首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
汉诺坝玄武岩中地幔岩捕掳体REE和Sr,Nd同位素地球化学   总被引:20,自引:3,他引:20  
刘丛强  解广轰 《岩石学报》1996,12(3):382-389
本文报道汉诺坝玄武岩中地幔岩捕掳体的REE丰度和Sr、Nd同位素组成。不同岩石类型的REE配分模式和同位素组成反映地幔部分熔融程度和交代作用过程。二辉橄榄岩亏损轻稀土,是原始地幔经不同程度部分熔融的残留体。方辉橄榄岩具U型REE配分模式,是强烈亏损的地幔岩被熔体非化学平衡交代的结果。二辉岩脉状体富轻、中稀土,它同与脉状体接触的二辉橄榄岩可达化学平衡或近于化学平衡,而二辉岩脉状体的形成与玄武岩岩浆无成因关系。据对二辉岩脉状体和不含脉状体橄榄岩的Sm-Nd同位素定年,这种脉状体形成于300Ma左右。  相似文献   

2.
大兴安岭南段晚中生代双峰式火山作用   总被引:52,自引:24,他引:52  
郭锋  范蔚茗等 《岩石学报》2001,17(1):161-168
大兴安岭南段晚中生代克头鄂博组山岩表现出双峰式特征,主要由玄武质安山岩、英安岩和流纹岩组成。基性火山岩属于代钾拉斑系列,轻微富集LREE,Eu异常不明显(Eu/Eu=0.99-1.04)和HREE无明显分馏的特征(Dy/YbcN=1.030-1.089);富集大离子亲石元素(LILE)而亏损高场强元素(HFSE),尤其是强烈亏损Nb,Ta。英安岩和流纹岩为钙碱性系列,在REE配分模式上为LREE富集型,其中英安岩为Eu弱负异常(Eu/Eu=0.81-1.01),流纹岩的Eu负异常明显(Eu^*/Eu=0.65-0.76);在微量元素蛛网图上,英安岩类似于基性火山岩,流纹岩除了具LILE富集和HFSE亏损特征外,还显示出Sr,P,Ti等元素的强烈亏损,可能与岩浆演化过程中斜长石、磷灰石的分离结晶作用相关。晚中生代双峰式火山岩分离结晶的结果。流纹岩表现出较高的La/Sm比值和很高的K/P、K/Ti比值,其成因可能与地壳混染作用或与大陆中、下地壳重熔作用有关。结合区域晚中生代盆岭构造格局特征、大兴安岭南段晚中生代双峰式火山岩形成于造山后阶段,是岩石圈快速伸展体制下导致受早期流体交代的岩石圈地幔发生减压部分熔融作用的产物。  相似文献   

3.
The late Archaean volcanic rocks of the Rwamagaza area in the Sukumaland Greenstone Belt consists of basalts and basaltic andesites associated with volumetrically minor rhyodacites and rhyolites. Most basalts and basaltic andesites yield nearly flat patterns (La/SmCN = 0.89–1.34) indicating derivation by partial melting of the mantle at relatively low pressure outside the garnet stability field. On primitive mantle normalized trace element diagrams, the basalts and basaltic andesites can be subdivided into two groups. The first group is characterised by moderately negative Nb anomalies (Nb/Lapm = 0.51–0.73, mean = 0.61 ± 0.08) with slight enrichment of LREE relative to both Th and HREE. The second group is characterised by nearly flat patterns with no Nb anomalies (Nb/Lapm = 0.77 ± 0.39). The observed Nb and Th anomalies in the Rwamagaza basalts and basaltic andesites, cannot be explained by alteration, crustal contamination or melt–solid equilibria. Rather, the anomalies are interpreted, on the basis of Nb–Th–La–Ce systematics, as having formed by partial melting of a heterogeneous mantle consisting of variable mixtures of components derived from two distinct sources. These sources are depleted mantle similar to that generating modern MORB and an LREE-enriched and HFSE-depleted source similar to that feeding volcanism along modern convergent margins.The rhyolites are characterised by high Na2O/K2O ratios (>1) and Al2O3 (>15 wt.%), low HREE contents (Yb = 0.24–0.68 ppm) leading to highly fractionated REE patterns (La/YbCN = 18.4–54.7) and large negative Nb anomalies (Nb/Lapm = 0.11–0.20), characteristics that are typical of Cenozoic adakites and Archaean TTG which form by partial melting of the hydrated basaltic crust at pressures high enough to stabilize garnet ± amphibole. The Rwamagaza basalts and basaltic andesites are geochemically analogous to the Phanerozoic Mariana Trough Back Arc Basin Basalts and the overall geochemical diversity of Rwamagaza volcanic rocks is interpreted in terms of a geodynamic model involving the interaction of a depleted mantle, a melting subducting oceanic slab in a back arc setting.  相似文献   

