首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Generally, the intensity and magnitude of explosive volcanic activity increase in parallel with SiO2 content. Pyroclastic-flow-forming eruptions in the Colli Albani ultrapotassic volcanic district (Italy) represent the most striking exception on a global scale, with volumes on the order of tens of cubic kilometres and K-foiditic compositions (SiO2 even <42 wt.%). Here, we reconstruct the pre-eruptive scenario and event dynamics of the ~456 ka Pozzolane Rosse (PR) eruption, the largest mafic explosive event of the Colli Albani district. In particular, we focus on the driving mechanisms for the unusually explosive eruption of a low-viscosity, mafic magma. Geologic, petrographic and geochemical data with mass balance calculations, supported by experimental data for Colli Albani magma compositions, provide evidence for significant ingestion of carbonate wall rocks by the Pozzolane Rosse K-foiditic magma. Moreover, the scattered occurrence of cored bombs in Pozzolane Rosse pyroclastic-flow deposits records carbonate entrainment even at the eruptive time scale, as also tested quantitatively by thermal modelling of magma–carbonate interaction and carbonate assimilation experiments. We suggest that the addition of free CO2 from decarbonation of country rocks was the major factor controlling magma explosivity. High CO2 activity in the volatile component, coupled with magma depressurisation, produced extensive leucite crystallisation at short time scales, resulting in a dramatic increase in magma viscosity and volatile pressurisation, which was manifested a change of eruptive dynamics from early effusion to the Pozzolane Rosse's highly explosive eruption climax.  相似文献   

2.
Cook Inlet volcanoes that experienced an eruption between 1989 and 2006 had mean gas emission rates that were roughly an order of magnitude higher than at volcanoes where unrest stalled. For the six events studied, mean emission rates for eruptions were ∼13,000 t/d CO2 and 5200 t/d SO2, but only ∼1200 t/d CO2 and 500 t/d SO2 for non-eruptive events (‘failed eruptions’). Statistical analysis suggests degassing thresholds for eruption on the order of 1500 and 1000 t/d for CO2 and SO2, respectively. Emission rates greater than 4000 and 2000 t/d for CO2 and SO2, respectively, almost exclusively resulted during eruptive events (the only exception being two measurements at Fourpeaked). While this analysis could suggest that unerupted magmas have lower pre-eruptive volatile contents, we favor the explanations that either the amount of magma feeding actual eruptions is larger than that driving failed eruptions, or that magmas from failed eruptions experience less decompression such that the majority of H2O remains dissolved and thus insufficient permeability is produced to release the trapped volatile phase (or both). In the majority of unrest and eruption sequences, increases in CO2 emission relative to SO2 emission were observed early in the sequence. With time, all events converged to a common molar value of C/S between 0.5 and 2. These geochemical trends argue for roughly similar decompression histories until shallow levels are reached beneath the edifice (i.e., from 20–35 to ∼4–6 km) and perhaps roughly similar initial volatile contents in all cases. Early elevated CO2 levels that we find at these high-latitude, andesitic arc volcanoes have also been observed at mid-latitude, relatively snow-free, basaltic volcanoes such as Stromboli and Etna. Typically such patterns are attributed to injection and decompression of deep (CO2-rich) magma into a shallower chamber and open system degassing prior to eruption. Here we argue that the C/S trends probably represent tapping of vapor-saturated regions with high C/S, and then gradual degassing of remaining dissolved volatiles as the magma progresses toward the surface. At these volcanoes, however, C/S is often accentuated due to early preferential scrubbing of sulfur gases. The range of equilibrium degassing is consistent with the bulk degassing of a magma with initial CO2 and S of 0.6 and 0.2 wt.%, respectively, similar to what has been suggested for primitive Redoubt magmas.  相似文献   

