates of POC at the BC stations confirmed other indications that Barrow Canyon is an important area of carbon export to the basin and/or benthos. These results support the conclusion that there are large spatial and temporal variations in export fluxes of biogenic matter on the Chukchi continental shelf, although export fluxes may be similar in the presence and in the absence of ice cover in highly productive regions.  相似文献   

17.
The seasonal ecological response of microzooplankton in the southeastern Arabian Sea is presented. During the spring intermonsoon period, stratification and depletion of nitrate in the surface waters (nitracline was at 60 m depth) cause low integrated chlorophyll a (av. 19±11.3 mg m−2) and primary production (av. 164±91 mgC m−2 d−1). On the other hand, nutrient enrichment associated with coastal upwelling and river influx during the onset and peak summer monsoon resulted in high integrated chlorophyll a (av. 21±6 mg m−2 and av. 29±21 mg m−2, respectively) and primary production (av. 255±94 mgC m−2 d−1 and av. 335±278 mgC m−2 d−1, respectively). During all three periods, diazotropic cyanobacterium Trichodesmium erythraeum dominated in the nutrient depleted surface waters. A general increase in abundance of larger diatoms was evident in the surface waters of the inshore region during monsoon periods. The microzooplankton abundance was found to be significantly higher during the spring intermonsoon (av.241±113×103 ind m−2) as compared to onset of summer monsoon (av. 105±89×103 ind m−2) and peak summer monsoon (av.185±175×103 ind m−2). Microzooplankton community during the spring intermonsoon was numerically dominated by ciliates while heterotrophic dinoflagellate was the dominant ones during the monsoon periods. The high abundance of ciliates during the spring intermonsoon could be attributed to the stratified environmental condition prevailed in the study area which favors high abundance of smaller phytoplankton and cyanobacteria, the most preferred food of ciliates. On the other hand, the dominance of heterotrophic dinoflagellates during the monsoon periods could be linked to their ability to graze larger diatoms which were abundant during the monsoon periods. The overall results show low abundance of microzooplankton in the eastern Arabian Sea during the monsoon periods mainly due to a decline in ciliates abundance. This decline during the monsoon periods could be the result of (a) low abundance of smaller phytoplankton and (b) high stock of mesozooplankton predators (av. 245 ml 100 m−3).  相似文献   

18.
Huang L  Ma T  Li D  Liang FL  Liu RL  Li GQ 《Marine pollution bulletin》2008,56(10):1714-1718
A novel bacterium T7-2 was isolated from the oil-polluted sea-bed mud of Bohai Sea, northern China, which can degrade diesel oil at 15 °C. This bacterium was identified as a strain of Rhodococcus erythropolis according to its 16S rDNA gene. In order to enhance degradation efficiency, a five-level, three-factor central composite design was employed to optimize the nutrition supplied to artificial seawater. The results indicate that a supplement of 2.53 g (NH4)2SO4 L−1, 2.75 g Na2HPO4 L−1 and 0.01 g yeast extract L−1 to artificial seawater increases the degradation rate from 12.61% to 75% within 7 d.  相似文献   

19.
Partial pressure of CO2 in equilibrium with sample water (pCO2) for the coastal water in the Chukchi Sea was continuously observed in summer, 2008. Average daily CO2 flux calculated from the pCO2 and gas transfer coefficients ranged from −0.144 to −0.0701 g C m−2 day−1 depending on which gas transfer coefficient was used. The pCO2 before the landfast ice sheets melted appeared to be highly biologically controlled based on the following information: (1) the diurnal pattern of pCO2 was strongly correlated with Photosynthetic Photon Flux Density (PPFD); (2) high chlorophyll density was observed during periods of peak uptake; and (3) the day-to-day variation in the pCO2 strongly correlated with the presence or absence of near-shore ice sheets. The lowest pCO2 of 35 ppm together with the highest PPFD of 1362 μmol E m−2 s−1 were observed in the afternoon on June 28 in the presence of sea ice. The very low pCO2 observed in late June was likely caused by high photosynthetic rates related to high phytoplankton densities typically observed from spring to early summer near the ice edge, and by water low in salinity and CO2 released by melting sea ice early in the season.  相似文献   

20.
The continuous measurement of molecular hydrogen (H2) emissions from passively degassing volcanoes has recently been made possible using a new generation of low-cost electrochemical sensors. We have used such sensors to measure H2, along with SO2, H2O and CO2, in the gas and aerosol plume emitted from the phonolite lava lake at Erebus volcano, Antarctica. The measurements were made at the crater rim between December 2010 and January 2011. Combined with measurements of the long-term SO2 emission rate for Erebus, they indicate a characteristic H2 flux of 0.03?kg s–1 (2.8?Mg? day–1). The observed H2 content in the plume is consistent with previous estimates of redox conditions in the lava lake inferred from mineral compositions and the observed CO2/CO ratio in the gas plume (~0.9 log units below the quartz–fayalite–magnetite buffer). These measurements suggest that H2 does not combust at the surface of the lake, and that H2 is kinetically inert in the gas/aerosol plume, retaining the signature of the high-temperature chemical equilibrium reached in the lava lake. We also observe a cyclical variation in the H2/SO2 ratio with a period of ~10?min. These cycles correspond to oscillatory patterns of surface motion of the lava lake that have been interpreted as signs of a pulsatory magma supply at the top of the magmatic conduit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号