4.
We present new zircon U–Pb and Hf isotopic as well as whole-rock geochemical data for volcanic rocks from the eastern margin of the Xing’an Massif, Northeast China, in order to further our understanding of the suture location between the Xing’an and Songnen–Zhangguangcai Range massifs. Zircon secondary ion mass spectrometry U–Pb dating indicates that the volcanic rocks formed during the Early–Middle Ordovician (473–463 Ma). Compared with the coeval Moguqi basalts (rare earth element [REE] = 171–183 ppm; εHf(t) = +0.3 to +2.7; TDM1 = 1074–977 Ma), the Duobaoshan andesites exhibit lower overall REE abundances (109–131 ppm) with relatively high heavy REE contents, stronger high-field-strength element depletion, higher εHf(t) values (+13.0 to +14.8), and much younger TDM1 ages (559–484 Ma). This suggests that the primary magma for the andesites was generated by the partial melting of a relatively depleted mantle wedge that was metasomatized by subduction-related fluids. The primary magma for the basalts in the Moguqi area was probably derived from the partial melting of a relatively enriched lithospheric mantle that was also modified by fluids sourced from a subducted slab. These interpretations suggest that the andesites in Duobaoshan formed in a newly accreted island arc setting, whereas the coeval basalts in Moguqi formed along an active continental margin. We therefore attribute the Early–Middle Ordovician volcanism along the eastern margin of the Xing’an Massif to the northwestward subduction of the Nenjiang–Heihe oceanic plate beneath the Xing’an Massif. Furthermore, considering coeval igneous activity in the southern parts of the Xing’an Massif, we suggest that a magmatic arc existed along the margin of the Xing’an Massif in the early Palaeozoic (490–420 Ma). We conclude that the location of the suture between the Xing’an and Songnen–Zhangguangcai Range massifs runs from Airgin Sum, via south of Xilinhot, to Ulanhot, Moguqi, Nenjiang, and finally Heihe.  相似文献   

5.
吐拉苏盆地大哈拉军山组由两组火山岩组成,一组为玄武安山岩、安山岩,SiO2含量介于54.8%~59.4%之间,另一组为流纹岩,SiO2含量为70.6% ~74.1%,两组岩石具有相似的稀土和微量元素分配型式,均富集U、Th、K、Pb,而亏损Nb、Ta和Ti,同时两组岩石的一些微量元素对比值基本一致,表明流纹岩是本区玄武...  相似文献   

6.
胡军  王核  黄朝阳 《岩石学报》2016,32(6):1699-1714
甜水海地块西段的种羊场地区发育一套互层状产出的玄武岩-玄武安山岩-流纹岩,本文对其进行了岩石学、同位素年代学和地球化学研究。结果表明,流纹岩LA-ICP-MS锆石U-Pb定年获得三组年龄:343.5±4.1Ma表明火山岩的形成时代为早石炭纪,2439±26Ma和1988±36Ma说明甜水海地块存在前寒武纪结晶基底。其中玄武质岩石岩性从拉斑系列、钙碱性系列向碱性系列过渡,呈现出E-MORB(OIB)、大陆板内拉张和岛弧的混合特征,与典型弧后盆地Okinawa玄武岩有一定的差异,表明其可能是异常陆缘弧后盆地拉张裂解的产物。玄武质岩石和流纹岩的主量元素、稀土元素和微量元素比值对的差异表明它们不是同源岩浆演化的产物,玄武质岩石的源区为类似E-MORB(OIB)的岩石圈地幔,且发生了部分熔融,原始岩浆上升过程中经历了矿物分离结晶和地壳混染作用。流纹岩属于高硅高碱的钙碱性火山岩,是上地壳部分熔融的产物。种羊场早石炭纪火山岩可能代表了古特提洋西端早期扩张的记录,为西昆仑-喀喇昆仑地区晚古生代多岛洋格局提供了新的证据。  相似文献   