3.
Intense explosive activity occurred repeatedly at Vesuvius during the nearly 1,600-year period between the two Plinian eruptions of Avellino (3.5 ka) and Pompeii (79 A.D.). By correlating stratigraphic sections from more than 40 sites around the volcano, we identify the deposits of six main eruptions (AP1-AP6) and of some minor intervening events. Several deposits can be traced up to 20 km from the vent. Their stratigraphic and dispersal features suggest the prevalence of two main contrasting eruptive styles, each involving a complex relationship between magmatic and phreatomagmatic phases. The two main eruption styles are (1) sub-Plinian to phreato-Plinian events (AP1 and AP2 members), where deposits consist of pumice and scoria fall layers alternating with fine-grained, vesiculated, accretionary lapilli-bearing ashes; and (2) mixed, violent Strombolian to Vulcanian events (AP3-AP6 members), which deposited a complex sequence of fallout, massive to thinly stratified, scoria-bearing lapilli layers and fine ash beds. Morphology and density variations of the juvenile fragments confirm the important role played by magma-water interaction in the eruptive dynamics. The mean composition of the ejected material changes with time, and shows a strong correlation with vent position and eruption style. The ranges of intensity and magnitude of these events, derived by estimations of peak column height and volume of the ejecta, are significantly smaller than the values for the better known Plinian and sub-Plinian eruptions of Vesuvius, enlarging the spectrum of the possible eruptive scenarios at Vesuvius, useful in the assessment of its potential hazard.  相似文献   

4.
A petrological study of the eruptive products of El Reventador allowed us to infer the magmatic processes related to the 2002 and 2004–05 eruptions of this andesitic stratovolcano. On November 3, 2002, El Reventador experienced a highly explosive event, which was followed by emplacement of two lava flows in November–December 2002. Silica contents range from 62 to 58 wt.% SiO2 for the November 3 pyroclastic deposits to 58–56 and 54–53 wt.% SiO2 for the successive lava flows. In November 2004 eruptive activity resumed supplying four new lava flows (56–54 wt.% SiO2) between November 2004 and August 2005.  相似文献   

5.
Forward Looking Infrared Radiometer (FLIR) cameras offer a unique view of explosive volcanism by providing an image of calibrated temperatures. In this study, 344 eruptive events at Stromboli volcano, Italy, were imaged in 2001–2004 with a FLIR camera operating at up to 30 Hz. The FLIR was effective at revealing both ash plumes and coarse ballistic scoria, and a wide range of eruption styles was recorded. Eruptions at Stromboli can generally be classified into two groups: Type 1 eruptions, which are dominated by coarse ballistic particles, and Type 2 eruptions, which consist of an optically-thick, ash-rich plume, with (Type 2a) or without (Type 2b) large numbers of ballistic particles. Furthermore, Type 2a plumes exhibited gas thrust velocities (>15 m s−1) while Type 2b plumes were limited to buoyant velocities (<15 m s−1) above the crater rim. A given vent would normally maintain a particular gross eruption style (Type 1 vs. 2) for days to weeks, indicating stability of the uppermost conduit on these timescales. Velocities at the crater rim had a range of 3–101 m s−1, with an overall mean value of 24 m s−1. Mean crater rim velocities by eruption style were: Type 1 = 34 m s−1, Type 2a = 31 m s−1, Type 2b = 7 m s−1. Eruption durations had a range of 6–41 s, with a mean of 15 s, similar among eruption styles. The ash in Type 2 eruptions originates from either backfilled material (crater wall slumping or ejecta rollback) or rheological changes in the uppermost magma column. Type 2a and 2b behaviors are shown to be a function of the overpressure of the bursting slug. In general, our imaging data support a broadening of the current paradigm for strombolian behavior, incorporating an uppermost conduit that can be more variable than is commonly considered.  相似文献   

6.
The pyroclastic deposits of the 1300 B.P. eruption of Newberry Volcano, OR, USA, contain minor amounts of obsidian (1–6 wt.%). The volatile (H2O and CO2) contents and textures of these clasts vary considerably. FTIR measurements of H2O in obsidian pyroclasts range from 0.1 to 1.5 wt.% indicating equilibration pressures ≤20 MPa. CO2 contents are low (<10 ppm) except in clasts that also contain xenolith powder that provided a local CO2 source. Obsidian clasts exhibit a range of color and textural types that changed in relative proportion as the eruption progressed. Together these data indicate that there were multiple origins of obsidian and that the dominant source changed during the eruption. Early in the eruption, obsidian was almost entirely black or grey (microlite-bearing) and probably derived from dikes or wall rock fractures filled with vanguard magma or tuffisite that, together with wall rocks, were eroded and incorporated into the eruption column as the vent widened. Later in the eruption, following a brief cessation of activity, the proportion of obsidian to wallrock lithic clasts increased and new types of obsidian dominated, types that represent remnants of a shallow conduit plug, welded fallback material from within the conduit, and sheared and degassed magma from near the conduit walls. Analysis of bubble shapes preserved within obsidian indicates that shear stresses and shear rates varied by over two orders of magnitude, with maxima of 88 kPa and 10−2.3 s−1, respectively, based on an assumed magma temperature of 850°C. Furthermore, the highest shear rates and stresses, and the shortest flow times (10–20 min), are preserved in clasts that also contain wall rock. The longest deformation times (5 and 8 h) correspond to two microlite-rich clasts, suggesting that the higher microlite content results from slower ascent rates and/or longer magma residence times at shallow levels. Differences between obsidian pyroclasts from the Newberry eruption and those of the Mono Craters may relate to the nature of the conduit feeding the two events. From this comparison, we conclude that obsidian can provide information on time scales and mechanisms of pre-fragmentation magma ascent.  相似文献   

7.
A steady-state, one-dimensional, and nonhomogeneous two-phase flow model was developed for the prediction of local flow properties in volcanic conduits. The model incorporates the effects of relative velocity between the phases and for the variable magma viscosity. The resulting set of nonlinear differential equations was solved by a stiff numerical solver and the results were verified with the results of basaltic fissure eruptions obtained by a homogeneous two-phase flow model, before applying the model to the eruptions of Mt. St. Helens and Vesuvius volcanoes. This verification, and a study of the sensitivity of several modeling parameters, proved effective in establishing the confidence in the predicted nonequilibrium results of flow distribution in the conduits when the mass flow rate is critical or maximum. The application of the model to the plinian eruptions of Mt. St. Helens on May 18, 1980, and Vesuvius in AD 79, demonstrates the sensitivity of the magma discharge rate and distributions of pressure, volumetric fraction, and velocities of phases, on the hydrous magma viscosity feeding the volcanic conduits. Larger magma viscosities produce smaller mass discharge rates (or greater conduit diameters), smaller exit pressures, larger disequilibrium between the phases, and larger difference between the local lithostatic and fluid pressures in the conduit. This large pressure difference occurs when magma fragments and may cause a rupture of the conduit wall rocks, producing a closure of the conduit and cessation of the volcanic eruption, or water pouring into the conduit from underground aquifers leading to phreatomagmatic explosions. The motion of the magma fragmentation zone along a conduit during an eruption can be caused by the varying viscosity of magma feeding the volcanic conduit and may cause intermittent phreatomagmatic explosions during the plinian phases as different underground aquifers are activated at different depths. The variation of magma viscosity during the eruptions of Mt. St. Helens in 1980 and Vesuvius in AD 79 is normally associated with the tapping of magmas from different depths of the magma chambers. This variation of viscosity, which can include different crystal and dissolved water contents, can also produce conduit wall erosion, the onset and collapse of volcanic columns above the vent, and the onset and cessation of pyroclastic flows and surges.  相似文献   