7.
李平  王洪亮  徐学义  陈隽璐  过磊  奚仁刚 《岩石学报》2014,30(12):3553-3568
新疆西准噶尔北部地区的早泥盆世马拉苏组出露有少量富钠低钾的拉斑质中基性熔岩,这些分布于谢米斯台断裂北侧的玄武安山岩和玄武岩多呈夹层状断续产出于火山碎屑岩之中。马拉苏中基性熔岩的Mg#与主、微量元素协变关系及Th-Th/Nd图反映了其并非同源岩浆演化的结果。马拉苏火山岩中的玄武安山岩富集LILE、亏损HFSE,具有较高的Th含量及较低的Hf/Th和(Nb/Th)PM比值,显示出弧火山岩的地球化学特征。其中的玄武岩则具有略为平坦的稀土元素分配样式,较低的Th含量及较高的Hf/Th和(Nb/Th)PM比值,此同MORB地球化学特征极为相似;虽然其也显示有轻微的LILE富集、HFSE亏损,但是较高的La/Nb比值则暗示这同地壳或俯冲物质组分的卷入有关,且一系列构造环境判别图解也进一步印证了马拉苏组内的玄武岩应属似MORB基性熔岩。此外,两类岩石的高场强元素比值Zr/Nb、Hf/Ta同全球平均大洋中脊玄武岩的相应比值极为接近,反映了马拉苏组中基性火山岩的物质源区主体均为MORB地幔物质源区。La/Yb-Gd/Yb原始地幔标准化比值的模拟计算进一步显示了马拉苏组玄武安山岩与受改造(俯冲沉积物或地壳物质的混染)的石榴子石或尖晶石-石榴子石地幔橄榄岩物质源区的部分熔融作用有关,而似MORB型玄武岩则源自尖晶石地幔橄榄岩源区的部分熔融。结合区内同期的蛇绿岩、火山岩和碱性花岗岩的地球化学研究,我们可以进一步推断此类兼具有似MORB和弧火山岩地球化学特征的早泥盆世马拉苏火山岩应当是西准噶尔地块北部在早古生代受后期俯冲作用影响下经历弧后扩张形成的火山-岩浆地质记录。  相似文献   

8.
新疆新源县城南石炭纪火山岩岩石学和元素地球化学研究   总被引:14,自引:0,他引:14  
新疆新源县南部那拉提山北坡出露的石炭纪火山岩主要由玄武岩、玄武质粗面安山岩、粗面安山岩、安山岩、流纹岩和火山碎屑岩组成。该火山岩中玄武岩属于钙碱性系列,安山质岩石和流纹岩属于高钾钙碱性系列,其中轻稀土轻微富集而重稀土相对亏损,玄武岩富集大离子亲石元素、U、Th和Pb,亏损高场强元素。研究表明,该火山岩岩浆可能是由俯冲板片脱水产生的流体交代地幔楔后,地幔楔发生部分熔融的结果。微量元素模拟计算表明,该玄武岩岩浆可以由石榴石二辉橄榄岩经3%~6%的部分熔融得到;安山质岩浆可由玄武岩岩浆经15%-28%的分离结晶形成。  相似文献   