8.
 During the 1944 eruption of Vesuvius a sudden change occurred in the dynamics of the eruptive events, linked to variations in magma composition. K-phonotephritic magmas were erupted during the effusive phase and the first lava fountain, whereas the emission of strongly porphyritic K-tephrites took place during the more intense fountain. Melt inclusion compositions (major and volatile elements) highlight that the magmas feeding the eruption underwent differentiation at different pressures. The K-tephritic volatile-rich melts (up to 3 wt.% H2O, 3000 ppm CO2, and 0.55 wt.% Cl) evolved to reach K-phonotephritic compositions by crystallization of diopside and forsteritic olivine at total fluid pressure higher than 300 MPa. These magmas fed a very shallow reservoir. The low-pressure differentiation of the volatile-poor K-phonotephritic magmas (H2O<1 wt.%) involved mixing, open-system degassing, and crystallization of leucite, salite, and plagioclase. The eruption was triggered by intrusion of a volatile-rich magma batch that rose from a depth of 11–22 km into the shallow magma chamber. The first phase of the eruption represents the partial emptying of the shallow reservoir, the top of which is within the volcanic edifice. The newly arrived magma mixed with that resident in the shallow reservoir and forced the transition from the effusive to the lava fountain phase of the eruption. Received: 14 September 1998 / Accepted: 10 January 1999  相似文献   

9.
During the past 22 ka of activity at Somma–Vesuvius, catastrophic pyroclastic density currents (PDCs) have been generated repeatedly. Examples are those that destroyed the towns of Pompeii and Ercolano in AD 79, as well as Torre del Greco and several circum-Vesuvian villages in AD 1631. Using new field data and data available from the literature, we delineate the area impacted by PDCs at Somma–Vesuvius to improve the related hazard assessment. We mainly focus on the dispersal, thickness, and extent of the PDC deposits generated during seven plinian and sub-plinian eruptions, namely, the Pomici di Base, Greenish Pumice, Pomici di Mercato, Pomici di Avellino, Pompeii Pumice, AD 472 Pollena, and AD 1631 eruptions. We present maps of the total thickness of the PDC deposits for each eruption. Five out of seven eruptions dispersed PDCs radially, sometimes showing a preferred direction controlled by the position of the vent and the paleotopography. Only the PDCs from AD 1631 eruption were influenced by the presence of the Mt Somma caldera wall which stopped their advance in a northerly direction. Most PDC deposits are located downslope of the pronounced break-in slope that marks the base of the Somma–Vesuvius cone. PDCs from the Pomici di Avellino and Pompeii Pumice eruptions have the most dispersed deposits (extending more than 20 km from the inferred vent). These deposits are relatively thin, normally graded, and stratified. In contrast, thick, massive, lithic-rich deposits are only dispersed within 7 to 8 km of the vent. Isopach maps and the deposit features reveal that PDC dispersal was strongly controlled by the intensity of the eruption (in terms of magma discharge rate), the position of the vent area with respect to the Mt Somma caldera wall, and the pre-existing topography. Facies characteristics of the PDC deposits appear to correlate with dispersal; the stratified facies are consistently dispersed more widely than the massive facies.  相似文献   

10.
The lithological and compositional characteristics of eighteen different pyroclastic deposits of Campanian origin, dated between 125 cal ky BP and 22 cal ky BP, were described. The pyroclastic deposits were correlated among different outcrops mainly located on the Apennine slopes that border the southern Campanian Plain. They were grouped in two main stratigraphic and chronologic intervals of regional significance: a) between Pomici di Base (22.03 cal ky BP; Somma–Vesuvius) and Campanian Ignimbrite (39 cal ky BP; Campi Flegrei) eruptions; and b) older than Campanian Ignimbrite eruption. Three new 14C AMS datings support the proposed correlations. Six eruptions were attributed to the Pomici di Base-Campanian Ignimbrite stratigraphic interval, while twelve eruptions are older than Campanian Ignimbrite. Of the studied deposits two originated from Ischia island, five are related to Campi Flegrei, and three to Somma–Vesuvius. Two eruptions have an uncertain correlation with Somma–Vesuvius or Campi Flegrei, while six eruptions remain of uncertain source. Minimum volumes of five eruptions were assessed, ranging between 0.5 km3 and 4 km3. Two of the studied deposits were correlated with Y-3 and X-5 tephra layers, which are widely dispersed in the central Mediterranean area. The new stratigraphic and chronologic data provide an upgraded chrono-stratigraphy for the explosive activity of Neapolitan volcanoes in the period between 125 and 22 cal ky BP.  相似文献   