9.
西乡群孙家河组为一套低绿片岩相浅变质火山-沉积岩系,主要由基性-中基性-酸性火山岩和凝灰岩、沉凝灰岩、泥岩、硅质岩组成,火山岩岩石类型包括玄武岩、安山岩、英安岩和流纹岩.LA-ICPMS锆石U-Pb定年揭示流纹岩形成时代为832.9±4.9Ma,辉石玄武岩的形成时代为845.0±17Ma,两者在误差范围内一致,属新元古代同期岩浆作用产物.元素地球化学研究表明,孙家河组玄武岩属拉斑玄武岩系列,具有受地壳混染的板内玄武岩的地球化学特点.玄武岩-安山岩-英安岩主量元素成分投点呈规律性变化、REE球粒陨石标准化及微量元素原始地幔标准化分配型式具有一致性并相互重叠,不相容元素Th和相容元素Cr相关模拟图中沿分离结晶线分布,证明玄武岩-安山岩-英安岩为同一基性岩浆分离结晶的产物.REE和微量元素分配型式以及微量元素比值对的显著差异,暗示流纹岩与玄武岩-安山岩-英安岩来源于不同源区.Sr-Nd同位素研究表明,玄武岩-安山岩-英安岩样品的ε_(Nd)(t)值均大于0以及在ε_(Nd)(t)-(~(87)Sr/~(86)Sr)_t图解中位于OIB成分区,表明其源区应为与洋岛玄武岩类似的地幔源区;流纹岩样品具有可与基性熔岩相比拟的ε_(Nd)(t)值,暗示流纹岩最有可能是初生玄武质地壳部分熔融而成.本文所研究的原划孙家河组火山岩系列的形成时代、构造环境的确定以及扬子陆块乃至世界上同一时间内普遍发育大陆裂谷岩浆岩组合的地质事实,说明原划孙家河组以及西乡群中的确存在新元古代的组成部分,它们应是新元古代大陆裂谷的产物,它和扬子地块820M8后造山裂解环境花岗岩均是新元古代晚期Rodinia超大陆裂解作用的岩浆响应.  相似文献   

10.
High-alumina basalts and basic andesites, which represent the most “primitive” magma types of the Cenozoic andesitic series of Sardinia, show a spatial chemical zonation with respect to REE. The basaltic rocks from the northern and south-central part of the island have REE patterns typical of calc-alkaline rocks with an enrichment of light REE and fractionation of heavy REE. In contrast, those from the southernmost part have a pattern similar to typical continental tholeiites with only a small light-REE enrichment and unfractionated heavy REE.The present data suggest that basaltic rocks may be formed by anatexis of upper-mantle material with mineral assemblages containing either garnet (calc-alkaline rocks) or spinel (rocks of tholeiitic affinities). The presence of garnet or spinel could merely reflect mineral phase transformation and indicates a different depth of fusion for the various types of basaltic rocks with those of tholeiitic affinities originating at a shallower depth than the calcalkaline rocks. The REE data are consistent with the generation of the basaltic rocks by partial melting of mantle peridotite overlying a subducted plate.  相似文献   

11.
New whole-rock major and trace elements data, zircon laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb ages, and zircon Hf isotope compositions were analysed for Early Cretaceous volcanic rocks, also called Meiriqieco Formation (MF) in the Duobuzha area of the Southern Qiangtang–Baoshan Block (SQBB), northern Tibet. Our aim is to clarify their petrogenesis and tectonic setting, and constrain the evolution process on the northern margin of Bangong–Nujiang suture zone (BNSZ) during Early Cretaceous time. The MF volcanic rocks are mainly composed of andesites with subordinate basalts and rhyolites with high-K calc-alkaline affinity. Zircon LA-ICP-MS U–Pb dating for two andesite and one rhyolite samples give uniform ages within error of ca.113, 114, and 118 Ma, respectively, indicating they were erupted on the Early Cretaceous. The MF andesites have variable zircon εHf(t) values (+0.5 to +10.5), which is different from those of MF rhyolites (+7.9 to +10.7). All the MF rocks are enriched in large ion lithophile elements, and depleted in high field strength elements, yielding the affinity of arc rocks. The MF basalts were most likely derived from the mantle wedge that was metasomatized by fluids released from subducting slab with the involvement of subducted sediments. The MF rhyolites were generated by partial melting of the juvenile mafic lower crust. The MF andesites are interpreted to have formed by mixing of the magmas that parental of the MF basalts and the MF rhyolites. In addition, a couple of distinctly magmatic sources are identified in the SQBB, and this may be related to mantle components injected into the continental crust. Combined with published geological data in the BNSZ and SQBB, we consider that the MF volcanic rocks are formed in a continental arc setting, suggesting that BNO were subducting during the Early Cretaceous time in the Duobuzha area.  相似文献   

12.
Paleoproterozoic basaltic, andesitic and rhyolitic dykes crosscut the Archaean Carajás basement. Basalts are distinguished into a high and a low TiO2 group (HTi and LTi), each group consisting of geochemically distinct NE- and NW-trending swarms. The HTi dykes are evolved transitional basalts having essentially EMORB-type geochemistry. The LTi basalts are tholeiites (NE-trending swarm) and high-Al basalts (NW-trending swarm) displaying incompatible trace elements patterns with variably negative Nb anomaly, enrichment in Rb, Ba, K (LILE) and La, Ce and Nd (LREE) and positive Sr anomaly. With respect to orogenic analogues, andesites have lower Al2O3, CaO and Ni, higher FeO, LILE, LREE, Nb, Zr and Ti and negative Sr anomaly. Rhyolites have geochemical characteristics comparable with those of A-type granites. At 1.8 Ga, ranges from 0.700 to 0.705 in the HTi basalts and from 0.700 to 0.704 in the LTi group. Andesites define an isochron of 1874±110 Ma (Sro=0.7038±0.0010). Rhyolites from Southern and Northern Carajás define two isochrons of 1802±130 Ma (Sro=0.7062±0.0046) and 1535±82 Ga (Sro=0.7625) respectively, the younger date being interpreted as resetting of the Rb–Sr isotopic system. We propose a petrogenetic model relating LTi basalts with melting of lithospheric mantle metasomatized by acid melts derived from incipient melting of eclogites, representing in turn the subsolidus product of basaltic batches trapped in the mantle. The HTi basalts are explained by melting of the lithospheric mantle containing the complementary residual eclogite. Andesite petrogenesis is consistent with crystal fractionation from a high-Mg andesite parent derived from a mantle source more extensively metasomatized by eclogite-derived melts. Rhyolite composition is consistent with low melting degree of the basement rocks. The basalt–andesite–rhyolite dykes may represent the effects of crustal extension and arching in Carajás, which produced the anorogenic acid to intermediate magmatism (Uatumã group) and affecting a large part of the Amazon craton between 1.85 and 1.7 Ga.  相似文献   

13.
Late Miocene–Pliocene to Quaternary calc-alkaline lava flows and domes are exposed in southeast of Isfahan in the Urumieh Dokhtar magmatic belt in the Central Iran structural zone. These volcanic rocks have compositions ranging from basaltic andesites, andesites to dacites. Geochemical studies show these rocks are a medium to high K calc-alkaline suite and meta-aluminous. Major element variations are typical for calc-alkaline rocks. The volcanic rocks have SiO2 contents ranging between 53.8% and 65.3%. Harker diagrams clearly show that the dacitic rocks did not form from the basaltic andesites by normal differentiation processes. They show large ion lithophile elements- and light rare earth elements (LREE)-enriched normalized multielement patterns and negative Nb, Ti, Ta, and P. Condrite-normalized REE patterns display a steep decrease from LREE to light rare earth elements without any Eu anomaly. These characteristics are consistent with ratios obtained from subduction-related volcanic rocks and in collision setting. The melting of a heterogeneous source is possible mechanism for their magma genesis, which was enriched in incompatible elements situated at the upper continental lithospheric mantle or lower crust. The geochemical characteristics of these volcanic rocks suggested that these volcanic rocks evolved by contamination of a parental magma derived from metasomatized upper lithospheric mantle and crustal melts.  相似文献   

14.
Major and trace element data on the Archean metavolcanic rocks of the Prince Albert Group (PAG), Northwest Territories. Canada, are reported. The following major groups were found, based on combined field and geochemical evidence: ultramafic flows; basaltic rocks, predominantly tholeiites; andesites; heavy REE depleted dacites; and rhyolites.The ultramafic and basaltic rocks are relatively normal Archean volcanics except for the downward bowed REE patterns of the tholeiitic basalts. The andesites, dacites and rhyolites, however, are not typical of Archean terrains. Comparisons between the andesites of the PAG and other Archean and more recent ones show that those of the PAG are most similar chemically to modern high-K andesites. REE patterns in these rocks suggest that partial melting of assemblages with significant garnet are an unlikely source but it is not possible to ascribe their origin to any simple process. Partial melting of a garnet-poor mafic granulite is an acceptable source for the heavy REE depleted dacites. The geochemical characteristics of the rhyolites cannot be explained by partial melting of a mafic source or by fractional crystallization from the daeites. It is suggested that these rocks originated by partial melting of pre-existing sialic crust.  相似文献   