11.
Chemical analyses of 30 melt inclusions from Satsuma-Iwojima volcano, Japan, were carried out to investigate volatile evolution in a magma chamber beneath the volcano from about 6300 yr BP to the present. Large variations in volatile concentrations of melts were observed. (1) Water concentration of rhyolitic melts decreases with time; 3–4.6 wt.% at the time of latest caldera-forming eruption of Takeshima pyroclastic flow deposit (ca. 6300 yr BP), 3 wt.% for small pyroclastic flow (ca. 1300 yr BP) of Iwodake, post-caldera rhyolitic dome, and 0.7–1.4 wt.% for submarine lava eruption (Showa-Iwojima) in 1934. (2) Rhyolitic melts of the Takeshima and Iwodake eruptions contained CO2 of less than 40 ppm, while the Showa-Iwojima melt has higher CO2 concentration of up to 140 ppm. (3) Water and CO2 concentrations of basaltic to andesitic melt of Inamuradake, a post-caldera basaltic scoria cone, are 1.2–2.8 wt.% and ≤290 ppm, respectively.Volatile evolution in the magma chamber is interpreted as follows: (1) the rhyolitic magma at the time of the latest caldera-forming eruption (ca. 6300 yr BP) was gas-saturated due to pressure variation in the magma chamber because the large variation in water concentration of the melt was attributed to exsolution of volatile in the magma prior to the eruption. Iwodake eruption (ca. 1300 yr BP) was caused by a remnant of the caldera-forming rhyolitic magma, suggested from the similarity of major element composition between these magmas. (2) Volatile composition of the Showa-Iwojima rhyolitic melt agrees with that of magmatic gases presently discharging from a summit of Iwodake, indicating the low pressure degassing condition. (3) The degassing of the magma chamber by magma convection in a conduit of Iwodake during non-eruptive but active degassing period for longer than 800 years decreased water concentration of the rhyolitic magma. (4) Geological and petrological observations indicate that a stratified magma chamber, which consists of a lower basaltic layer and an upper rhyolitic layer, might have existed during the post-caldera stage. Addition of CO2 from the underlying basaltic magma to the upper gas-undersaturated (degassed) rhyolitic magma increased CO2 concentration of the rhyolitic magma.  相似文献   