15.
Broken Hill ore deposition occurred during the highest geothermal gradient coeval with an event of bimodal basic-rhydacitic volcanism. The depositional environment is interpreted as an ensialic rift on the basis of the sedimentary facies, ferro- and low-K tholeiitic basalts, and bimodal basic-calc alkaline (rhyolite, rhyodacite) volcanism. The orebody is of unusual composition characterised by abundant carbonate, fluorite and fluorapatite, abundant LIL-, K- and Rb-rich premetamorphic alteration assemblages, primordial S and Pb isotopic values, Sr isotopes possibly indicating a heterogeneous source, S : Se in the magmatic range, and zoning suggestive of cooling of the ore fluid.It is suggested that in the mature stage of rifting, propagation of deep fractures suddenly devolatilized the mantle, released CO2 and other fluids which, together with basalts, ascended and caused crustal melting to form acid magmas. The resultant ore fluid exhalation and basaltic and rhyodacitic volcanism were therefore coeval. Rapid deposition of ore from a fluid of unusual composition in a basin or graben within the rift formed a deposit which is not too dissimilar in composition from a carbonatite.The composition of the associated basic rocks and younger alkaline rocks, the premetamorphic alteration assemblage, and the orebody chemistry all suggest that the Lower Proterozoic source area for the ore fluids was metasomatized mantle.  相似文献   

16.
Ca. 825–720 Ma global continental intraplate magmatism is generally linked to mantle plumes or a mantle superplume that caused rifting and fragmentation of the supercontinent Rodinia. Widespread Neoproterozoic igneous rocks in South China are dated at ca. 825–760 Ma. There is a hot debate on their petrogenesis and tectonic affiliations, i.e., mantle plume/rift settings or collision/arc settings. Such competing interpretations have contrasting implications to the position of South China in the supercontinent Rodinia and in Rodinia reconstruction models.Variations in the bulk-rock compositions of primary basaltic melts can provide first order constraints on the mantle thermal–chemical structure, and thus distinguish between the plume/rift and arc/collision models. Whole-rock geochemical data of 14 mid-Neoproterozoic (825–760 Ma) basaltic successions are reviewed here in order to (1) estimate the primary melts compositions; (2) calculate the melting conditions and mantle potential temperature; and (3) identify the contributions of subcontinental lithosphere mantle (SCLM) and asenthospheric mantles to the generation of these basaltic rocks.In order to quantify the mantle potential temperatures and percentages of decompression melting, the primary MgO, FeO, and SiO2 contents of basalts are calculated through carefully selecting less-evolved samples using a melting model based on the partitioning of FeO and MgO in olivine. The mid-Neoproterozoic (825–760 Ma) potential temperatures predicted from the primary melts range from 1390 °C to 1630 °C (mostly > 1480 °C), suggesting that most 825–760 Ma basaltic rocks in South China were generated by melting of anomalously hot mantle sources with potential temperatures 80–200 °C higher than the ambient Middle Ocean Ridge Basalt (MORB)-source mantle.The mantle source regions of these Neoproterozoic basaltic rocks have complex histories and heterogeneous compositions. Enriched mantle sources (e.g., pyroxenite and eclogite) are recognized as an important source for the Bikou and Suxiong basalts, suggesting that their generations may have involved recycled components. Trace elements variations show that interactions between asthenospheric mantle (OIB-type mantle) and SCLM played a very important role in generation of the 825–760 Ma basalts. Our results indicate that the SCLM metasomatized by subduction-induced melts/fluids during the 1.0–0.9 Ga orogenesis as a distinct geochemical reservoir that contributed significantly to the trace-elements and isotope inventory of these basalts.The continental intraplate geochemical signatures (e.g., OIB-type), high mantle potential temperatures and recycled components suggest the presence of a mantle plume beneath the Neoproterozoic South China block. We use the available data to develop an integrated plume-lithosphere interaction model for the ca. 825–760 Ma basalts. The early phases of basaltic rocks (825–810 Ma) were most likely formed by melting within the metasomatized SCLM heated by the rising mantle plume. The subsequent continental rift allowed adiabatic decompression partial melting of an upwelling mantle plumes at relatively shallow depth to form the widespread syn-rifting basaltic rocks at ca. 810–800 Ma and 790–760 Ma.  相似文献   