12.
Vulcanian eruptions are common at many volcanoes around the world. Vulcanian activity occurs as either isolated sequences of eruptions or as precursors to sustained explosive events and is interpreted as clearing of shallow plugs from volcanic conduits. Breadcrust bombs characteristic of Vulcanian eruptions represent samples of different parts of these plugs and preserve information that can be used to infer parameters of pre-eruption magma ascent. The morphology and preserved volatile contents of breadcrust bombs erupted in 1999 from Guagua Pichincha volcano, Ecuador, thus allow us to constrain the physical processes responsible for Vulcanian eruption sequences of this volcano. Morphologically, breadcrust bombs differ in the thickness of glassy surface rinds and in the orientation and density of crack networks. Thick rinds fracture to create deep, widely spaced cracks that form large rectangular domains of surface crust. In contrast, thin rinds form polygonal networks of closely spaced shallow cracks. Rind thickness, in turn, is inversely correlated with matrix glass water content in the rind. Assuming that all rinds cooled at the same rate, this correlation suggests increasing bubble nucleation delay times with decreasing pre-fragmentation water content of the melt. A critical bubble nucleation threshold of 0.4–0.9 wt% water exists, below which bubble nucleation does not occur and resultant bombs are dense. At pre-fragmentation melt H2O contents of >∼0.9 wt%, only glassy rinds are dense and bomb interiors vesiculate after fragmentation. For matrix glass H2O contents of ≥1.4 wt%, rinds are thin and vesicular instead of thick and non-vesicular. A maximum measured H2O content of 3.1 wt% establishes the maximum pressure (63 MPa) and depth (2.5 km) of magma that may have been tapped during a single eruptive event. More common H2O contents of ≤1.5 wt% suggest that most eruptions involved evacuation of ≤1.5 km of the conduit. As we expect that substantial overpressures existed in the conduit prior to eruption, these depth estimates based on magmastatic pressure are maxima. Moreover, the presence of measurable CO2 (≤17 ppm) in quenched glass of highly degassed magma is inconsistent with simple models of either open- or closed-system degassing, and leads us instead to suggest re-equilibration of the melt with gas derived from a deeper magmatic source. Together, these observations suggest a model for the repeated Vulcanian eruptions that includes (1) evacuation of the shallow conduit during an individual eruption, (2) depressurization of magma remaining in the conduit accompanied by open-system degassing through permeable bubble networks, (3) rapid conduit re-filling, and (4) dome formation prior to the subsequent explosion. An important part of this process is densification of upper conduit magma to allow repressurization between explosions. At a critical overpressure, trapped pressurized gas fragments the nascent impermeable cap to repeat the process.  相似文献   

13.
The AD 79 eruption of Vesuvius is certainly one of the most investigated explosive eruptions in the world. This makes it particularly suitable for the application of numerical models since we can be quite confident about input data, and the model predictions can be compared with field-based reconstruction of the eruption dynamics. Magma ascent along the volcanic conduit and the dispersal of pyroclasts in the atmosphere were simulated. The conduit and atmospheric domain were coupled through the flow conditions computed at the conduit exit. We simulated two different peak phases of the eruption which correspond to the emplacement of the white and gray magma types that produced Plinian fallout deposits with interlayered pyroclastic flow units during the gray phase. The input data, independently constrained and representative of each of the two eruptive phases, consist of liquid magma composition, crystal and water content, mass flow rate, and pressure–temperature–depth of the magma at the conduit entrance. A parametric study was performed on the less constrained variables such as microlite content of magma, pressure at the conduit entrance, and particle size representative of the eruptive mixture. Numerical results are substantially consistent with the reconstructed eruptive dynamics. In particular, the white eruption phase is found to lead to a fully buoyant eruption plume in all cases investigated, whereas the gray phase shows a more transitional character, i.e. the simultaneous production of a buoyant convective plume and pyroclastic surges, with a significant influence of the microlite content of magma in determining the partition of pyroclast mass between convective plumes and pyroclastic flows.  相似文献   

14.
We describe the eruptive activity of the Pleistocene composite Baccano maar crater in the Sabatini Volcanic Complex (Central Italy) combining stratigraphy, grain size/componentry and rare earth element and Yttrium (REY) composition of its eruptive products with the stratigraphy and geothermal data derived from deep wells drilled on the Baccano structural high. The main lithological characteristics of the basal Baccano maar pyroclastic deposit, composed of more than 60% wt of non-thermometamorphosed lithic clasts from the sedimentary basement, show that the first eruption was magmatic-hydrothermal in nature. The lithology of the sedimentary lithic clasts indicates that the fragmentation level was at a depth of −1,000 to −1,200 m, with fragment depth verified by deep well stratigraphy. The 15% wt juvenile non-vesicular glass components suggest that magma played a minor role in powering the eruption. Assuming that the high-salinity hot hydrothermal fluids (365<T<410°C and P∼25 MPa), hosted in the highly permeable and confined aquifer below the Baccano maar are representative of those at the time of the eruption, we propose that hydrofracturing would have triggered the eruption caused by overpressure at the top of the geothermal aquifer. REY analysis performed on pyroclastic fragments and basement rocks suggest that partial dissolution of the deeper limestones (>−1,400 m) by the aggressive hydrothermal fluids enriched in acid components (HF, HCl, and H2SO4) may have contributed to increased CO2 partial pressure that helped to drive the hydrofracturing. This could have caused rapid vapour separation and pressure drop, allowing the almost simultaneous breaking of the aquifer cover and brecciation of the calcareous units down to −1,000 to −1,200 m depth. The relative abundance of calcareous lithics in the basal part of the first Baccano eruptive unit, representing about the upper 200 m of stratigraphy below the top of the Baccano structural high, reveals the descent of the piezometric surface during the eruption. Combining deep well information and maar product stratigraphy, using also REY data from maar pyroclastic fragments and the basement rocks we draw an interpretative model for the Baccano maar-forming eruption, concluding that a) magmatic-hydrothermal eruptions may originate deeper than previously thought, and b) hydrothermal fluids circulating in limestone aquifers may play an important role in triggering such eruptions.  相似文献   

15.
To investigate the relationship between volatile abundances and eruption style, we have analyzed major element and volatile (H2O, CO2, S) concentrations in olivine-hosted melt inclusions in tephra from the 2000 yr BP eruption of Xitle volcano in the central Trans-Mexican Volcanic Belt. The Xitle eruption was dominantly effusive, with fluid lava flows accounting for 95% of the total dense rock erupted material (1.1 km3). However, in addition to the initial, Strombolian, cinder cone-building phase, there was a later explosive phase that interrupted effusive activity and deposited three widespread ash fall layers. Major element compositions of olivine-hosted melt inclusions from these ash layers range from 52 to 58 wt.% SiO2, and olivine host compositions are Fo84–86. Water concentrations in the melt inclusions are variable (0.2–1.3 wt.% H2O), with an average of 0.45±0.3 (1σ) wt.% H2O. Sulfur concentrations vary from below detection (50 ppm) to 1000 ppm but are mostly ≤200 ppm and show little correlation with H2O. Only the two inclusions with the highest H2O have detectable CO2 (310–340 ppm), indicating inclusion entrapment at higher pressures (700–900 bars) than for the other inclusions (≤80 bars). The low and variable H2O and S contents of melt inclusions combined with the absence of less soluble CO2 indicates shallow-level degassing before olivine crystallization and melt inclusion formation. Olivine morphologies are consistent with the interpretation that most crystallization occurred rapidly during near-surface H2O loss. During cinder cone eruptions, the switch from initial explosive activity to effusive eruption probably occurs when the ascent velocity of magma becomes slow enough to allow near-complete degassing of magma at shallow depths within the cone as a result of buoyantly rising gas bubbles. This allows degassed lavas to flow laterally and exit near the base of the cone while gas escapes through bubbly magma in the uppermost part of the conduit just below the crater. The major element compositions of melt inclusions at Xitle show that the short-lived phase of renewed explosive activity was triggered by a magma recharge event, which could have increased overpressure in the storage reservoir beneath Xitle, leading to increased ascent velocities and decreased time available for degassing during ascent.  相似文献   