17.
The Xiong'er volcanic belt, covering an area of more than 60,000 km2 along the southern margin of the North China Craton, has long been considered an intra-continental rift zone and recently interpreted as part of a large igneous province formed by a mantle plume that led to the breakup of the Paleo-Mesoproterozoic supercontinent Columbia. However, such interpretations cannot be accommodated by lithology, mineralogy, geochemistry and geochronology of the volcanic rocks in the belt. Lithologically, the Xiong'er volcanic belt is dominated by basaltic andesite and andesite, with minor dacite and rhyolite, different from rock associations related to continental rifts or mantle plumes, which are generally bimodal and dominated by mafic components. However, they are remarkably similar to those rock associations in modern continental margin arcs. In some of the basaltic andesites and andesites, amphibole is a common phenocryst phase, suggesting the involvement of H2O-rich fluids in the petrogenesis of the Xiong'er volcanic rocks. Geochemically, the Xiong'er volcanic rocks fall in the calc-alkaline series, and in most tectono-magmatic discrimination diagrams, the majority of the Xiong'er volcanic rocks show affinities to magmatic arcs. In the primitive mantle normalized trace-element diagrams, the Xiong'er volcanic rocks show enrichments in the LILE and LREE, and negative Nb–Ta–Ti anomalies, similar to arc-related volcanic rocks produced by the hydrous melting of metasomatized mantle wedge. Nd-isotope compositions of the Xiong'er volcanic rocks suggest that 5–15% older crust has been transferred into the upper lithospheric mantle by subduction-related recycling during Archean to Paleoproterozoic time. Available SHRIMP and LA-ICP-MS U–Pb zircon age data indicate that the Xiong'er volcanic rocks erupted intermittently over a protracted interval from 1.78 Ga, through 1.76–1.75 Ga and 1.65 Ga, to 1.45 Ga, though the major phase of the volcanism occurred at 1.78–1.75 Ga. Such multiple and intermittent volcanism is inconsistent with a mantle plume-driven rifting event, but is not uncommon in ancient and existing continental margin arcs. Taken together, the Xiong'er volcanic belt was most likely a Paleo-Mesoproterozoic continental magmatic arc that formed at the southern margin of the North China Craton. Similar Paleo-Mesoproterozoic continental magmatic arcs were also present at the southern and southeastern margins of Laurentia, the southern margin of Baltica, the northwestern margin of Amonzonia, and the southern and eastern margins of the North Australia Craton, which are considered to represent subduction-related episodic outbuilding on the continental margins of the Paleo-Mesoproterozoic supercontinent Columbia. Therefore, in any configuration of the supercontinent Columbia, the southern margin of the North China Craton could not have been connected to any other continental block as proposed in a recent configuration, but must have faced an open ocean whose lithosphere was subducted beneath the southern margin of the North China Craton.  相似文献   

18.
The Neogene Yamadağ volcanics occupy a vast area between Sivas and Malatya in eastern Anatolia, Turkey. These volcanic rocks are characterized by pyroclastics comprising agglomerates, tuffs and some small outcrops of basaltic–andesitic–dacitic rocks, overlain upward by basaltic and dacitic rocks, and finally by basaltic lava flows in the Arapkir area, northern Malatya Province. The basaltic lava flows in the Arapkir area yield a 40Ar/39Ar age of 15.8 ± 0.2 Ma, whereas the dacitic lava flows give 40Ar/39Ar ages ranging from 17.6 through 14.7 ± 0.1 to 12.2 ± 0.2 Ma, corresponding to the Middle Miocene. These volcanic rocks have subalkaline basaltic, basaltic andesitic; alkaline basaltic trachyandesitic and dacitic chemical compositions. Some special textures, such as spongy-cellular, sieve and embayed textures; oscillatory zoning and glass inclusions in plagioclase phenocrysts; ghost amphiboles and fresh biotite flakes are attributable to disequilibrium crystallization related to magma mixing between coeval magmas. The main solidification processes consist of fractional crystallization and magma mixing which were operative during the soldification of these volcanic rocks. The dacitic rocks are enriched in LILE, LREE and Th, U type HFSE relative to the basaltic rocks. The basaltic rocks also show some marked differences in terms of trace-element and REE geochemistry; namely, the alkaline basaltic trachyandesites have pronounced higher HFSE, MREE and HREE contents relative to the subalkaline basalts. Trace and REE geochemical data reveal the existence of three distinct magma sources – one subalkaline basaltic trachyandesitic, one alkaline basaltic and one dacitic – in the genesis of the Yamadağ volcanics in the Arapkir region. The subalkaline basaltic and alkaline basaltic trachyandesitic magmas were derived from an E-MORB type enriched mantle source with a relatively high- and low-degree partial melting, respectively. The magmatic melt of dacitic rocks seem to be derived from an OIB-type enriched lithospheric mantle with a low proportion of partial melting. The enriched lithospheric mantle source reflect the metasomatism induced by earlier subduction-derived fluids. All these coeval magmas were generated in a post-collisional extensional geodynamic setting in Eastern Anatolia, Turkey.  相似文献   