16.
Large silicic explosive eruptions are the most catastrophic volcanic events. Yet, the intratelluric mechanisms underlying are not fully understood. Here we report a field and laboratory study of the Kos Plateau Tuff (KPT, 161 ka, Aegean Volcanic Arc), which provides an excellent geological example of conduit processes that control magma vesiculation and fragmentation during intermediate- to large-scale caldera-forming eruptions. A prominent feature of the KPT is the occurrence of quite unusual platy-shaped tube pumice clasts in pyroclastic fall and current deposits from the early eruption phases preceding caldera collapse. On macroscopic and SEM observations, flat clast faces are elongated parallel to tube vesicles, while transverse surfaces often occur at ~ 45° to vesicle elongation. This peculiar pumice texture provides evidence of high shear stresses related to strong velocity gradients normal to conduit walls, which induced vesiculation and fragmentation of the ascending magma. Either an increasing mass discharge rate without adequate enlargement of a narrow central feeder conduit or a developing fissure-like feeder system related to incipient caldera collapse provided suitable conditions for the generation of plate tube pumice within magma volumes under high shear during the pre-climactic KPT eruption phases. This mechanism implies that the closer to the conduit walls (where the stronger are the velocity gradients) the larger was the proportion of plate vs. conventional (lensoid) juvenile fragments in the ascending gas–pyroclast mixture. Consequently, plate pumice clasts were mainly entrained in the outer portions of the jet and convecting regions of a sustained, Plinian-type, eruption column, as well as in occasional lateral blast currents generated at the vent. As a whole, plate pumice clasts in the peripheral portions of the column were transported at lower altitudes and deposited by fallout or partial collapse closer to the vent relative to lensoid ones that dominated in the inner column portions. The plate tube pumice proportion decreased abruptly up to disappearance during the emplacement of the main pyroclastic currents and lithic-rich breccias related to extensive caldera collapse at the eruption climax, as a consequence of an overall widening of the magma feeder system through the opening of multiple conduits and eruptive vents, along with fissure erosion, concomitant to the disruption of the collapsing block.  相似文献   

17.
 In situ measurement of volcanic eruption velocities is one of the great challenges left in geophysical volcanology. In this paper we report on a new radar Doppler technique for monitoring volcanic eruption velocities. In comparison with techniques employed previously (e.g., photographic methods or acoustic Doppler measurements), this method allows continuous recordings of volcanic eruptions even during poor visibility. Also, radar Doppler instruments are usually light weight and energy efficient, which makes them superior to other Doppler techniques based on laser light or sound. The proposed new technique was successfully tested at Stromboli Volcano in late 1996 during a period of low activity. The recorded data allow a clear distinction between particles rising from the vent and particles falling back towards the vent. The mean eruption velocity was approximately 10 m/s. Most of the eruptions recorded by radar were correlated to seismic recordings. The correlation between the magnitude of the volcanic shocks and the eruption force index defined in the paper may provide new insights into magma transport in the conduit. Received: 15 May 1998 / Accepted: 15 December 1998  相似文献   

18.
A simple semi-analytical model for ash-fall deposit was applied to reconstruct the tephra deposits of the sub-Plinian 472 AD eruption of Vesuvius, Italy, which is of the scale of the reference eruptive scenario for the emergency planning, at Vesuvius. Applying a novel least-squares method, the bulk grain-size distribution, the total mass, and the eruption column height were obtained by fitting the computed ground load and granulometries with the observed ones. The analysis of the effect of three different weighting factors in the minimization procedure was also performed. Results showed that the statistical weighting factor produced the minimum bias. The best correlation between calculated and measured deposit was found, even though the quantity of the input data was not very high, as it commonly occurs for several ancient eruptions. Model results were also in agreement with estimations provided by other independent methods.  相似文献   

19.
20.
The 22 km3 (DRE) 1.8 ka Taupo eruption ejected chemically uniform rhyolite in a wide range of eruptive styles and intensities. The 7 eruptive units include the ‘type examples’ of phreatoplinian (units 3 and 4) and ultraplinian fall (unit 5) deposits, and low-aspect-ratio ignimbrite (unit 6). Contrasts in bulk vesicularity, vesicle (and microlite) number densities and the size distributions of bubbles (and crystals) in the Taupo ejecta can be linked to the influence of shallow conduit processes on volatile exsolution and gas escape, before and during eruption, rather than changes in pre-eruptive chemistry. Existing work has modeled the individual phases of this complex eruption but not fully explained the abrupt shifts in style/intensity that occur between phases. We link these rapid transitions to changes in vent position, which permitted contrasts in storage, conduit geometry, and magma ascent history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号