19.
The Bandas belt, one of two prominent Archaean greenstone belts in the Central African Republic (Equatorial Africa), is ca. 250 km long. At the southernmost part of the belt, a metasedimentary—metavolcanic rock suite is preserved only in brachysynclines. The suite can be divided into two lithostratigraphic units. The lower unit is composed predominantly of volcanic rocks, while the upper one contains mainly metasedimentary rocks. The volcanic rocks, which are part of a sequence ca. 3600 m thick, can be sub-divided according to stratigraphic position, lithology and geochemistry into three groups. The lowermost group includes low-K tholeiitic basalts depleted in light REE. The second group consists of tholeiitic basalts with light REE-enriched patterns and the third, uppermost, group includes andesites, which are similar in several respects to Recent calc-alkaline andesites.The tholeiitic basalts of the first two groups are probably related to different upper mantle sources. The andesites of the third group were produced either by fractional crystallization from a basaltic magma enriched in light REE or equilibrium melting of eclogite or garnet amphibolite.  相似文献   

20.
The bimodal volcanoplutonic (basalt-peralkaline rhyolite with peralkaline granites) association of the Noen and Tost ranges was formed 318 Ma ago in the Gobi-Tien Shan rift zone of the Late Paleozoic-Early Mesozoic central Asian rift system, the development of which was related to the movement of the continental lithosphere over a mantle hot spot. A specific feature of the Late Paleozoic rifting was that it occurred within the Middle-Late Paleozoic active continental margin of the northern Asian paleocontinent. Continental margin magmatism was followed after a short time delay by the magmatism of the Gobi-Tien Shan rift zone, which was located directly in the margin of the paleocontinent. Such a geodynamic setting of the rift zone was reflected in the geochemical characteristics of rift-related rocks. The distribution of major elements and compatible trace elements in the rift-related basic and intermediate rocks corresponds to a crystallization differentiation series. The distribution of incompatible trace elements suggests contributions from several sources. This is also supported by the heterogeneity of Sr and Nd isotopic compositions of the rift-related basaltoids: εNd(T) ranges from 4.4 to 6.7, and (87Sr/86Sr)0, from 0.70360 to 0.70427. The geochemical characteristics of the rift-related basaltoids of the Noen and Tost ranges are not typical of rift settings (negative anomalies in Nb and Ta and positive anomalies in K and Pb) and suggest a significant role of the rocks of a metasomatized mantle wedge in their source. In addition, there are high-titanium rocks among the rift-related basaltoids, whose geochemical characteristics approach those of the basalts of mid-ocean ridges and ocean islands. This allowed us to conclude that the compositional variations of the rift-related basaltoids of the Noen and Tost ranges were controlled by three magma sources: the enriched mantle, depleted mantle (high-titanium basaltoids), and metasomatized mantle wedge (medium-Ti basaltoids). The medium-titanium basaltoids were formed in equilibrium with spinel peridotites, whereas the high-titanium magmas were formed at deeper levels both in the spinel and garnet zones. It terms of geodynamics, the occurrence of three sources of the rift-related basaltoids of the Noen and Tost ranges was related to the ascent of a mantle plume with enriched geochemical characteristics beneath a continental margin, where its influence caused melting in the overlying depleted mantle and the metasomatized mantle wedge. The formation of rift-related andesites in the Noen and Tost ranges was explained by the contamination of mantle-derived basaltoid melts with sialic (mainly sedimentary) continental crustal materials or the assimilation of anatectic granitoid melts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号